Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839642

RESUMO

Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.

2.
ACS Nano ; 15(5): 8517-8524, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33961404

RESUMO

The dynamic nature of micellar nanostructures is employed to form a self-assembled Förster resonance energy transfer (FRET) nanoplatform for enhanced sensing of DNA. The platform consists of lipid oligonucleotide FRET probes incorporated into micellar scaffolds, where single recognition events result in fusion and fission of DNA mixed micelles, triggering the fluorescence response of multiple rather than a single FRET pair. In comparison to conventional FRET substrates where a single donor interacts with a single acceptor, the micellar multiplex FRET system showed ∼20- and ∼3-fold enhancements in the limit of detection and FRET efficiency, respectively. This supramolecular signal amplification approach could potentially be used to improve FRET-based diagnostic assays of nucleic acid and non-DNA based targets.


Assuntos
Nanoestruturas , Ácidos Nucleicos , DNA , Transferência Ressonante de Energia de Fluorescência , Micelas
3.
Bioorg Med Chem ; 25(1): 175-186, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810441

RESUMO

The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies.


Assuntos
Inativação Gênica , Lipídeos/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Tionucleotídeos/química , Tionucleotídeos/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/metabolismo , Pinocitose , Tionucleotídeos/administração & dosagem , Tionucleotídeos/metabolismo , Transfecção
4.
Chembiochem ; 16(9): 1284-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25953428

RESUMO

The construction of nanomaterials from oligonucleotides by modular assembly invariably requires the use of branched nucleic acid architectures such as three- and four-way junctions (3WJ and 4WJ). We describe the stabilization of DNA 3WJ by using non-nucleotide lipophilic spacers to create a hydrophobic pocket within the junction space. Stabilization of nucleic acid junctions is of particular importance when constructing nanostructures in the "ultra-nano" size range (<20 nm) with shorter double-stranded regions. UV thermal melting studies show that lipophilic spacers strategically placed within the junction space significantly increased thermal stability. For a 3WJ with eight base pair arms, thermal stability was increased from 30.5 °C for the unmodified junction to a maximum stability of 55.0 °C. The stability of the junction can be modulated within this temperature range by using the appropriate combinations of spacers.


Assuntos
DNA/química , Lipídeos/química , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Oligonucleotídeos/química , Temperatura
5.
Biochim Biophys Acta ; 1830(10): 4872-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800579

RESUMO

BACKGROUND: The potential use of nucleic acids as therapeutic drugs has triggered the quest for oligonucleotide conjugates with enhanced cellular permeability. To this end, the biophysical aspects of previously reported potential lipid oligodeoxyribonucleotide conjugates were studied including its membrane-binding properties and cellular uptake. METHODS: These conjugates were fully characterized by MALDI-TOF mass spectrometry and HPLC chromatography. Their ability to insert into lipid model membrane systems was evaluated by Langmuir balance and confocal microscopy followed by the study of the internalization of a lipid oligodeoxyribonucleotide conjugate bearing a double-tail lipid modification (C28) into different cell lines by confocal microscopy and flow cytometry. This compound was also compared with other lipid containing conjugates and with the classical lipoplex formulation using Transfectin as transfection reagent. RESULTS: This double-tail lipid modification showed better incorporation into both lipid model membranes and cell systems. Indeed, this lipid conjugation was capable of inserting the oligodeoxyribonucleotide into both liquid-disordered and liquid-ordered domains of model lipid bilayer systems and produced an enhancement of oligodeoxyribonucleotide uptake in cells, even better than the effect caused by lipoplexes. In addition, in ß2 integrin (CR3) expressing cells this receptor was directly involved in the enhanced internalization of this compound. CONCLUSIONS: All these features confirm that the dual lipid modification (C28) is an excellent modification for enhancing nucleic acid delivery without altering their binding properties. GENERAL SIGNIFICANCE: Compared to the commercial lipoplex approach, oligodeoxyribonucleotide conjugation with C28 dual lipid modification seems to be promising to improve oligonucleotide delivery in mammalian cells.


Assuntos
Lipídeos/química , Oligonucleotídeos/administração & dosagem , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Primers do DNA , Corantes Fluorescentes/química , Células HeLa , Humanos , Bicamadas Lipídicas , Microscopia Confocal , Oligonucleotídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA