Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Med Mol Morphol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122902

RESUMO

Oral epithelial dysplasia includes a range of clinical oral mucosal diseases with potentially malignant traits. Dental pulp stem cells (DPSCs) are potential candidates for cell-based therapies targeting various diseases. However, the effect of DPSCs on the progression of oral mucosal precancerous lesions remains unclear. Animal experiments were conducted to assess the effect of human DPSCs (hDPSCs). We measured the proliferation, motility and mitochondrial respiratory function of the human dysplastic oral keratinocyte (DOK) cells cocultured with hDPSCs. Mitochondrial transfer experiments were performed to determine the role mitochondria from hDPSCs in the malignant transformation of DOK cells. hDPSCs injection accelerated carcinogenesis in 4NQO-induced oral epithelial dysplasia in mice. Coculture with hDPSCs increased the proliferation, migration, invasion and mitochondrial respiratory function of DOK cells. Mitochondria from hDPSCs could be transferred to DOK cells, and activated mTOR signaling pathway in DOK cells. Our study demonstrates that hDPSCs activate the mTOR signaling pathway through mitochondrial transfer, promoting the malignant transformation of oral precancerous epithelial lesions.

2.
Methods Mol Biol ; 2835: 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105904

RESUMO

Mitochondrial transfer (MT) is a biological process that allows a donor cell to horizontally share its own mitochondria with a recipient cell. Mitochondria are highly dynamic membrane-bound sub-cellular organelles prominently involved in the regulation of the cell energy balance, calcium homeostasis, and apoptotic machinery activation. They physiologically undergo fusion and fission processes in response to the cell requirement, with a continuous morphological re-arrangement. This structural and functional plasticity is at the basis of the MT, described in tissue regeneration, cardiac and neurological diseases, as well as in cancer. Here, the MT has been observed in the tumor micro-environment (TME) from the adipose-derived stem cells (ASCs) to the cancer cells, eventually reverting the lack of the mitochondria respiration function, or enhancing their motility and drug resistance. In this chapter, we outline some key protocols for evaluating this exciting phenomenon of MT. These methodological and technical approaches are very important, considering all the limitations that scientists constantly face, especially in this field of the research.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Linhagem Celular Tumoral , Dinâmica Mitocondrial
3.
Stem Cell Rev Rep ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017908

RESUMO

Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MBN/MBN) and normal and DMD-affected donors (MBN/MBDMD), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.

4.
Mitochondrion ; 78: 101935, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002687

RESUMO

In recent years, research has increasingly focused on the biogenesis of extracellular vesicles (EVs) and the sorting mechanisms for their contents. Mitochondria can be selectively loaded into EVs, serving as a way to maintain cellular mitochondrial homeostasis. EV-mediated mitochondrial transfer has also been shown to greatly impact the function of target cells. Based on the mechanism of EV-mediated mitochondrial transfer, therapies can be developed to treat human diseases. This review summarizes the recent advances in the biogenesis and molecular composition of EVs. It also highlights the sorting and trafficking mechanisms of mitochondrial components into EVs. Furthermore, it explores the current role of EV-mediated mitochondrial transfer in the development of human diseases, as well as its diagnostic and therapeutic applications.

5.
Pharmacol Res ; 206: 107307, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004243

RESUMO

Extracellular vesicles (EVs), secreted by most cells, act as natural cell-derived carriers for delivering proteins, nucleic acids, and organelles between cells. Mitochondria are highly dynamic organelles responsible for energy production and cellular physiological processes. Recent evidence has highlighted the pivotal role of EVs in intercellular mitochondrial content transfer, including mitochondrial DNA (mtDNA), proteins, and intact mitochondria. Intriguingly, mitochondria are crucial mediators of EVs release, suggesting an interplay between EVs and mitochondria and their potential implications in physiology and pathology. However, in this expanding field, much remains unknown regarding the function and mechanism of crosstalk between EVs and mitochondria and the transport of mitochondrial EVs. Herein, we shed light on the physiological and pathological functions of EVs and mitochondria, potential mechanisms underlying their interactions, delivery of mitochondria-rich EVs, and their clinical applications in regenerative medicine.


Assuntos
Vesículas Extracelulares , Mitocôndrias , Medicina Regenerativa , Humanos , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Mitocôndrias/metabolismo , Animais
6.
Sci Total Environ ; 947: 174502, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971248

RESUMO

Arsenic, a widespread environmental poison, can cause significant liver damage upon exposure. Mitochondria are the most sensitive organelles to external factors. Dysfunctional mitochondria play a crucial role in cellular senescence and liver damage. Tunnelling nanotubes (TNTs), membrane structures formed between cells, with fibrous actin (F-actin) serving as the scaffold, facilitate mitochondrial transfer between cells. Notably, TNTs mediate the delivery of healthy mitochondria to damaged cells, thereby mitigating cellular damage. Although limited studies have suggested that F-actin may be modulated by the longevity gene SIRT1, the association between arsenic-induced liver damage and this mechanism remains unexplored. The findings of the current study indicate that arsenic suppresses SIRT1 and F-actin in the rat liver and MIHA cells, impeding the formation of TNTs and mitochondrial transfer between MIHA cells, thereby playing a pivotal role in mitochondrial dysfunction, cellular senescence and liver damage induced by arsenic. Notably, increasing SIRT1 levels effectively mitigated liver mitochondrial dysfunction and cellular senescence triggered by arsenic, highlighting SIRT1's crucial regulatory function. This research provides novel insights into the mechanisms underlying arsenic-induced liver damage, paving the way for the development of targeted preventive and therapeutic drugs to address arsenic-induced liver damage.


Assuntos
Arsênio , Senescência Celular , Hepatócitos , Nanotubos , Sirtuína 1 , Sirtuína 1/metabolismo , Arsênio/toxicidade , Senescência Celular/efeitos dos fármacos , Ratos , Animais , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos
7.
J Exp Clin Cancer Res ; 43(1): 166, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877575

RESUMO

BACKGROUND: Breast cancer (BC) is a complex disease, showing heterogeneity in the genetic background, molecular subtype, and treatment algorithm. Historically, treatment strategies have been directed towards cancer cells, but these are not the unique components of the tumor bulk, where a key role is played by the tumor microenvironment (TME), whose better understanding could be crucial to obtain better outcomes. METHODS: We evaluated mitochondrial transfer (MT) by co-culturing Adipose stem cells with different Breast cancer cells (BCCs), through MitoTracker assay, Mitoception, confocal and immunofluorescence analyses. MT inhibitors were used to confirm the MT by Tunneling Nano Tubes (TNTs). MT effect on multi-drug resistance (MDR) was assessed using Doxorubicin assay and ABC transporter evaluation. In addition, ATP production was measured by Oxygen Consumption rates (OCR) and Immunoblot analysis. RESULTS: We found that MT occurs via Tunneling Nano Tubes (TNTs) and can be blocked by actin polymerization inhibitors. Furthermore, in hybrid co-cultures between ASCs and patient-derived organoids we found a massive MT. Breast Cancer cells (BCCs) with ASCs derived mitochondria (ADM) showed a reduced HIF-1α expression in hypoxic conditions, with an increased ATP production driving ABC transporters-mediated multi-drug resistance (MDR), linked to oxidative phosphorylation metabolism rewiring. CONCLUSIONS: We provide a proof-of-concept of the occurrence of Mitochondrial Transfer (MT) from Adipose Stem Cells (ASCs) to BC models. Blocking MT from ASCs to BCCs could be a new effective therapeutic strategy for BC treatment.


Assuntos
Neoplasias da Mama , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Mitocôndrias/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Reprod Biomed Online ; 49(3): 104101, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38943811

RESUMO

RESEARCH QUESTION: What is the attitude of Belgian women of reproductive age towards enucleated egg donation? Does the willingness of women to donate differ when they would donate enucleated or whole eggs? DESIGN: In 2022, an online survey was conducted among a representative sample of 1000 women in Belgium aged 18-50 years. The item on willingness to anonymously donate enucleated eggs was dichotomized into those willing to donate and those not willing to donate or uncertain. RESULTS: No statistically significant difference was found between the willingness to donate enucleated eggs and whole eggs (whether anonymously or identifiably). Anonymity, however, affected the willingness to donate, with considerably fewer women willing to donate identifiably. The respondents were divided about their parental status if they were to donate enucleated eggs, with less than one-half (44%) not considering themselves to be a genetic mother. Women willing to donate enucleated eggs anonymously were less likely to view themselves as a genetic mother of the child compared with others. Fewer than one in five considered the technique unacceptable because the resulting child would carry genetic material of three persons. CONCLUSIONS: Women in the general population did not show a greater willingness to donate enucleated eggs than whole eggs. The fact that the respondents were strongly divided on whether or not they would consider themselves to be a genetic mother of the resulting child may explain this result. Other factors, such as the potential high risk for the child, may also have contributed to less willingness.

9.
J Exp Clin Cancer Res ; 43(1): 147, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769583

RESUMO

A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Microambiente Tumoral , Animais , Nanotubos
10.
J Transl Med ; 22(1): 491, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790026

RESUMO

Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.


Assuntos
Metabolismo Energético , Células-Tronco Mesenquimais , Mitocôndrias , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Animais , Transplante de Células-Tronco Mesenquimais , Doença
11.
Transl Neurodegener ; 13(1): 23, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632601

RESUMO

Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.


Assuntos
Doenças Mitocondriais , Doenças do Sistema Nervoso , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Encéfalo/metabolismo , Biologia
12.
Mol Neurobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573412

RESUMO

Diabetes-associated cognitive dysfunction (DACD) has ascended to become the second leading cause of mortality among diabetic patients. Phosphoserine phosphatase (PSPH), a pivotal rate-limiting enzyme in L-serine biosynthesis, has been documented to instigate the insulin signaling pathway through dephosphorylation. Concomitantly, CD38, acting as a mediator in mitochondrial transfer, is activated by the insulin pathway. Given that we have demonstrated the beneficial effects of exogenous mitochondrial supplementation on DACD, we further hypothesized whether astrocytic PSPH could contribute to improving DACD by promoting astrocytic mitochondrial transfer into neurons. In the Morris Water Maze (MWM) test, our results demonstrated that overexpression of PSPH in astrocytes alleviated DACD in db/db mice. Astrocyte specific-stimulated by PSPH lentivirus/ adenovirus promoted the spine density both in vivo and in vitro. Mechanistically, astrocytic PSPH amplified the expression of CD38 via initiation of the insulin signaling pathway, thereby promoting astrocytic mitochondria transfer into neurons. In summation, this comprehensive study delineated the pivotal role of astrocytic PSPH in alleviating DACD and expounded upon its intricate cellular mechanism involving mitochondrial transfer. These findings propose that the specific up-regulation of astrocytic PSPH holds promise as a discerning therapeutic modality for DACD.

13.
Front Cell Dev Biol ; 12: 1382019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469178
14.
Clin Exp Metastasis ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489056

RESUMO

As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.

15.
FEBS J ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545811

RESUMO

Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.

16.
Brain Res ; 1831: 148826, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403036

RESUMO

Mitochondrial transfer occurs between cells, and it is important for damaged cells to receive healthy mitochondria to maintain their normal function and protect against cell death. Accumulating evidence suggests that the functional mitochondria of astrocytes are released and transferred to oxygen-glucose deprivation/reoxygenation (OGD/R)-injured neurons. Mild hypothermia (33 °C) is capable of promoting this process, which partially restores the function of damaged neurons. However, the pathways and mechanisms by which mild hypothermia facilitates mitochondrial transfer remain unclear. We are committed to studying the role of mild hypothermia in neuroprotection to provide reliable evidences and insights for the clinical application of mild hypothermia in brain protection. Tunneling nanotubes (TNTs) are considered to be one of the routes through which mitochondria are transferred between cells. In this study, an OGD/R-injured neuronal model was successfully established, and TNTs, mitochondria, neurons and astrocytes were double labeled using immunofluorescent probes. Our results showed that TNTs were present and involved in the transfer of mitochondria between cells in the mixed-culture system of neurons and astrocytes. When neurons were subjected to OGD/R exposure, TNT formation and mitochondrial transportation from astrocytes to injured neurons were facilitated. Further analysis revealed that mild hypothermia increased the quantity of astrocytic mitochondria transferred into damaged neurons through TNTs, raised the mitochondrial membrane potential (MMP), and decreased the neuronal damage and death during OGD/R. Altogether, our data indicate that TNTs play an important role in the endogenous neuroprotection of astrocytic mitochondrial transfer. Furthermore, mild hypothermia enhances astrocytic mitochondrial transfer into OGD/R-injured neurons via TNTs, thereby promoting neuroprotection and neuronal recovery.


Assuntos
Estruturas da Membrana Celular , Hipotermia , Nanotubos , Oxigênio , Humanos , Oxigênio/metabolismo , Glucose/metabolismo , Astrócitos/metabolismo , Hipotermia/metabolismo , Células Cultivadas , Neurônios/metabolismo , Mitocôndrias/metabolismo
17.
Eur J Pharmacol ; 968: 176368, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316246

RESUMO

Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.


Assuntos
Sirtuína 3 , Traumatismos da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Sirtuína 3/metabolismo , Zinco/metabolismo , Traumatismos da Medula Espinal/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , GTP Fosfo-Hidrolases/metabolismo
18.
Cells ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334595

RESUMO

The communication between neural stem cells (NSCs) and surrounding astrocytes is essential for the homeostasis of the NSC niche. Intercellular mitochondrial transfer, a unique communication system that utilizes the formation of tunneling nanotubes for targeted mitochondrial transfer between donor and recipient cells, has recently been identified in a wide range of cell types. Intercellular mitochondrial transfer has also been observed between different types of cancer stem cells (CSCs) and their neighboring cells, including brain CSCs and astrocytes. CSC mitochondrial transfer significantly enhances overall tumor progression by reprogramming neighboring cells. Despite the urgent need to investigate this newly identified phenomenon, mitochondrial transfer in the central nervous system remains largely uncharacterized. In this study, we found evidence of intercellular mitochondrial transfer from human NSCs and from brain CSCs, also known as brain tumor-initiating cells (BTICs), to astrocytes in co-culture experiments. Both NSC and BTIC mitochondria triggered similar transcriptome changes upon transplantation into the recipient astrocytes. In contrast to NSCs, the transplanted mitochondria from BTICs had a significant proliferative effect on the recipient astrocytes. This study forms the basis for mechanistically deciphering the impact of intercellular mitochondrial transfer on recipient astrocytes, which will potentially provide us with new insights into the mechanisms of mitochondrial retrograde signaling.


Assuntos
Neoplasias Encefálicas , Células-Tronco Neurais , Humanos , Astrócitos/metabolismo , Células-Tronco Neurais/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Neoplasias Encefálicas/metabolismo , Células-Tronco Neoplásicas/patologia
19.
Biochem Biophys Res Commun ; 704: 149712, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38408414

RESUMO

Astrocytes transfer extracellular functional mitochondria into neurons to rescue injured neurons after a stroke. However, there are no reports on drugs that interfere with intercellular mitochondrial transfer. Chrysophanol (CHR) was an effective drug for the treatment of cerebral ischemia-reperfusion injury (CIRI) and was selected as the test drug. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model and the middle cerebral artery occlusion animal model were established to investigate the effect of CHR on CIRI. The result showed that astrocytes could act as mitochondrial donors to ameliorate neuronal injury. Additionally, the neuroprotective effect of astrocytes was enhanced by CHR, the CHR improved the neuronal mitochondrial function, decreased the neurological deficit score and infarction volume, recovered cell morphology in ischemic penumbra. The mitochondrial fluorescence probe labeling technique has shown that the protective effect of CHR is associated with accelerated astrocytic mitochondrial transfer to neurons. The intercellular mitochondrial transfer may be an important way to ameliorate ischemic brain injury and be used as a key target for drug treatment.


Assuntos
Antraquinonas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Isquemia Encefálica/metabolismo , Astrócitos/metabolismo , Traumatismo por Reperfusão/metabolismo , Neurônios/metabolismo , Mitocôndrias
20.
Free Radic Biol Med ; 215: 2-13, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395090

RESUMO

As mitochondrial damage or dysfunction is commonly observed following burn injuries, we investigated whether mitochondrial transplantation (MT) can result in therapeutic benefits in the treatment of burns. Human immortalized epidermal cells (HaCaT) and Kunming mice were used to establish a heat-injured cell model and a deep partial-thickness skin burn animal model, respectively. The cell model was established by exposing HaCaT cells to 45 or 50 °C for 10 min, after which cell proliferation was assayed using fluorescent double-staining and colony formation assays, cell migration was assessed using colloidal gold migration and scratch assays, and cell cycle progression and apoptosis were measured by flow cytometry. Histopathological staining, immunohistochemistry, nick-end labeling analysis, and enzyme-linked immunosorbent assays were used to evaluate the effects of MT on inflammation, tissue recovery, apoptosis, and scar growth in a mouse model. The therapeutic effects were observed in the heat-injured HaCaT cell model. MT promoted cell viability, colony formation, proliferation, and migration; decreased G1 phase; promoted cell division; and decreased apoptosis. Wound-healing promotion, anti-inflammation (decreased mast cell aggregation, down-regulated of TNF-α, IL-1ß, IL-6, and up-regulated IL-10), acceleration of proliferation recovery (up-regulated CD34 and VEGF), apoptosis reduction, and scar formation reduction (decreased collagen I/III ratio and TGF-ß1) were observed in the MT mouse model. The MT mode of action was, however, not investigated in this study. In conclusion, our data indicate that MT exerts a therapeutic effect on burn injuries both in vitro and in vivo.


Assuntos
Queimaduras , Cicatriz , Camundongos , Animais , Humanos , Cicatrização , Pele/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Queimaduras/terapia , Queimaduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA