Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Arch Toxicol ; 98(8): 2711-2730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762666

RESUMO

The development of a rapid and accurate model for determining the genotoxicity and carcinogenicity of chemicals is crucial for effective cancer risk assessment. This study aims to develop a 1-day, single-dose model for identifying genotoxic hepatocarcinogens (GHCs) in rats. Microarray gene expression data from the livers of rats administered a single dose of 58 compounds, including 5 GHCs, was obtained from the Open TG-GATEs database and used for the identification of marker genes and the construction of a predictive classifier to identify GHCs in rats. We identified 10 gene markers commonly responsive to all 5 GHCs and used them to construct a support vector machine-based predictive classifier. In the silico validation using the expression data of the Open TG-GATEs database indicates that this classifier distinguishes GHCs from other compounds with high accuracy. To further assess the model's effectiveness and reliability, we conducted multi-institutional 1-day single oral administration studies on rats. These studies examined 64 compounds, including 23 GHCs, with gene expression data of the marker genes obtained via quantitative PCR 24 h after a single oral administration. Our results demonstrate that qPCR analysis is an effective alternative to microarray analysis. The GHC predictive model showed high accuracy and reliability, achieving a sensitivity of 91% (21/23) and a specificity of 93% (38/41) across multiple validation studies in three institutions. In conclusion, the present 1-day single oral administration model proves to be a reliable and highly sensitive tool for identifying GHCs and is anticipated to be a valuable tool in identifying and screening potential GHCs.


Assuntos
Máquina de Vetores de Suporte , Animais , Masculino , Ratos , Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência com Séries de Oligonucleotídeos , Administração Oral , Perfilação da Expressão Gênica , Testes de Carcinogenicidade/métodos , Mutagênicos/toxicidade , Medição de Risco/métodos
2.
Cancer Sci ; 114(12): 4763-4769, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858605

RESUMO

The phosphorylated form of histone H2AX (γ-H2AX) serves as a commonly utilized biomarker for DNA damage. Based on our previous findings, which demonstrated the formation of γ-H2AX foci as a reliable biomarker for detecting bladder carcinogens in repeated dose 28-day study in rats, we hypothesized that γ-H2AX could also function as a biomarker for detecting hepatocarcinogens. However, we found that γ-H2AX foci formation was not effectively induced by hepatocarcinogens that did not stimulate hepatocyte proliferation. Therefore, we explored alternative biomarkers to detect chemical hepatocarcinogenicity and discovered increased expressions of epithelial cell adhesion molecule (EpCAM/CD326)- and aminopeptidase N (APN/CD13) in the hepatocytes of rats administered various hepatocarcinogens. Significant increases in EpCAM- and APN-positive hepatocytes were observed for eight and five of the 10 hepatocarcinogens, respectively. Notably, five and two of them, respectively, were negative for γ-H2AX foci. These results highlight the potential of EpCAM and APN as useful biomarkers in combination with γ-H2AX for the detection of chemical hepatocarcinogenicity.


Assuntos
Biomarcadores , Antígenos CD13 , Carcinógenos , Molécula de Adesão da Célula Epitelial , Fosfoproteínas , Animais , Ratos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Fosfoproteínas/metabolismo , Masculino , Carcinógenos/análise , Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores/análise
3.
J Appl Toxicol ; 43(9): 1293-1305, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36908029

RESUMO

We recently developed a rat whole exome sequencing (WES) panel and used it to evaluate early somatic mutations in archival liver tissues from F344/N rats exposed to the hepatocarcinogen, Aflatoxin B1 (AFB1), a widely studied, potent mutagen and hepatocarcinogen associated with hepatocellular carcinoma (HCC). Rats were exposed to 1-ppm AFB1 in feed for 14, 90, and 90 days plus a recovery 60-day, non-exposure period (150-day) timepoint. Isolated liver DNA was exome sequenced. We identified 172 sequence variants across all timepoints, of which 101 were non-synonymous variants. Well-annotated genes carried a diverse set of 29 non-synonymous mutations at 14 days, increasing to 39 mutations at 90 days and then decreasing to 33 mutations following the 60-day recovery. Gene Set Enrichment Analysis conducted on previously reported, available RNA expression data of the same exome sequenced archival samples identified altered transcripts in pathways associated with malignant transformation. These included HALLMARK gene sets associated with cell proliferation (MYC Targets Version 1 and Version 2, E2F targets), cell cycle (G2M checkpoint, mitotic spindle), cell death (apoptosis), and DNA damage (DNA repair, UV response Up, Reactive oxygen species) pathways. DriverNet Impact analysis integrated exome-seq and expression data to reveal somatic mutations in Mcm8, Bdp1, and Cct6a that may drive cancer formation. Connectivity with transcript expression changes identified these genes as the top-ranked candidate driver genes associated with hepatocellular transformation. In conclusion, exome sequencing revealed early somatic mutations that may play a role in cancer cell transformation that are translatable to aflatoxin-induced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Aflatoxina B1/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Exoma/genética , Ratos Endogâmicos F344 , Fígado/metabolismo , Transformação Celular Neoplásica/induzido quimicamente
4.
Genes Environ ; 44(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983681

RESUMO

BACKGROUND: Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more scientific mechanism-based carcinogenicity assessments and promote safe and ethical development of new small molecule pharmaceuticals. In the revised draft, findings such as cellular hypertrophy, diffuse and/or focal cellular hyperplasia, persistent tissue injury and/or chronic inflammation, preneoplastic changes, and tumors are listed as histopathology findings of particular interest for identifying carcinogenic potential. In order to predict hepatocarcinogenicity of test chemicals based on the results from 2- or 4-week repeated dose studies, we retrospectively reanalyzed the results of a previous collaborative study on the liver micronucleus assay. We focused on liver micronucleus induction in combination with histopathological changes including hypertrophy, proliferation of oval cells or bile duct epithelial cells, tissue injuries, regenerative changes, and inflammatory changes as the early responses of hepatocarcinogenesis. For these early responses, A total of 20 carcinogens, including 14 genotoxic hepatocarcinogens (Group A) and 6 non-liver-targeted genotoxic carcinogens (Group B) were evaluated. RESULTS: In the Group A chemicals, 5 chemicals (NPYR, MDA, NDPA, 2,6-DNT, and NMOR) showed all of the 6 early responses in hepatocarcinogenesis. Five chemicals (DMN, 2,4-DNT, QUN, 2-AAF, and TAA) showed 4 responses, and 4 chemicals (DAB, 2-NP, MCT, and Sudan I) showed 3 responses. All chemicals exhibited at least 3 early responses. Contrarily, in the Group B chemicals (6 chemicals), 3 of the 6 early responses were observed in 1 chemical (MNNG). No more than two responses were observed in 3 chemicals (MMC, MMS, and KA), and no responses were observed in 2 chemicals (CP and KBrO3). CONCLUSION: Evaluation of liver micronucleus induction in combination with histopathological examination is useful for detecting hepatocarcinogens. This assay takes much less time than routine long-term carcinogenicity studies.

5.
Toxicol Pathol ; 48(6): 756-765, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833602

RESUMO

Glutathione S-transferase placental form-positive (GST-P+) foci are markers of preneoplastic lesions in rat hepatocarcinogenesis. Our previous studies using reporter gene transgenic rats showed that furan, a hepatocarcinogen in rodents, rapidly induces the formation of GST-P+ foci after short exposure without reporter gene mutation. We hypothesized that GST-P+ foci induced by furan may have biological characteristics different from those induced by diethylnitrosamine (DEN), a genotoxic hepatocarcinogen. Accordingly, we compared the cell kinetics of GST-P+ foci after cessation of DEN treatment and performed comprehensive gene expression in DEN- or furan-induced GST-P+ foci. The number and area of DEN-induced GST-P+ foci were increased after cessation of treatment, whereas furan decreased these parameters. Size distribution analysis showed that large furan-induced GST-P+ foci disappeared after cessation of treatment. Hierarchical cluster analysis showed that all samples from GST-P+ foci induced by furan were separated from those induced by DEN. SOX9 expression was upregulated in furan-induced GST-P+ foci and was detected by immunohistochemistry in large furan-induced GST-P+ foci. Our results indicated that large furan-induced GST-P+ foci were quite different from DEN-induced GST-P+ foci at the molecular and cellular levels. And one of the properties of disappearing large GST-P+ foci were characterized by inclusion of hepatocytes expressing SOX9.


Assuntos
Neoplasias Hepáticas Experimentais , Lesões Pré-Cancerosas , Animais , Dietilnitrosamina , Feminino , Furanos/toxicidade , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Cinética , Fígado/metabolismo , Placenta/metabolismo , Gravidez , Ratos
6.
J Appl Toxicol ; 40(11): 1467-1479, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32596862

RESUMO

We previously found downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4), a negative regulator of transforming growth factor (TGF)-ß signaling, in glutathione S-transferase placental form (GST-P) expressing (+ ) pre-neoplastic lesions produced by treatment with nongenotoxic hepatocarcinogens for up to 90 days in rats. Here, we investigated the relationship between LDLRAD4 downregulation and TGFß signaling in nongenotoxic hepatocarcinogenesis. The transcripts of Tgfb and Hb-egf increased after ≥28 days of treatment. After 84 or 90 days, Snai1 increased transcripts and the subpopulation of GST-P+ foci downregulating LDLRAD4 co-expressed TGFß1, phosphorylated EGFR, or phosphorylated AKT2, and downregulated PTEN, showing higher incidences than those in GST-P+ foci expressing LDLRAD4. The subpopulation of GST-P+ foci downregulating LDLRAD4 also co-expressed caveolin-1 or TACE/ADAM17, suggesting that disruptive activation of TGFß signaling through a loss of LDLRAD4 enhances EGFR and PTEN/AKT-dependent pathways via caveolin-1-dependent activation of TACE/ADAM17 during nongenotoxic hepatocarcinogenesis. The numbers of c-MYC+ cells and PCNA+ cells were higher in LDLRAD4-downregulated GST-P+ foci than in LDLRAD4-expressing GST-P+ foci, suggesting a preferential proliferation of pre-neoplastic cells by LDLRAD4 downregulation. Nongenotoxic hepatocarcinogens markedly downregulated Nox4 after 28 days and later decreased cleaved caspase 3+ cells in LDLRAD4-downregulated GST-P+ foci, suggesting an attenuation of apoptosis by LDLRAD4 downregulation through activation of the EGFR pathway. At the late hepatocarcinogenesis stage in a two-stage model, LDLRAD4 downregulation was higher in adenoma and carcinoma than in pre-neoplastic cell foci, suggesting a role of LDLRAD4 downregulation in tumor development. Our results suggest that nongenotoxic hepatocarcinogens cause disruptive activation of TGFß signaling through downregulating LDLRAD4 toward carcinogenesis in the rat liver.


Assuntos
Apoptose , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Tetracloreto de Carbono , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dietilnitrosamina , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Metapirileno , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Ratos Endogâmicos F344 , Transdução de Sinais , Tioacetamida , Fatores de Tempo , Fator de Crescimento Transformador beta/genética
7.
Genes Environ ; 42: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256870

RESUMO

INTRODUCTION: Various challenges have been overcome with regard to applying 'omics technologies for chemical risk assessments. Previously we published results detailing targeted mRNA sequencing (RNA-Seq) on a next generation sequencer using intact RNA derived from freshly frozen rat liver tissues. We successfully discriminated genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) using 11 selected marker genes. Based on this, we next attempted to use formalin-fixed paraffin-embedded (FFPE) pathology specimens for RNA-Seq analyses. FINDINGS: In this study we performed FFPE RNA-Seq to compare a typical GTHC, 2-acetylaminofluorene (AAF) to genotoxicity equivocal p-cresidine (CRE). CRE is used as a synthetic chemical intermediate, and this compound is classified as an IARC 2B carcinogen and is mutagenic in S. typhimurium, which is non-genotoxic to rat livers as assessed by single strand DNA damage analysis. RNA-Seq was used to examine liver FFPE samples obtained from groups of five 10-week-old male F344 rats that were fed with chemicals (AAF: 0.025% and CRE: 1% in food) for 4 weeks or from controls that were fed a basal diet. We extracted RNAs from FFPE samples and RNA-Seq was performed on a MiniSeq (Illumina) using the TruSeq custom RNA panel. AAF induced remarkable differences in the expression of eight genes (Aen, Bax, Btg2, Ccng1, Gdf15, Mbd1, Phlda3 and Tubb4b) from that in the control group, while CRE only induced expression changes in Gdf15, as shown using Tukey's test. Gene expression profiles for nine genes (Aen, Bax, Btg2, Ccng1, Cdkn1a, Gdf15, Mbd1, Phlda3, and Plk2) differed.between samples treated with AAF and CRE. Finally, principal component analysis (PCA) of 12 genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) using our previous Open TG-GATE data plus FFPE-AAF and FFPE-CRE successfully differentiated FFPE-AAF, as GTHC, from FFPE-CRE, as NGHTC. CONCLUSION: Our results suggest that FFPE RNA-Seq and PCA are useful for evaluating typical rat GTHCs and NGTHCs.

8.
Toxicol Sci ; 169(1): 122-136, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690589

RESUMO

This study examined hypermethylated and downregulated genes specific to carbon tetrachloride (CCl4) by Methyl-Seq analysis combined with expression microarray analysis in the liver of rats treated with CCl4 or N-nitrosodiethylamine (DEN) for 28 days, by excluding those with DEN. Among 52 genes, Ldlrad4, Proc, Cdh17, and Nfia were confirmed to show promoter-region hypermethylation by methylation-specific quantitative PCR analysis on day 28. The transcript levels of these 4 genes decreased by real-time reverse transcription-PCR analysis in the livers of rats treated with nongenotoxic hepatocarcinogens for up to 90 days compared with untreated controls and genotoxic hepatocarcinogens. Immunohistochemically, LDLRAD4 and PROC showed decreased immunoreactivity, forming negative foci, in glutathione S-transferase placental form (GST-P)+ foci, and incidences of LDLRAD4- and PROC- foci in GST-P+ foci induced by treatment with nongenotoxic hepatocarcinogens for 84 or 90 days were increased compared with those with genotoxic hepatocarcinogens. In contrast, CDH17 and NFIA responded to hepatocarcinogens without any relation to the genotoxic potential of carcinogens. All 4 genes did not respond to renal carcinogens after treatment for 28 days. Considering that Ldlrad4 is a negative regulator of transforming growth factor-ß signaling, Proc participating in p21WAF1/CIP1 upregulation by activation, Cdh17 inducing cell cycle arrest by gene knockdown, and Nfia playing a role in a tumor-suppressor, all these genes may be potential in vivo epigenetic markers of nongenotoxic hepatocarcinogens from the early stages of treatment in terms of gene expression changes. LDLRAD4 and PROC may have a role in the development of preneoplastic lesions produced by nongenotoxic hepatocarcinogens.


Assuntos
Tetracloreto de Carbono/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Lesões Pré-Cancerosas/induzido quimicamente , Animais , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteína C/genética , Proteína C/metabolismo , Ratos Endogâmicos F344 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Tempo
9.
Arch Toxicol ; 92(12): 3565-3583, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251054

RESUMO

Dammar resin is a natural food additive and flavoring substance present in many foods and drinks. The present study evaluates the chronic toxicity and carcinogenicity of dietary dammar resin in F344 rats. Dietary concentrations in the 52-week chronic toxicity study were 0, 0.03, 0.125, 0.5, or 2%. The major treatment-related deleterious effects were body weight suppression, increased relative liver weight, and low hemoglobin levels in males and females. Foci of cellular alteration in the liver were observed in the male 2% group, but not in any other group. The no-observed-adverse-effect level for chronic toxicity was 0.125% for males (200.4 mg/kg b.w./day) and females (241.9 mg/kg b.w./day). Dietary concentrations in the 104-week carcinogenicity study were 0, 0.03, 0.5, or 2%. Dammar resin induced hemorrhagic diathesis in males and females, possibly via the inhibition of extrinsic and intrinsic coagulation pathways. Incidences of hepatocellular adenomas and carcinomas were significantly increased in the male 2% group, but not in any other group. In the 4-week subacute toxicity study, the livers of male rat-fed diet-containing 2% dammar resin had increased levels of protein oxidation and increased the expression of two anti-apoptotic and seven cytochrome P450 (CYP) genes. There was also an increased tendency of oxidative DNA damage. These findings demonstrate that dammar resin is hepatocarcinogenic in male F344 rats and underlines the roles of inhibition of apoptosis, induction of CYP enzymes, and oxidative stress in dammar resin-induced hepatocarcinogenesis.


Assuntos
Dano ao DNA/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Fígado/efeitos dos fármacos , Resinas Vegetais/toxicidade , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Testes de Carcinogenicidade/métodos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Feminino , Aditivos Alimentares/administração & dosagem , Hemoglobinas/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Resinas Vegetais/administração & dosagem , Fatores Sexuais , Testes de Toxicidade Crônica/métodos , Testes de Toxicidade Subaguda/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-30173864

RESUMO

It has long been unclear whether 1,4-dioxane (DO) is a genotoxic hepatocarcinogen (GTHC). Therefore, the present study aimed to evaluate rat GTHCs and non-genotoxic hepatocarcinogens (NGTHCs) via selected gene expression patterns in the liver, as determined by next generation sequencing-targeted mRNA sequencing (RNA-Seq) and principal component analysis (PCA). Previously, we selected 11 marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate GTHCs and NGTHCs. In the present study, we quantified changes in the expression of these genes following DO treatment, and compared them with treatment with two typical rat GTHCs, N-nitrosodiethylamine (DEN) and 3,3'-dimethylbenzidine·2HCl (DMB), and a typical rat NGTHC, di(2-ethylhexyl)phthalate (DEHP). RNA-Seq was conducted on liver samples from groups of five male, 10-week-old F344 rats after 4 weeks' feeding of chemicals in the water or the food. Rats in the control group were given water and a basal diet. Significant changes in gene expression in experimental groups compared with the control group were observed in eight genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Phlda3 and Plk2), as shown by Tukey's test. Gene expression profiles of the 11 genes under DO treatment differed significantly from those with DEN and DMB, as well as DEHP. Gene expression profiles with DO treatment differed partially from those with typical GTHCs for five genes (Bax, Btg2, Cdkn1a, Lrp1 and Plk2) and were substantially different from treatment with a typical NGTHC (DEHP) for nine genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Mbd1, Phlda3 and Tubb4b) as determined by Tukey's test. Finally, PCA successfully differentiated GTHCs from DEHP and DO with the 11 genes. The present results suggest that RNA-Seq and PCA are useful to evaluate rat typical GTHCs and typical NGTHCs. DO was suggested to result in a different intermediate gene expression profile from typical GTHCs and NGTHC.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Carcinógenos/toxicidade , Dioxanos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Animais , Carcinogênese/genética , Neoplasias Hepáticas Experimentais/genética , Masculino , Ratos , Ratos Endogâmicos F344
11.
Genes Environ ; 38: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27482301

RESUMO

Toxicogenomics is a rapidly developing discipline focused on the elucidation of the molecular and cellular effects of chemicals on biological systems. As a collaborative study group of Toxicogenomics/JEMS·MMS, we conducted studies on hepatocarcinogens in rodent liver in which 100 candidate marker genes were selected to discriminate genotoxic hepatocarcinogens from non-genotoxic hepatocarcinogens. Differential gene expression induced by 13 chemicals were examined using DNA microarray and quantitative real-time PCR (qPCR), including eight genotoxic hepatocarcinogens [o-aminoazotoluene, chrysene, dibenzo[a,l]pyrene, diethylnitrosamine (DEN), 7,12-dimethylbenz[a]anthracene, dimethylnitrosamine, dipropylnitrosamine and ethylnitrosourea (ENU)], four non-genotoxic hepatocarcinogens [carbon tetrachloride, di(2-ethylhexyl)phthalate (DEHP), phenobarbital and trichloroethylene] and a non-genotoxic non-hepatocarcinogen [ethanol]. Using qPCR, 30 key genes were extracted from mouse livers at 4 h and 28 days following dose-dependent gene expression alteration induced by DEN and ENU: the most significant changes in gene expression were observed at 4 h. Next, we selected key point times at 4 and 48 h from changes in time-dependent gene expression during the acute phase following administration of chrysene by qPCR. We successfully showed discrimination of eight genotoxic hepatocarcinogens [2-acetylaminofluorene, 2,4-diaminotoluene, diisopropanolnitrosamine, 4-dimethylaminoazobenzene, 4-(methylnitsosamino)-1-(3-pyridyl)-1-butanone, N-nitrosomorpholine, quinoline and urethane] from four non-genotoxic hepatocarcinogens [1,4-dichlorobenzene, dichlorodiphenyltrichloroethane, DEHP and furan] using qPCR and principal component analysis. Additionally, we successfully identified two rat genotoxic hepatocarcinogens [DEN and 2,6-dinitrotoluene] from a nongenotoxic-hepatocarcinogen [DEHP] and a non-genotoxic non-hepatocarcinogen [phenacetin] at 4 and 48 h. The subsequent gene pathway analysis by Ingenuity Pathway Analysis extracted the DNA damage response, resulting from the signal transduction of a p53-class mediator leading to the induction of apoptosis. The present review of these studies suggests that application of principal component analysis on the gene expression profile in rodent liver during the acute phase is useful to predict genotoxic hepatocarcinogens in comparison to non-genotoxic hepatocarcinogens and/or non-carcinogenic hepatotoxins.

12.
Exp Toxicol Pathol ; 68(7): 399-408, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27402199

RESUMO

The present study aimed to determine the onset time of hepatocarcinogen/hepatocarcinogenic tumor promoter-specific cell proliferation, apoptosis and aberrant cell cycle regulation after post-initiation treatment. Six-week-old rats were treated with the genotoxic hepatocarcinogen, carbadox (CRB), the marginally hepatocarcinogenic leucomalachite green (LMG), the tumor promoter, ß-naphthoflavone (BNF) or the non-carcinogenic hepatotoxicant, acetaminophen, for 2, 4 or 6 weeks during the post-initiation phase using a medium-term liver bioassay. Cell proliferation activity, expression of G2 to M phase- and spindle checkpoint-related molecules, and apoptosis were immunohistochemically analyzed at week 2 and 4, and tumor promotion activity was assessed at week 6. At week 2, hepatocarcinogen/tumor promoter-specific aberrant cell cycle regulation was not observed. At week 4, BNF and LMG increased cell proliferation together with hepatotoxicity, while CRB did not. Additionally, BNF and CRB reduced the number of cells expressing phosphorylated-histone H3 in both ubiquitin D (UBD)(+) cells and Ki-67(+) proliferating cells, suggesting development of spindle checkpoint dysfunction, regardless of cell proliferation activity. At week 6, examined hepatocarcinogens/tumor promoters increased preneoplastic hepatic foci expressing glutathione S-transferase placental form. These results suggest that some hepatocarcinogens/tumor promoters increase their toxicity after post-initiation treatment, causing regenerative cell proliferation. In contrast, some genotoxic hepatocarcinogens may disrupt the spindle checkpoint without facilitating cell proliferation at the early stage of tumor promotion. This suggests that facilitation of cell proliferation and disruption of spindle checkpoint function are induced by different mechanisms during hepatocarcinogenesis. Four weeks of post-initiation treatment may be sufficient to induce hepatocarcinogen/tumor promoter-specific cellular responses.


Assuntos
Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Acetaminofen/toxicidade , Animais , Carbadox/toxicidade , Cocarcinogênese , Dietilnitrosamina/toxicidade , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Endogâmicos F344 , Corantes de Rosanilina/toxicidade , Fatores de Tempo , beta-Naftoflavona/toxicidade
13.
J Appl Toxicol ; 36(2): 223-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26011634

RESUMO

We have previously reported that a 28-day treatment of carcinogens evoking target cell proliferation activates G1 /S checkpoint function and apoptosis, as well as induction of aberrant ubiquitin D (Ubd) expression, suggesting disruptive spindle checkpoint function, in rats. The present study aimed to determine the onset time of rat liver cells to undergo carcinogen-specific cell cycle aberration and proliferation. Animals were treated orally with a hepatocarcinogenic dose of methyleugenol or thioacetamide for 3, 7 or 28 days. For comparison, some animals were subjected to partial hepatectomy or treated with noncarcinogenic hepatotoxicants (acetaminophen, α-naphthyl isothiocyanate or promethazine). Carcinogen-specific liver cell kinetics appeared at day 28 as evident by increases of cell proliferation, p21(Cip1+) cells, phosphorylated-Mdm2(+) cells and cleaved caspase 3(+) cells, and upregulation of DNA damage-related genes. Hepatocarcinogens also downregulated Rbl2 and upregulated Cdkn1a and Mdm2, and decreased Ubd(+) cells co-expressing phosphorylated-histone H3 (p-Histone H3) and p-Histone H3(+) cell ratio within the Ki-67(+) proliferating population. These results suggest that it takes 28 days to induce hepatocarcinogen-specific early withdrawal of proliferating cells from M phase due to disruptive spindle checkpoint function as evidenced by reduction of Ubd(+) cells staying at M phase. Disruption of G1 /S checkpoint function reflected by downregulation of Rbl2 as well as upregulation of Mdm2 suggestive of sequestration of retinoblastoma protein is responsible for the facilitation of carcinogen-induced cell proliferation at day 28. Accumulation of DNA damage probably in association with facilitation of p53 degradation by activation of Mdm2 may be a prerequisite for aberrant p21(Cip1) activation, which is responsible for apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hepatectomia/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Animais , Carcinogênese/efeitos dos fármacos , Eugenol/análogos & derivados , Eugenol/toxicidade , Masculino , Ratos , Ratos Endogâmicos F344 , Tioacetamida/toxicidade
14.
Food Chem Toxicol ; 86: 1-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26364877

RESUMO

Furan is a food processing contaminant found in many common cooked foods that induces liver toxicity and liver cancer in animal models treated with sufficient doses. The metabolism of furan occurs primarily in the liver where CYP 2E1 produces a highly reactive bis-electrophile, cis-2-butene-1,4-dial (BDA). BDA reacts with nucleophilic groups in amino acids and DNA in vitro to form covalent adducts. Evidence for BDA-nucleoside adduct formation in vivo is limited but important for assessing the carcinogenic hazard of dietary furan. This study used controlled dosing with furan in Fischer 344 rats to measure serum and liver toxicokinetics and the possible formation of BDA-nucleoside adducts in vivo. After gavage exposure, furan concentrations in the liver were consistently higher than those in whole blood (∼6-fold), which is consistent with portal vein delivery of a lipophilic compound into the liver. Formation of BDA-2'-deoxycytidine in furan-treated rat liver DNA was not observed using LC/MS/MS after single doses as high as 9.2 mg/kg bw or repeated dosing for up to 360 days above a consistent background level (1-2 adducts per 10(8) nucleotides). This absence of BDA-nucleoside adduct formation is consistent with the general lack of evidence for genotoxicity of furan in vivo.


Assuntos
Aldeídos/toxicidade , Adutos de DNA/efeitos dos fármacos , Dano ao DNA , DNA/efeitos dos fármacos , Furanos/toxicidade , Fígado/metabolismo , Aldeídos/química , Animais , DNA/metabolismo , Furanos/química , Masculino , Estrutura Molecular , Ratos , Ratos Endogâmicos F344 , Toxicocinética
15.
Artigo em Inglês | MEDLINE | ID: mdl-25892619

RESUMO

The repeated-dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect hepatocarcinogens. We conducted a collaborative study to assess the performance of this assay and to evaluate the possibility of integrating it into general toxicological studies. Twenty-four testing laboratories belonging to the Mammalian Mutagenicity Study Group, a subgroup of the Japanese Environmental Mutagen Society, participated in this trial. Twenty-two model chemicals, including some hepatocarcinogens, were tested in 14- and/or 28-day RDLMN assays. As a result, 14 out of the 16 hepatocarcinogens were positive, including 9 genotoxic hepatocarcinogens, which were reported negative in the bone marrow/peripheral blood micronucleus (MN) assay by a single treatment. These outcomes show the high sensitivity of the RDLMN assay to hepatocarcinogens. Regarding the specificity, 4 out of the 6 non-liver targeted genotoxic carcinogens gave negative responses. This shows the high organ specificity of the RDLMN assay. In addition to the RDLMN assay, we simultaneously conducted gastrointestinal tract MN assays using 6 of the above carcinogens as an optional trial of the collaborative study. The MN assay using the glandular stomach, which is the first contact site of the test chemical when administered by oral gavage, was able to detect chromosomal aberrations with 3 test chemicals including a stomach-targeted carcinogen. The treatment regime was the 14- and/or 28-day repeated-dose, and the regime is sufficiently promising to incorporate these methods into repeated-dose toxicological studies. The outcomes of our collaborative study indicated that the new techniques to detect chromosomal aberrations in vivo in several tissues worked successfully.


Assuntos
Carcinógenos/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes para Micronúcleos , Fatores Etários , Animais , Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Comportamento Cooperativo , Dano ao DNA , Esquema de Medicação , Feminino , Humanos , Japão , Masculino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Reticulócitos/efeitos dos fármacos , Sensibilidade e Especificidade , Sociedades Farmacêuticas
16.
Artigo em Inglês | MEDLINE | ID: mdl-25892624

RESUMO

The utility of the repeated-dose liver micronucleus (RDLMN) assay in the detection of a genotoxic hepatocarcinogen was evaluated. In this paper, a rat hepatocarcinogen, 2-nitropropane (2-NP), was administered orally to young adult rats for 14 and 28 days without a partial hepatectomy or a mitogen, and the micronucleus induction in liver was examined using a simple method to isolate hepatocytes. In addition, a bone marrow micronucleus assay was conducted concomitantly. The frequency of micronucleated hepatocytes induced by 2-NP increased significantly in both the 14- and 28-day repeated-dose studies, while the bone marrow micronucleus assays were negative in each study. These results indicate that the RDLMN assay is useful for detecting a genotoxic hepatocarcinogen that is negative in bone marrow micronucleus assays and is a suitable in vivo genotoxicity test method for integration into a repeated-dose general toxicity study.


Assuntos
Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes para Micronúcleos , Nitroparafinas/toxicidade , Propano/análogos & derivados , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Comportamento Cooperativo , Relação Dose-Resposta a Droga , Esquema de Medicação , Hepatócitos/patologia , Humanos , Japão , Fígado/patologia , Masculino , Especificidade de Órgãos , Propano/toxicidade , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos , Sociedades Farmacêuticas
17.
Mutat Res Genet Toxicol Environ Mutagen ; 780-781: 123-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24768639

RESUMO

The repeated dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect genotoxic hepatocarcinogens that can be integrated into a general toxicity study. The assay methods were thoroughly validated by 19 Japanese facilities. Methapyrilene hydrochloride (MP), known to be a non-genotoxic hepatocarcinogen, was examined in the present study. MP was dosed orally at 10, 30 and 100mg/kg/day to 6-week-old male Crl:CD (SD) rats daily for 14 days. Treatment with MP resulted in an increase in micronucleated hepatocytes (MNHEPs) with a dosage of only 100mg/kg/day. At this dose level, cytotoxicity followed by regenerative cell growth was noted in the liver. These findings suggest that MP may induce clastogenic effects indirectly on the liver or hepatotoxicity of MP followed by regeneration may cause increase in spontaneous incidence of MNHEPs.


Assuntos
Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metaqualona/toxicidade , Testes para Micronúcleos , Administração Oral , Fatores Etários , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Comportamento Cooperativo , Relação Dose-Resposta a Droga , Esquema de Medicação , Hepatócitos/patologia , Humanos , Japão , Fígado/patologia , Masculino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos , Sociedades Farmacêuticas
18.
J Appl Toxicol ; 33(12): 1433-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22972318

RESUMO

Oxidative stress is thought to participate in chemical carcinogenesis and may trigger gene mutations. To accurately assess the carcinogenesis risk posed to humans by chemical exposure, it is important to understand the pathways by which reactive oxygen species (ROS) are generated and the effects of the resulting oxidative stress. In the present study, p53-proficient and -deficient gpt delta mice were given pentachlorophenol (PCP), phenobarbital (PhB) or piperonyl butoxide (PBO), which are classified as non-genotoxic hepatocarcinogens in rodents, at the respective carcinogenic doses for 13 weeks. Exposure to PCP or PBO, but not PhB, invoked significant increases in liver DNA 8-hydroxydeoxyguanosine (8-OHdG) levels. Treatment with PCP significantly increased mRNA levels of the gene encoding NAD(P):quinone oxidoreductase 1 (NQO1) in the liver, suggesting that redox cycling of the PCP metabolite tetrachlorohydroquinone gave rise to ROS. Exposure to PhB or PBO significantly elevated CYP 2B10 mRNA levels while NQO1 levels were also significantly increased in PBO-treated mice. Therefore, in addition to involvement of the CYP catalytic pathway in the ROS-generated system of PBO, catechol derivatives produced from the opening of the PBO functional group methylenedioxy ring probably resulted in ROS generation. However, PCP, PBO and PhB failed to increase gpt and red/gam gene mutations in the liver independently of p53. Overall, the action of oxidative stress by ROS derived from the metabolism of these carcinogens might be limited to cancer-promoting activity, which supports the previous classification of these carcinogens as non-genotoxic.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA , Proteínas de Escherichia coli/genética , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pentosiltransferases/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/genética , Proibitinas , Reação em Cadeia da Polimerase em Tempo Real
19.
Cancer Inform ; 10: 259-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22084566

RESUMO

We have previously shown the hepatic gene expression profiles of carcinogens in 28-day toxicity tests were clustered into three major groups (Group-1 to 3). Here, we developed a new prediction method for Group-1 carcinogens which consist mainly of genotoxic rat hepatocarcinogens. The prediction formula was generated by a support vector machine using 5 selected genes as the predictive genes and predictive score was introduced to judge carcinogenicity. It correctly predicted the carcinogenicity of all 17 Group-1 chemicals and 22 of 24 non-carcinogens regardless of genotoxicity. In the dose-response study, the prediction score was altered from negative to positive as the dose increased, indicating that the characteristic gene expression profile emerged over a range of carcinogen-specific doses. We conclude that the prediction formula can quantitatively predict the carcinogenicity of Group-1 carcinogens. The same method may be applied to other groups of carcinogens to build a total system for prediction of carcinogenicity.

20.
Cancer Inform ; 7: 253-69, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-20011461

RESUMO

This study aimed at discriminating carcinogens on the basis of hepatic transcript profiling in the rats administrated with a variety of carcinogens and non-carcinogens. We conducted 28-day toxicity tests in male F344 rats with 47 carcinogens and 26 non-carcinogens, and then investigated periodically the hepatic gene expression profiles using custom microarrays. By hierarchical cluster analysis based on significantly altered genes, carcinogens were clustered into three major groups (Group 1 to 3). The formation of these groups was not affected by the gene sets used as well as the administration period, indicating that the grouping of carcinogens was universal independent of the conditions of both statistical analysis and toxicity testing. Seventeen carcinogens belonging to Group 1 were composed of mainly rat hepatocarcinogens, most of them being mutagenic ones. Group 2 was formed by three subgroups, which were composed of 23 carcinogens exhibiting distinct properties in terms of genotoxicity and target tissues, namely nonmutagenic hepatocarcinogens, and mutagenic and nonmutagenic carcinogens both of which are targeted to other tissues. Group 3 contained 6 carcinogens including 4 estrogenic substances, implying the group of estrogenic carcinogens. Gene network analyses revealed that the significantly altered genes in Group 1 included Bax, Tnfrsf6, Btg2, Mgmt and Abcb1b, suggesting that p53-mediated signaling pathway involved in early pathologic alterations associated with preceding mutagenic carcinogenesis. Thus, the common transcriptional signatures for each group might reflect the early molecular events of carcinogenesis and hence would enable us to identify the biomarker genes, and then to develop a new assay for carcinogenesis prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA