Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 140: 112850, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39116488

RESUMO

OBJECTIVE: Collagen-induced arthritis (CIA) model was induced in C57BL/6 wild-type (wt) and C57BL/6 miR-204/-211 double-knockout (dKO) mice to investigate the role of miR-204/-211 in suppressing splenic inflammation in rheumatoid arthritis (RA). METHODS: Differences of miR-204/-211 and structure-specific recognition protein 1 (SSRP1) in the spleen of DBA/1J wt and CIA mice were detected via PCR and immunohistochemistry. CIA was induced in both C57BL/6 wt and C57BL/6 miR-204/-211 dKO mice, and the onset of CIA and disease severity were statistically analyzed. Immunohistochemistry staining of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and SSRP1 in spleen or knee joints was performed and analyzed. In CIA miR-204/-211 dKO mice, AAV-shSSRP1 was intra-articularly injected, with both the AAV-shRNA Ctrl and AAV-shRNA Ctrl CIA groups receiving the same dose of AAV-shRNA. Spleen sections were stained with hematoxylin and eosin (H&E). RESULTS: Compared to wt mouse spleens, aberrant expression of miR-204/-211 and SSRP1 was observed in the spleens of CIA mice. Immunized dKO mice exhibited a higher incidence of CIA onset and a more exacerbated RA disease phenotype, characterized by increased spleen inflammation score and elevated levels of IL-1ß, TNF-α, and SSRP1 expression. AAV-shSSRP1 injection in CIA dKO mice significantly reduced spleen inflammation scores, IL-1ß and TNF-α expression levels, and down-regulated Ki-67 expression compared to CIA dKO mice. CONCLUSION: Knockout of miR-204/-211 exacerbated the onset of CIA in C57BL/6 mice, while miR-204/-211 played a protective role against the progression of splenic inflammatory and proliferative progression in RA by targeting SSRP1.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Baço , Animais , Masculino , Camundongos , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Experimental/genética , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Progressão da Doença , Inflamação , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , MicroRNAs/genética , Baço/patologia , Baço/imunologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Cells ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334649

RESUMO

TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.


Assuntos
Catarata , MicroRNAs , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Humanos , Animais , Camundongos , Cálcio/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Catarata/genética , Canais de Potencial de Receptor Transitório/genética , Mutação/genética , Cátions/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769311

RESUMO

The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Retina/metabolismo , Diferenciação Celular/genética , Neuroglia/metabolismo , Neurônios/metabolismo
4.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511897

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial hyperplasia. Mir204 and Mir211 are homologous miRNAs with the same gene targeting spectrum. It is known that Mir204/211 play an important role in protecting osteoarthritis development; however, the roles of Mir204/211 in RA disease have not been determined. In the present study, we investigated the effects and molecular mechanisms of Mir204/211 on synovial inflammation and hyperproliferation in RA. The effects of Mir204/211 on the inflammation and abnormal proliferation in primary fibroblast-like synoviocytes (FLSs) were examined by Mir204/211 gain-of-function and loss-of-function approaches in vitro and in vivo. We identified the structure-specific recognition protein 1 (Ssrp1) as a downstream target gene of Mir204/211 based on the bioinformatics analysis. We overexpressed Ssrp1and Mir204/211 in FLS to determine the relationship between Ssrp1 and Mir204/211 and their effects on synovial hyperplasia. We created a collagen-induced arthritis (CIA) model in wild-type as well as Mir204/211 double knockout (dKO) mice to induce RA phenotype and administered adeno-associated virus (AAV)-mediated Ssrp1-shRNA (AAV-shSsrp1) by intra-articular injection into Mir204/211 dKO mice. We found that Mir204/211 attenuated excessive cell proliferation and synovial inflammation in RA. Ssrp1 was the downstream target gene of Mir204/211. Mir204/211 affected synovial proliferation and decelerated RA progression by targeting Ssrp1. CIA mice with Mir204/211 deficiency displayed enhanced synovial hyperplasia and inflammation. RA phenotypes observed in Mir204/211 deficient mice were significantly ameliorated by intra-articular delivery of AAV-shSsrp1, confirming the involvement of Mir204/211-Ssrp1signaling during RA development. In this study, we demonstrated that Mir204/211 antagonize synovial hyperplasia and inflammation in RA by regulation of Ssrp1. Mir204/211 may serve as novel agents to treat RA disease.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Hiperplasia/metabolismo , Células Cultivadas , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Experimental/genética , Artrite Experimental/metabolismo , Proliferação de Células , Fibroblastos/metabolismo , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA