Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Cell Rep ; 43(6): 114329, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850535

RESUMO

Many autism spectrum disorder (ASD)-associated genes act as transcriptional regulators (TRs). Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify the regulatory targets of ARID1B, BCL11A, FOXP1, TBR1, and TCF7L2, ASD-associated TRs in the developing human and mouse cortex. These TRs shared substantial overlap in the binding sites, especially within open chromatin. The overlap within a promoter region, 1-2,000 bp upstream of the transcription start site, was highly predictive of brain-expressed genes. This signature was observed in 96 out of 102 ASD-associated genes. In vitro CRISPRi against ARID1B and TBR1 delineated downstream convergent biology in mouse cortical cultures. After 8 days, NeuN+ and CALB+ cells were decreased, GFAP+ cells were increased, and transcriptomic signatures correlated with the postmortem brain samples from individuals with ASD. We suggest that functional convergence across five ASD-associated TRs leads to shared neurodevelopmental outcomes of haploinsufficient disruption.


Assuntos
Encéfalo , Humanos , Animais , Camundongos , Encéfalo/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Loci Gênicos
2.
J Neurosci Methods ; 409: 110198, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878975

RESUMO

BACKGROUND: Ependymal cilia play a major role in the circulation of cerebrospinal fluid. Although isolation of cilia is an essential technique for investigating ciliary structure, to the best of our knowledge, no report on the isolation and structural analysis of ependymal cilia from mouse brain is available. NEW METHOD: We developed a novel method for isolating ependymal cilia from mouse brain ventricles. We isolated ependymal cilia by partially opening the lateral ventricles and gently applying shear stress, followed by pipetting and ultracentrifugation. RESULTS: Using this new method, we were able to observe cilia separately. The results demonstrated that our method successfully isolated intact ependymal cilia with preserved morphology and ultrastructure. In this procedure, the ventricular ependymal cell layer was partially detached. COMPARISON WITH EXISTING METHODS: Compared to existing methods for isolating cilia from other tissues, our method is meticulously tailored for extracting ependymal cilia from the mouse brain. Designed with a keen understanding of the fragility of the ventricular ependyma, our method prioritizes minimizing tissue damage during the isolation procedure. CONCLUSIONS: We isolated ependymal cilia from mouse brain by applying shear stress selectively to the ventricles. Our method can be used to conduct more detailed studies on the structure of ependymal cilia.

3.
Elife ; 132024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775133

RESUMO

Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.


Assuntos
Encéfalo , Formaldeído , Neurônios , Inclusão em Parafina , Fixação de Tecidos , Animais , Inclusão em Parafina/métodos , Camundongos , Fixação de Tecidos/métodos , Neurônios/fisiologia , Fixadores/química
4.
Front Cell Neurosci ; 18: 1383688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784709

RESUMO

Human brain organoids are emerging as translationally relevant models for the study of human brain health and disease. However, it remains to be shown whether human-specific protein processing is conserved in human brain organoids. Herein, we demonstrate that cell fate and composition of unguided brain organoids are dictated by culture conditions during embryoid body formation, and that culture conditions at this stage can be optimized to result in the presence of glia-associated proteins and neural network activity as early as three-months in vitro. Under these optimized conditions, unguided brain organoids generated from induced pluripotent stem cells (iPSCs) derived from male-female siblings are similar in growth rate, size, and total protein content, and exhibit minimal batch-to-batch variability in cell composition and metabolism. A comparison of neuronal, microglial, and macroglial (astrocyte and oligodendrocyte) markers reveals that profiles in these brain organoids are more similar to autopsied human cortical and cerebellar profiles than to those in mouse cortical samples, providing the first demonstration that human-specific protein processing is largely conserved in unguided brain organoids. Thus, our organoid protocol provides four major cell types that appear to process proteins in a manner very similar to the human brain, and they do so in half the time required by other protocols. This unique copy of the human brain and basic characteristics lay the foundation for future studies aiming to investigate human brain-specific protein patterning (e.g., isoforms, splice variants) as well as modulate glial and neuronal processes in an in situ-like environment.

5.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796691

RESUMO

Limited gene capture efficiency and spot size of spatial transcriptome (ST) data pose significant challenges in cell-type characterization. The heterogeneity and complexity of cell composition in the mammalian brain make it more challenging to accurately annotate ST data from brain. Many algorithms attempt to characterize subtypes of neuron by integrating ST data with single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing. However, assessing the accuracy of these algorithms on Stereo-seq ST data remains unresolved. Here, we benchmarked 9 mapping algorithms using 10 ST datasets from four mouse brain regions in two different resolutions and 24 pseudo-ST datasets from snRNA-seq. Both actual ST data and pseudo-ST data were mapped using snRNA-seq datasets from the corresponding brain regions as reference data. After comparing the performance across different areas and resolutions of the mouse brain, we have reached the conclusion that both robust cell-type decomposition and SpatialDWLS demonstrated superior robustness and accuracy in cell-type annotation. Testing with publicly available snRNA-seq data from another sequencing platform in the cortex region further validated our conclusions. Altogether, we developed a workflow for assessing suitability of mapping algorithm that fits for ST datasets, which can improve the efficiency and accuracy of spatial data annotation.


Assuntos
Algoritmos , Benchmarking , Encéfalo , Análise de Célula Única , Animais , Camundongos , Encéfalo/metabolismo , Análise de Célula Única/métodos , RNA-Seq/métodos , Transcriptoma , Análise de Sequência de RNA/métodos , Neurônios/metabolismo , Perfilação da Expressão Gênica/métodos
6.
Biochem Pharmacol ; 225: 116265, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714277

RESUMO

Relaxin-family peptide 3 receptor (RXFP3) is activated by relaxin-3 in the brain to influence arousal and related functions, such as feeding and stress responses. Two transgenic mouse lines have recently been developed that co-express different fluorophores within RXFP3-expressing neurons: either yellow fluorescent protein (YFP; RXFP3-Cre/YFP mice) or tdTomato (RXFP3-Cre/tdTomato mice). To date, the characteristics of neurons that express RXFP3-associated fluorophores in these mice have only been investigated in the bed nucleus of the stria terminalis and the hypothalamic arcuate nucleus. To better determine the utility of these fluorophore-expressing mice for further research, we characterised the neuroanatomical distribution of fluorophores throughout the brain of these mice and compared this to the published distribution of Rxfp3 mRNA (detected by in situ hybridisation) in wildtype mice. Coronal sections of RXFP3-Cre/YFP (n = 8) and RXFP3-Cre/tdTomato (n = 8) mouse brains were imaged, and the density of fluorophore-expressing cells within various brain regions/nuclei was qualitatively assessed. Comparisons with our previously reported RXFP3 mRNA distribution revealed that of 212 brain regions that contained either fluorophore or RXFP3 mRNA, approximately half recorded densities that were within two qualitative measurements of each other (on a 9-point scale), including hippocampal dentate gyrus and amygdala subregions. However, many brain areas with likely non-authentic, false-positive, or false-negative fluorophore expression were also detected, including the cerebellum. Therefore, this study provides a guide to which brain regions should be prioritized for future study of RXFP3 in these mice, to better understand the neuroanatomy and function of this intriguing, neuronal peptide receptor.


Assuntos
Encéfalo , Proteínas Luminescentes , Camundongos Transgênicos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Corantes Fluorescentes , Neurônios/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Proteína Vermelha Fluorescente , Proteínas de Bactérias
7.
Curr Issues Mol Biol ; 46(5): 4701-4720, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785552

RESUMO

A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.

8.
Methods Mol Biol ; 2794: 105-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630224

RESUMO

Proteomics is a scientific field that aims to identify and characterize all proteins within a biological system, including their posttranslational modifications (PTMs), quantitative changes, and protein-protein interactions. Over the last two decades, proteomic approaches have been widely used in neuroscience research, providing multidimensional insights into the biology and pathology of the brain.Here, we present a basic protocol for profiling protein expression in the mouse brain, which involves total protein extraction, fractionation, digestion, and identification through liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). This method is compatible with many prevalent techniques used for protein quantitation, PTM analysis, and protein-protein interaction mapping.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Camundongos , Cromatografia Líquida , Encéfalo , Fracionamento Químico
9.
Methods Mol Biol ; 2794: 259-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630235

RESUMO

Many biological molecules in the brain interstitial fluid are involved in neuronal functions. Therefore, measuring the levels of these molecules in the extracellular fluid would provide deep insights into the physiological/pathological mechanisms underlying brain functions/disorders. In vivo microdialysis is a powerful technique used to examine the extracellular levels of various molecules in the brains of living animals. In neuroscience research, this technique has been widely used to investigate relatively small molecules including neurotransmitters and amino acids. However, recent advances in technology have made it possible to assess large molecules in the brain interstitial fluid, such as signaling peptides and proteins, using microdialysis probes with high-molecular-weight cutoff membranes. This chapter describes an in vivo microdialysis method to collect and measure the levels of large biological molecules in the extracellular fluid of the brains of freely moving mice.


Assuntos
Encefalopatias , Encéfalo , Animais , Camundongos , Microdiálise , Aminoácidos , Líquido Extracelular
10.
Curr Protoc ; 4(4): e1011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648070

RESUMO

Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000-µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT-MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force-displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT-MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force-displacement data.


Assuntos
Encéfalo , Animais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Camundongos , Módulo de Elasticidade , Fenômenos Biomecânicos , Testes Mecânicos
11.
PNAS Nexus ; 3(4): pgae141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659974

RESUMO

Residual mechanical stresses, also known as solid stresses, emerge during rapid differential growth or remodeling of tissues, as observed in morphogenesis and tumor growth. While residual stresses typically dissipate in most healthy adult organs, as the growth rate decreases, high residual stresses have been reported in mature, healthy brains. However, the origins and consequences of residual mechanical stresses in the brain across health, aging, and disease remain poorly understood. Here, we utilized and validated a previously developed method to map residual mechanical stresses in the brains of mice across three age groups: 5-7 days, 8-12 weeks, and 22 months. We found that residual solid stress rapidly increases from 5-7 days to 8-12 weeks and remains high in mature 22 months mice brains. Three-dimensional mapping revealed unevenly distributed residual stresses from the anterior to posterior coronal brain sections. Since the brain is rich in negatively charged hyaluronic acid, we evaluated the contribution of charged extracellular matrix (ECM) constituents in maintaining solid stress levels. We found that lower ionic strength leads to elevated solid stresses, consistent with its unshielding effect and the subsequent expansion of charged ECM components. Lastly, we demonstrated that hemorrhagic stroke, accompanied by loss of cellular density, resulted in decreased residual stress in the murine brain. Our findings contribute to a better understanding of spatiotemporal alterations of residual solid stresses in healthy and diseased brains, a crucial step toward uncovering the biological and immunological consequences of this understudied mechanical phenotype in the brain.

12.
Mikrochim Acta ; 191(5): 265, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625451

RESUMO

Sleep deprivation (SD) is highly prevalent in the modern technological world. Emerging evidence shows that sleep deprivation is associated with oxidative stress. At the organelle level, the Golgi apparatus actively participates in the stress response. In this study, to determine whether SD and Golgi apparatus stress are correlated, we rationally designed and fabricated a novel Golgi apparatus-targeted ratiometric nanoprobe called Golgi dots for O2·- detection. This probe exhibits high sensitivity and selectivity in cells and brain slices of sleep-deprived mice. Golgi dots can be readily synthesized by coprecipitation of Golgi-F127, an amphiphilic polymer F127 modified with a Golgi apparatus targeting moiety, caffeic acid (CA), the responsive unit for O2·-, and red emissive carbon nanodots (CDs), which act as the reference signal. The fluorescence emission spectrum of the developed nanoprobe showed an intense peak at 674 nm, accompanied by a shoulder peak at 485 nm. As O2·- was gradually added, the fluorescence at 485 nm continuously increased; in contrast, the emission intensity at 674 nm assigned to the CDs remained constant, resulting in the ratiometric sensing of O2·-. The present ratiometric nanoprobe showed high selectivity for O2·- monitoring due to the specific recognition of O2·- by CA. Moreover, the Golgi dots exhibited good linearity with respect to the O2·- concentration within 5 to 40 µM, and the limit of detection (LOD) was ~ 0.13 µM. Additionally, the Golgi dots showed low cytotoxicity and an ability to target the Golgi apparatus. Inspired by these excellent properties, we then applied the Golgi dots to successfully monitor exogenous and endogenous O2·- levels within the Golgi apparatus. Importantly, with the help of Golgi dots, we determined that SD substantially elevated O2·- levels in the brain.


Assuntos
Encéfalo , Ácidos Cafeicos , Polietilenos , Polipropilenos , Privação do Sono , Animais , Camundongos , Complexo de Golgi , Suplementos Nutricionais
13.
Front Pharmacol ; 15: 1386224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595916

RESUMO

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Due to the multifactorial nature of the disease, involving impairment of cholinergic neurotransmission and immune system, previous attempts to find effective treatments have faced challenges. Methods: In such scenario, we attempted to investigate the effects of alpha-glyceryl-phosphoryl-choline (α-GPC), a cholinomimetic molecule, on neuroinflammation and memory outcome in the triple transgenic mouse model of AD (3xTg-AD). Mice were enrolled at 4 months of age, treated orally with α-GPC dissolved in drinking water at a concentration resulting in an average daily dose of 100 mg/kg for 8 months and sacrificed at 12 months of age. Thereafter, inflammatory markers, as well as cognitive parameters, were measured. Results: Chronic α-GPC treatment reduced accumulation of amyloid deposits and led to a substantial re-balance of the inflammatory response of resident innate immune cells, astrocytes and microglia. Specifically, fluorescent immunohistochemistry and Western blot analysis showed that α-GPC contributed to reduction of cortical and hippocampal reactive astrocytes and pro-inflammatory microglia, concurrently increasing the expression of anti-inflammatory molecules. Whereas α-GPC beneficially affect the synaptic marker synaptophysin in the hippocampus. Furthermore, we observed that α-GPC was effective in restoring cognitive dysfunction, as measured by the Novel Object Recognition test, wherein 3xTg-AD mice treated with α-GPC significantly spent more time exploring the novel object compared to 3xTg-AD untreated mice. Discussion: In conclusion, chronic treatment with α-GPC exhibited a significant anti-inflammatory activity and sustained the key function of hippocampal synapses, crucial for the maintenance of a regular cognitive status. In light of our results, we suggest that α-GPC could be exploited as a promising therapeutic approach in early phases of AD.

14.
Neuroimage ; 292: 120573, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521211

RESUMO

Overcoming sex bias in preclinical research requires not only including animals of both sexes in the experiments, but also developing proper tools to handle such data. Recent work revealed sensitivity of diffusion-weighted MRI to glia morphological changes in response to inflammatory stimuli, opening up exciting possibilities to characterize inflammation in a variety of preclinical models of pathologies, the great majority of them available in mice. However, there are limited resources dedicated to mouse imaging, like those required for the data processing and analysis. To fill this gap, we build a mouse MRI template of both structural and diffusion contrasts, with anatomical annotation according to the Allen Mouse Brain Atlas, the most detailed public resource for mouse brain investigation. To achieve a standardized resource, we use a large cohort of animals in vivo, and include animals of both sexes. To prove the utility of this resource to integrate imaging and molecular data, we demonstrate significant association between the mean diffusivity from MRI and gene expression-based glia density. To demonstrate the need of equitable sex representation, we compared across sexes the warp fields needed to match a male-based template, and our template built with both sexes. Then, we use both templates for analysing mice imaging data obtained in animals of different ages, demonstrating that using a male-based template creates spurious significant sex effects, not present otherwise. All in all, our MouseX DW-ALLEN Atlas will be a widely useful resource getting us one step closer to equitable healthcare.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Animais , Feminino , Masculino , Camundongos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Atlas como Assunto , Caracteres Sexuais , Neuroglia , Camundongos Endogâmicos C57BL
15.
Nucleic Acid Ther ; 34(1): 26-34, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38386285

RESUMO

Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. In vivo SPECT imaging showed 111In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The 111In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of 111In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Éxons , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Injeções Espinhais
16.
Front Neuroinform ; 18: 1284107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421771

RESUMO

Neuroscientists employ a range of methods and generate increasing amounts of data describing brain structure and function. The anatomical locations from which observations or measurements originate represent a common context for data interpretation, and a starting point for identifying data of interest. However, the multimodality and abundance of brain data pose a challenge for efforts to organize, integrate, and analyze data based on anatomical locations. While structured metadata allow faceted data queries, different types of data are not easily represented in a standardized and machine-readable way that allow comparison, analysis, and queries related to anatomical relevance. To this end, three-dimensional (3D) digital brain atlases provide frameworks in which disparate multimodal and multilevel neuroscience data can be spatially represented. We propose to represent the locations of different neuroscience data as geometric objects in 3D brain atlases. Such geometric objects can be specified in a standardized file format and stored as location metadata for use with different computational tools. We here present the Locare workflow developed for defining the anatomical location of data elements from rodent brains as geometric objects. We demonstrate how the workflow can be used to define geometric objects representing multimodal and multilevel experimental neuroscience in rat or mouse brain atlases. We further propose a collection of JSON schemas (LocareJSON) for specifying geometric objects by atlas coordinates, suitable as a starting point for co-visualization of different data in an anatomical context and for enabling spatial data queries.

17.
Cells ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334671

RESUMO

Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells. Super-resolution techniques have effectively addressed this constraint by enabling the observation of subcellular components on the nanoscale. Nevertheless, it is crucial to acknowledge that these methods often need the use of fixed samples. This also raises the question of how closely a static image represents the real intracellular dynamic system. High-speed atomic force microscopy (HS-AFM) is a unique technique used in the field of dynamic structural biology, enabling the study of individual molecules in motion close to their native states. Establishing a reliable and repeatable technique for imaging mammalian tissue at the nanoscale using HS-AFM remains challenging due to inadequate sample preparation. This study presents the rapid strainer microfiltration (RSM) protocol for directly preparing high-quality nuclei from the mouse brain. Subsequently, we promptly utilize HS-AFM real-time imaging and cinematography approaches to record the spatiotemporal of nuclear pore nano-dynamics from the mouse brain.


Assuntos
Proteínas , Imagem Individual de Molécula , Animais , Camundongos , Microscopia de Força Atômica/métodos , Proteínas/química , Núcleo Celular , Encéfalo/diagnóstico por imagem , Mamíferos
18.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415752

RESUMO

Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.


Assuntos
Diagnóstico por Imagem , Peixe-Zebra , Animais , Camundongos , Hibridização de Ácido Nucleico , Embrião de Mamíferos , RNA
19.
J Biochem ; 175(5): 481-486, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38299708

RESUMO

Tissue stem cells are maintained in the adult body throughout life and are crucial for tissue homeostasis as they supply newly functional cells. Quiescence is a reversible arrest in the G0/G1 phase of the cell cycle and a strategy to maintain the quality of tissue stem cells. Quiescence maintains stem cells in a self-renewable and differentiable state for a prolonged period by suppressing energy consumption and cell damage and depletion. Most adult neural stem cells in the brain maintain the quiescent state and produce neurons and glial cells through differentiation after activating from the quiescent state to the proliferating state. In this process, proteostasis, including proteolysis, is essential to transition between the quiescent and proliferating states associated with proteome remodeling. Recent reports have demonstrated that quiescent and proliferating neural stem cells have different expression patterns and roles as proteostatic molecules and are affected by age, indicating differing processes for protein homeostasis in these two states in the brain. This review discusses the multiple regulatory stages from protein synthesis (protein birth) to proteolysis (protein death) in quiescent neural stem cells.


Assuntos
Células-Tronco Neurais , Proteólise , Proteostase , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Humanos , Animais , Homeostase , Diferenciação Celular
20.
Neurophotonics ; 11(1): 014413, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371339

RESUMO

Significance: An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim: Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach: We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca2+ dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results: The focused 350 µm-sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions: The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA