Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2405874, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206598

RESUMO

Heterogeneous interfacial engineering has garnered widespread attention for optimizing polarization loss and enhancing the performance of electromagnetic wave absorption. A novel Kirkendall effect-assisted electrostatic self-assembly method is employed to construct a metal-organic framework (MOF, MIL-88A) decorated with Ni-Fe layered double hydroxide (LDH), forming a multilayer nano-cage coated with Ti3C2Tx. By modulating the surface adsorption of Ti3C2Tx on LDH, the heterointerfaces in MOF-LDH-MXene ternary composites exhibit excellent interfacial polarization loss. Additionally, the Ni-Fe LDH@Ti3C2Tx nano-cage exhibits a large specific surface area, abundant defects, and a large number of heterojunction structures, resulting in excellent electromagnetic wave absorption performance. The MIL-88A@Ni-Fe LDH@Ti3C2Tx-1.0 nano-cage achieves a reflection loss value of -46.7 dB at a thickness of 1.4 mm and an effective absorption bandwidth of 5.12 GHz at a thickness of 1.8 mm. The heterojunction interface composed of Ni-Fe LDH and Ti3C2Tx helps to enhance polarization loss. Additionally, Ti3C2Tx forms a conductive network on the surface, while the cavity between the MIL-88A core and the Ni-Fe LDH shell facilitates multiple attenuations by increasing the transmission path of internal incident waves. This work may reveal a new structural design of multi-component composites by heterointerfaces engineering for electromagnetic wave absorption.

2.
ACS Appl Mater Interfaces ; 16(25): 32773-32783, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865582

RESUMO

The development of new electromagnetic absorbing materials is the main strategy to address electromagnetic radiation. Once traditional electromagnetic wave-absorbing materials are prepared, it is difficult to dynamically change their electromagnetic wave-absorbing performance. Facing the complexity of the information age and the rapid development of modern radar, it is significant to develop intelligent modulation of electromagnetic wave-absorbing materials. Here, CNTs/VO2/ANF composite aerogels with dynamic frequency tunability and switchable absorption on/off were synthesized. Based on the phase change behavior of VO2, the degree of polarization and interfacial effects of multiple heterogeneous interfaces between VO2 and CNTs and aramid nanofibers (ANFs) were modulated at different temperatures. With the increase in temperature (from 25 to 200 °C), the maximum absorption frequency of the frequency tunable aerogel is modulated from 12.24 to 8.56 GHz in the X-band, and the absorption intensity remains stable. The maximum effective switching bandwidth (ΔEAB) of the wave-absorbing switchable aerogel is 3.70 GHz. This study provides insights into intelligent electromagnetic wave absorption performance and paves the way for temperature-driven application of intelligent modulation of electromagnetic absorbers.

3.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793383

RESUMO

Intelligent devices, when subjected to multiple interactions, tend to generate electromagnetic pollution, which can disrupt the normal functioning of electronic components. Ferrite, which acts as a microwave-absorbing material (MAM), offers a promising strategy to overcome this issue. To further enhance the microwave absorption properties of ferrite MAM, numerous works have been conducted, including ion doping and combining with other materials. Notably, the microstructure is also key factor that affects the microwave absorption properties of ferrite-based MAM. Thus, this article provides a comprehensive overview of research progress on the influence of the microstructure on ferrite-based MAM. MAMs with sheet and layered structures are also current important research directions. For core-shell structure composites, the solid core-shell structure, hollow core-shell structure, yolk-eggshell structure, and non-spherical core-shell structure are introduced. For porous composites, the biomass porous structure and other porous structures are presented. Finally, the development trends are summarized, and prospects for the structure design and preparation of high-performance MAMs are predicted.

4.
Nanomicro Lett ; 16(1): 60, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117416

RESUMO

Two-dimensional (2D) transition metal chalcogenides (TMCs) hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties. However, overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic. Here, an interface engineering based on the heterostructure of 2D Cr5Te8 and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms. Intriguingly, the Cr5Te8@EG (ECT) heterostructure exhibits a minimum reflection loss of up to - 57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%. The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces, thereby reinforcing interfacial polarization loss. Furthermore, the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m2, demonstrating a great radar microwave scattering ability. This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.

5.
Small ; 19(52): e2304932, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635102

RESUMO

Reasonable composition design and controllable structure are effective strategies for harmonic electromagnetic wave (EMW) adsorption of multi-component composites. On this basis, the hybrid MoS2 /CoS2 /VN multilayer structure with the triple heterogeneous interface is prepared by simple stirring hydrothermal, which can satisfy the synergistic interaction between different components and obtain excellent EMW absorption performance. Due to the presence of multiple heterogeneous interfaces, MoS2 /CoS2 /VN composites will produce strong interfacial polarization, while the defects in the sample will become the center of polarization, resulting in dipole polarization. Due to the excellent structural design of MoS2 /CoS2 /VN composite material, MoS2 /CoS2 /VN composite material not only has good conductive loss and polarization loss, but also can maintain excellent stability in simulated seawater, and enhance corrosion resistance. The MoS2 /CoS2 /VN composite with dual functions of corrosion resistant and microwave absorption achieves a minimum reflection loss (RL) of -50.48 dB and an effective absorption bandwidth of up to 5.76 GHz, covering both the X-band and Ku-band. Finally, this study provides a strong reference for the development of EMW absorption materials based on transition metal nitrides.

6.
J Colloid Interface Sci ; 649: 313-324, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37352562

RESUMO

The steadily increasing use of microwave stealth materials in aerospace flying vehicles needs the development of lightweight absorbers with low density and high thermal stability for printing or spraying. In that regard, the structural designability of typical microwave absorbers made of Fe3O4 seems to be a significant roadmap. In this work, a hollow spherical structure with a uniform carbon shell around the urchin-like Fe3O4 core (Fe3O4@C) was produced via a two-step hydrothermal method and annealing. The Fe3O4@C absorber exhibited a strong minimum reflection loss (RLmin) of -73.5 dB at the matching thickness of 3.23 mm. The maximum effective absorption bandwidth (EABmax) was 4.78 GHz at 4.55 mm. The proposed urchin-like core-shell structure was shown to provide good impedance matching and electromagnetic loss ability due to the synergistic effect of Fe3O4 and C. In particular, the urchin-like structure increases the heterogeneous interfaces and effectively improves their polarization and relaxation. On the other hand, it reduces the density of the absorber and enhances multiple scattering attenuations of electromagnetic waves (EMWs). Therefore, the findings of the present study open up prospects for the design of high-efficiency lightweight microwave absorbers with specialized structures.

7.
Small ; 19(44): e2303675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381648

RESUMO

Van der Waals (vdW) metal-semiconductor junctions (MSJs) exhibit huge potential to reduce the contact resistance and suppress the Fermi-level pinning (FLP) for improving the device performance, but they are limited by optional (2D) metals with a wide range of work functions. Here a new class of vdW MSJs entirely composed of atomically thin MXenes is reported. Using high-throughput first-principles calculations, highly stable 80 metals and 13 semiconductors are screened from 2256 MXene structures. The selected MXenes cover a broad range of work functions (1.8-7.4 eV) and bandgaps (0.8-3 eV), providing a versatile material platform for constructing all-MXene vdW MSJs. The contact type of 1040 all-MXene vdW MSJs based on Schottky barrier heights (SBHs) is identified. Unlike conventional 2D vdW MSJs, the formation of all-MXene vdW MSJs leads to interfacial polarization, which is responsible for the FLP and deviation of SBHs from the prediction of Schottky-Mott rule. Based on a set of screening criteria, six Schottky-barrier-free MSJs with weak FLP and high carrier tunneling probability (>50%) are identified. This work offers a new way to realize vdW contacts for the development of high-performance electronic and optoelectronic devices.

8.
J Colloid Interface Sci ; 645: 76-85, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146381

RESUMO

Component regulation and microstructure design are two effective strategies to adjust electromagnetic parameters and improve the microwave absorption performance of materials. In this study, a facile synthesis strategy consisting of ultrasonic dispersion, blast drying, and roasting is proposed to build a sandwich-like graphene-based absorbent, in which Fe3O4 nanoparticles with adjustable content are sandwiched uniformly between reduced graphene oxide nanosheets. The sandwich structure can form multiple interfaces, prevent the aggregation of nanoparticles, facilitate interface polarization, and endow the material with multiple electromagnetic loss mechanisms, which is very beneficial for impedance matching and microwave attenuation. Notably, the effective absorption bandwidth achieves 5.7 GHz, and the minimum reflection loss value is -49.9 dB. In addition, the synthesis process is simple and suitable for large-scale production and possible industrial applications. Thus, this facile route to fabricate sandwich-like graphene-based absorbents provides new ideas and approaches for designing new graphene-based nanocomposites.

9.
ACS Nano ; 16(12): 21098-21110, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36378511

RESUMO

Deep tissue infection, such as osteomyelitis, caused by methicillin-resistant Staphylococcus aureus (MRSA) infection, poses a serious threat to public health and cannot be effectively treated by antibiotics. In this study, we report a microwave (MW)-responsive MoO2/WO3 heterojunction that can be utilized to effectively treat MRSA-infected osteomyelitis under MW irradiation because of the enhanced MW thermal effect and MW catalysis of the composite. The underlying mechanism is as follows: A myriad of oxygen vacancies forms on the surface of MoO2 and WO3 by deoxidization effect with hydrogen from the decomposition of sodium borohydride, which induces a mass of free electrons on the surface of the composite and consequently promotes a localized surface plasmon resonance effect (LSPR) under MW irradiation. Furthermore, the conjugation of Mo and W at the interface enhances the LSPR effect. Thus, the LSPR effect not only induces the formation of radical oxygen species, thereby enhancing MW catalysis, but also results in the formation of an interfacial electrical field, which strengthens dipole polarization through synergistic action with oxygen vacancies and contributes to better MW thermal effects. The characteristics of MoO2/WO3 prove to be promising for the treatment of deep-tissue infections under MW irradiation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Micro-Ondas/uso terapêutico , Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Osteomielite/tratamento farmacológico
10.
J Colloid Interface Sci ; 625: 415-424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35724464

RESUMO

Manufacturing dielectric/magnetic composites with hierarchical structure is regard as a promising strategy for the progress of high-performance microwave absorption (MA) materials. In this paper, the nano-grass structured CoNiO2 magnetic shell was uniformly anchored on the yeast-derived carbon microspheres by in-situ one-pot synthesis method. Profiting from the unique nano-grass and core-shell structure, capable dielectric/magnetic loss, along with improved impedance matching, the prepared absorber realizes desirable MA performance. The minimum reflection loss (RLmin) reaches up to -44.06 dB at 6.56 GHz. Moreover, the effective absorption bandwidth (EAB, reflection loss (RL) < -10 dB) accomplishes 7.04 GHz under a low filler loading of 20 wt%. This work endeavors a valuable insight for designing innovative core-shell structured materials with high-efficiency MA and broad bandwidth.


Assuntos
Carbono , Micro-Ondas , Carbono/química , Impedância Elétrica , Excipientes , Saccharomyces cerevisiae
11.
J Colloid Interface Sci ; 612: 146-155, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34992015

RESUMO

Ultra-thin microwave absorbers have been urgently demanded for electromagnetic applications in recent years. Herein, porous carbon with a "flower cluster" microstructure was synthesized from biomass waste (mango seeds) by a facile activation and carbonization method. The novel structure reduced the density and also improved the impedance matching, dipole polarization, and provided many carbon matrix-air interfaces for interfacial polarization, resulting in superior microwave absorption performance. At an ultra-thin thickness of 1.5 mm, extraordinary microwave absorption was achieved, with a reflection loss (RL) of -42 dB. The effective absorption bandwidth reached 4.2 GHz. The RL can be further improved to -68.4 dB by adjusting the amount of activator to manipulate the structure of porous carbon. In addition, from the simulated radar scattering results, the maximum reduction in the radar cross-section (RCS) reached 30.4 dBm2, which can greatly reduce the probability of equipment being detected by radar. This work provides a low-cost and high-performance microwave absorber for electromagnetic stealth technologies.


Assuntos
Carbono , Radar , Biomassa , Micro-Ondas , Porosidade
12.
J Colloid Interface Sci ; 606(Pt 2): 1128-1139, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487933

RESUMO

Morphology optimization is an effective strategy to take full advantage of interface polarization for the improvement of electromagnetic wave attenuation capability. Herein, a general route was proposed to produce the flower-like core@shell structured MoS2-based nanocomposites through a simple hydrothermal process. Through the in-situ hydrothermal reaction between the Mo and S sources on the surface of CoNi nanoparticles, flower-like core@shell structured CoNi2S4/Co9S8@MoS2 nanocomposites could be successfully synthesized. By regulating the hydrothermal temperature, the flower-like geometrical morphology of samples could be effectively optimized, and the as-prepared sample (S2) synthesized at 200 °C displayed very excellent flower-like morphology compared to the samples (S1 and S3) obtained at 180 and 220 °C. Owing to the excellent interface polarization effect, the as-prepared S2 presented the evidently superior comprehensive microwave absorption properties in terms of strong aborption capability, wide absorption bandwidth and thin matching thicknesses compared to those of S1 and S3. The as-prepared core@shell structured CoNi2S4/Co9S8@MoS2 sample with very excellent flower-like morphology simultaneously displayed the minimal reflection loss of -50.61 dB with the matching thickness of 2.98 mm, and the effective absorption bandwidth of 8.40 GHz with the matching thickness of 2.36 mm. Therefore, we provided a general route for the production of flower-like core@shell structured MoS2-based nanocomposites, which could make the best of interface polarization to develop high-efficiency microwave absorbers.

13.
J Colloid Interface Sci ; 608(Pt 3): 2387-2398, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34763891

RESUMO

Nanocomposites with a three-dimensional (3D) flower-like geometrical morphology were considered as excellent microwave absorbers (MAs) because of the numerous effective sites for the multiple reflections of electromagnetic (EM) wave. Herein, for optimizing the EM matching characteristic and taking full advantage of interface polarization, a strategy of magnetic modulation was proposed to further improve the EM wave absorption performances (EMWAPs) of MoS2-based nanocomposites. We adopted a simple hydrothermal route and a combined method of hydrothermal treatment/hydrogen reduction to synthesize core@shell CoFe2O4@MoS2 and CoFe@MoO2/MoS2 flower-like nanocomposites, respectively. The obtained results indicated that the hydrogen reduction effectively improved their magnetic properties and magnetic loss capabilities, and their 3D flower-like geometrical morphologies were well maintained during the hydrogen reduction process. The obtained core@shell CoFe@MoO2/MoS2 flower-like nanocomposites presented the extraordinary comprehensive EMWAPs including the optimal reflection loss value of -54.83 dB with the matching thicknesses (dm) value of 2.05 mm and effective absorption bandwidth value of 6.40 GHz with the dm value of 2.59 mm, which were evidently superior to the properties of CoFe2O4@MoS2. Therefore, the findings provided an effective pathway to further improve EMWAPs of MoS2-based core@shell nanocomposites and the as-prepared core@shell CoFe@MoO2/MoS2 flower-like nanocomposites could be utilized as the novel high-efficient MAs.

14.
J Colloid Interface Sci ; 608(Pt 1): 60-69, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628320

RESUMO

Hollow materials have many advantages when acting as electromagnetic wave (EMW) absorber, such as excellent impedance matching properties, rich micro-interfaces and light weight. In this work, a novel hollow particle with double-shell composed with CuS and Mn(OH)2 is synthesized by coordination etching, precipitation and sulfuration using tetrakaidecahedral Cu2O as template. These hollow particles are expected to be used as improved EMW absorption property at an ultra-wide band. In this hollow particle, tetrakaidecaheral CuS acts as inner shell and Mn(OH)2 acted as outer shell, thus having rich heterogeneous interfaces which induce strong interfacial polarization. Moreover, the lower electrical conductivity and loose structure of the Mn(OH)2 shell facilitates the entry of EMW into the absorbers, and the hollow structure in this particle is beneficial to improve the impedance matching according to Maxwell-Garnett (MG) theory. Therefore, hollow CuS@Mn(OH)2 particles with double-shell exhibit excellent EMW absorption performance. The effective absorption bandwidth (reflection loss (RL) ≤ -10 dB) is 6.88 GHz (from 11.12 GHz to 18 GHz) at 2.3 mm thickness of sample.

15.
Nanomicro Lett ; 13(1): 175, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398334

RESUMO

Layered double hydroxides (LDHs) have a special structure and atom composition, which are expected to be an excellent electromagnetic wave (EMW) absorber. However, it is still a problem that obtaining excellent EMW-absorbing materials from LDHs. Herein, we designed heterostructure NiCo-LDHs@ZnO nanorod and then subsequent heat treating to derive NiCo@C/ZnO composites. Finally, with the synergy of excellent dielectric loss and magnetic loss, an outstanding absorption performance could be achieved with the reflection loss of - 60.97 dB at the matching thickness of 2.3 mm, and the widest absorption bandwidth of 6.08 GHz was realized at 2.0 mm. Moreover, this research work provides a reference for the development and utilization of LDHs materials in the field of microwave absorption materials and can also provide ideas for the design of layered structural absorbers.

16.
Polymers (Basel) ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471091

RESUMO

In order to realize the diagnosis of water distribution, this paper analyzes the interface polarization and macroscopic space charge polarization mechanism when the water distribution is non-uniform. The experimental results of this paper and bushing show that when the moisture distribution is non-uniform, there is a significant loss peak in the tanδ-f curve. The loss peak shifts to higher frequencies as the non-uniformity coefficient increases. There are common intersection points between multiple tanδ-f curves. Further, this paper realizes the diagnosis of the location of moisture distribution through Frequency Domain Spectroscopy (FDS) testing of different voltages and different wiring methods based on the macroscopic space charge polarization. In the single-cycle FDS test, when the positive electrode is first added to the area with higher moisture content, the amplitude of the tanδ-f curve is smaller. The tanδ-f curves under different wiring methods constitute a "ring-shaped" loss peak. As the voltage increases, the peak value of the loss peak shifts to the lower frequency band. As the temperature increases, the peak value of the loss peak shifts to higher frequencies. Based on the above rules and mechanism analysis, this research provides a new solution for the evaluation of moisture content of oil-immersed polymers equipment.

17.
Nanomaterials (Basel) ; 9(2)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708942

RESUMO

Polarization and traps determine the electrical property of oil-paper insulation, but most attention has been paid to the modification of insulating oil with nanoparticles, so there are is little research about oil-impregnated paper, and the origin for performance variation is not understood yet. In this paper, spherical nanoscale titanium dioxide was prepared by the hydrolysis method and nanofluid-impregnated paper (NP) was fabricated through oil-impregnation. The frequency domain spectrum was measured for polarization analysis, and both thermally stimulated depolarization current (TSDC) and isothermal surface potential decay (ISPD) methods were used to reveal trap parameters. Results show that NP's low frequency permittivity is much larger, and another peak appears in the spectrum even though the content of nanoparticles is very low. With the addition of TiO2 nanoparticles, TSDC's amplitude and peak temperature increase, and the trap energy becomes shallower. TiO2 nanoparticles' strong polarization and high activation energy contribute to NP's larger interface polarization intensity and activation energy. Furthermore, because of oxygen vacancies, TiO2 nanoparticles offer a transfer site for holes and electrons to escape from deep traps; thus, the trap energy is greatly reduced.

18.
ACS Appl Mater Interfaces ; 9(39): 34243-34255, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28901126

RESUMO

It is widely recognized that constructing multiple interface structures for enhanced interface polarization is beneficial to microwave absorption. Here, we report our work of achieving excellent microwave-absorption performance and controlling better-defined interfaces in vertically stacked two-dimensional (2D) MoS2 with other dimensional building blocks. The optimal reflection loss and effective absorbing bandwidth (reflection loss <-10 dB) of several mixed-dimensional van der Waals heterostructures are as follows: (i) for 2-0 type (2D MoS2/zero-dimensional Ni nanoparticles), -19.7 dB and 2.92 GHz; (ii) for 2-1 type (2D MoS2/one-dimensional carbon nanotubes), -47.9 dB and 5.60 GHz; and (iii) for 2-3 type (2D MoS2/three-dimensional carbon layers), -69.2 dB and 4.88 GHz. As a result, by selected synthesis of different types of microstructures, we can regulate and control microwave-absorption properties in MoS2 mixed-dimensional van der Waals heterostructures. In addition, attributing to the better-defined interfaces generated in mixed-dimensional van der Waals heterostructures, we found an alternative strategy to improve microwave attenuation properties of 2-0, 2-1, and 2-3 samples by controlling interfacial contacts. The results indicate that mixed-dimensional van der Waals heterostructures provide a new stage for the next generation of microwave-absorbing materials.

19.
ACS Appl Mater Interfaces ; 9(6): 5660-5668, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28116900

RESUMO

Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the high charge carrier concentration of graphene. This study is devoted to fabricating the filmlike composite by a facile thermal decomposition method and investigating the relationship among contact area, polarization intensity, and the type of metal oxide. Because of the high-frequency polarization effect, the composites presented excellent electromagnetic wave attenuation ability. It is shown that the optimal effective frequency bandwidth of graphene/metal oxide was close to 7.0 GHz at a thin coating layer of 2.0 mm. The corresponding reflection loss value was nearly -22.1 dB. Considering the attenuation mechanism, interface polarization may play a key role in the microwave-absorbing ability.

20.
ACS Appl Mater Interfaces ; 7(49): 27373-81, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26588726

RESUMO

In this study, we report a feasible strategy for fabricating high-dielectric-constant polymer composites for applications in energy storage devices and embedded capacitors. Hierarchical flower-like TiO2 particles were prepared via a facile solvothermal process and incorporated into the P(VDF-HFP) matrix. The temperature and frequency dependent dielectric properties of flower-like TiO2/P(VDF-HFP) composites as well as commercial TiO2/P(VDF-HFP) composites were investigated. The results reveal that the flower-like TiO2 particles are more effective in increasing the dielectric constant of P(VDF-HFP) when compared with commercial TiO2. Typically, the dielectric constant of the P(VDF-HFP) composite filled with 20 vol % flower-like TiO2 reaches 83.1 at 100 Hz, in contrast to 43.4 for the composite filled with 20 vol % commercial TiO2 and 11.3 for pristine P(VDF-HFP). Also, the flower-like TiO2-filled composites exhibit similar characteristic breakdown strengths to their commercial TiO2-filled counterparts. The significant improvement in the dielectric constant could be attributed to the enhancement of Maxwell-Wagner-Sillars polarization, which originates from the sophisticated morphology of flower-like TiO2 particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA