Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
Curr Med Sci ; 44(3): 519-528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842774

RESUMO

OBJECTIVE: Intestinal fibrosis is a refractory complication of inflammatory bowel disease (IBD). Tumor necrosis factor ligand-related molecule-1A (TL1A) is important for IBD-related intestinal fibrosis in a dextran sodium sulfate (DSS)-induced experimental colitis model. This study aimed to explore the effects of TL1A on human colonic fibroblasts. METHODS: A trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model of LCK-CD2-TL1A-GFP transgenic (Tg) or wild-type (WT) mice was established to determine the effect and mechanism of TL1A on intestinal fibrosis. The human colonic fibroblast CCD-18Co cell line was treated concurrently with TL1A and human peripheral blood mononuclear cell (PBMC) supernatant. The proliferation and activation of CCD-18Co cells were detected by BrdU assays, flow cytometry, immunocytochemistry and Western blotting. Collagen metabolism was tested by Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The level of collagen metabolism in the TNBS+ethyl alcohol (EtOH)/Tg group was greater than that in the TNBS+EtOH/WT group. Transforming growth factor-ß1 (TGF-ß1) and p-Smad3 in the TNBS+EtOH/Tg group were upregulated as compared with those in the TNBS+EtOH/WT group. The proliferation of CCD-18Co cells was promoted by the addition of human PBMC supernatant supplemented with 20 ng/mL TL1A, and the addition of human PBMC supernatant and TL1A increased CCD-18Co proliferation by 24.4% at 24 h. TL1A promoted cell activation and increased the levels of COL1A2, COL3A1, and TIMP-1 in CCD-18Co cells. Treatment of CCD-18Co cells with TL1A increased the expression of TGF-ß1 and p-Smad3. CONCLUSION: TL1A promotes TGF-ß1-mediated intestinal fibroblast activation, proliferation, and collagen deposition and is likely related to an increase in the TGF-ß1/Smad3 signaling pathway.


Assuntos
Proliferação de Células , Fibroblastos , Fibrose , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Camundongos , Colo/metabolismo , Colo/patologia , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colite/genética , Linhagem Celular , Camundongos Transgênicos , Ácido Trinitrobenzenossulfônico , Modelos Animais de Doenças , Leucócitos Mononucleares/metabolismo
3.
Sci Rep ; 14(1): 13810, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877292

RESUMO

Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.


Assuntos
Proteínas de Ligação ao Cálcio , Doença de Crohn , Proteínas da Matriz Extracelular , Fibroblastos , Fibrose , Proteína de Matriz Gla , Trombospondinas , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Trombospondinas/metabolismo , Trombospondinas/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Idoso , Imuno-Histoquímica
4.
Int Immunopharmacol ; 137: 112483, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880023

RESUMO

Renal fibrosis is a representative pathological feature of various chronic kidney diseases, and efficient treatment is needed. Interstitial myofibroblasts are a key driver of kidney fibrosis, which is dependent on the binding of TGF-ß1 to type I TGF-ß receptor (TßRI) and TGF-ß1-related signaling pathways. Therefore, attenuating TGF-ß1 activity by competing with TGF-ß1 in myofibroblasts is an ideal strategy for treating kidney fibrosis. Recently, a novel TßRI-mimicking peptide RIPΔ demonstrated a high affinity for TGF-ß1. Thus, it could be speculated that RIPΔ may be used for anti-fibrosis therapy. Platelet-derived growth factor ß receptor (PDGFßR) is highly expressed in fibrotic kidney. In this study, we found that target peptide Z-RIPΔ, which is RIPΔ modified with PDGFßR-specific affibody ZPDGFßR, was specifically and highly taken up by TGF-ß1-activated NIH3T3 fibroblasts. Moreover, Z-RIPΔ effectively inhibited the myofibroblast proliferation, migration and fibrosis response in vitro. In vivo and ex vivo experiments showed that Z-RIPΔ specifically targeted fibrotic kidney, improved the damaged renal function, and ameliorated kidney histopathology and renal fibrosis in UUO mice. Mechanistic studies showed that Z-RIPΔ hold the stronger inhibition of the TGF-ß1/Smad and TGF-ß1/p38 pathways than unmodified RIPΔ in vitro and in vivo. Furthermore, systemic administration of Z-RIPΔ to UUO mice led to minimal toxicity to major organs. Taken together, RIPΔ modified with ZPDGFßR increased its therapeutic efficacy and reduced its systemic toxicity, making it a potential candidate for targeted therapy for kidney fibrosis.

5.
Stem Cell Res Ther ; 15(1): 166, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867276

RESUMO

BACKGROUND: Hypertrophic scarring results from myofibroblast differentiation and persistence during wound healing. Currently no effective treatment for hypertrophic scarring exists however, autologous fat grafting has been shown to improve scar elasticity, appearance, and function. The aim of this study was to understand how paracrine factors from adipose tissues and adipose-derived stromal cells (ADSC) affect fibroblast to myofibroblast differentiation. METHODS: The transforming growth factor-ß1 (TGF-ß1) induced model of myofibroblast differentiation was used to test the effect of conditioned media from adipose tissue, ADSC or lipid on the proportion of fibroblasts and myofibroblasts. RESULTS: Adipose tissue conditioned media inhibited the differentiation of fibroblasts to myofibroblasts but this inhibition was not observed following treatment with ADSC or lipid conditioned media. Hepatocyte growth factor (HGF) was readily detected in the conditioned medium from adipose tissue but not ADSC. Cells treated with HGF, or fortinib to block HGF, demonstrated that HGF was not responsible for the inhibition of myofibroblast differentiation. Conditioned media from adipose tissue was shown to reduce the proportion of myofibroblasts when added to fibroblasts previously treated with TGF-ß1, however, conditioned media treatment was unable to significantly reduce the proportion of myofibroblasts in cell populations isolated from scar tissue. CONCLUSIONS: Cultured ADSC or adipocytes have been the focus of most studies, however, this work highlights the importance of considering whole adipose tissue to further our understanding of fat grafting. This study supports the use of autologous fat grafts for scar treatment and highlights the need for further investigation to determine the mechanism.


Assuntos
Tecido Adiposo , Diferenciação Celular , Fator de Crescimento de Hepatócito , Miofibroblastos , Fator de Crescimento Transformador beta1 , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/citologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Fenótipo , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Adipócitos/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
6.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-38864137

RESUMO

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Assuntos
Fibroblastos , Pulmão , Miofibroblastos , Piperidinas , Pirimidinas , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Humanos , Pirimidinas/farmacologia , Piperidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Pulmão/citologia , Transdução de Sinais/efeitos dos fármacos , Fibronectinas/metabolismo , Movimento Celular/efeitos dos fármacos , Pirróis/farmacologia , Actinas/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Janus Quinases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Interleucina-6/metabolismo , Proteína Smad3/metabolismo , Células Cultivadas
7.
Toxicon ; 247: 107822, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908528

RESUMO

To date there are only pirfenidone (PFD) and nintedanib to be given conditional recommendation in idiopathic pulmonary fibrosis (IPF) therapies with slowing disease progression, but neither has prospectively shown a reduced mortality. It is one of the urgent topics to find effective drugs for pulmonary fibrosis in medicine. Previous studies have demonstrated that microcystin-RR (MC-RR) effectively alleviates bleomycin-induced pulmonary fibrosis, but the mechanism has not been fully elucidated yet. We further conducted a comparison of therapeutic effect on the model animals of pulmonary fibrosis between MC-RR and PFD with histopathology and the expression of the molecular markers involved in differentiation, proliferation and metabolism of myofibroblasts, a major effector cell of tissue fibrosis. The levels of the enzyme molecules for maintaining the stability of interstitial structure were also evaluated. Our results showed that MC-RR and PFD effectively alleviated pulmonary fibrosis in model mice with a decreased signaling and marker molecules associated with myofibroblast differentiation and lung fibrotic lesion. In the meantime, both MC-RR and PFD treatment are beneficial to restore molecular dynamics of interstitial tissue and maintain the stability of interstitial architecture. Unexpectedly, MC-RR, rather than PFD, showed a significant effect on inhibiting PKM2-HIF-1α signaling and reducing the level of p-STAT3. Additionally, MC-RR showed a better inhibition effect on FGFR1 expression. Given that PKM2-HIF-1α and activated STAT3 molecular present a critical role in promoting the proliferation of myofibroblasts, MC-RR as a new strategy for IPF treatment has potential advantage over PFD.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38888612

RESUMO

PURPOSE: Hepatic fibrosis develops as a response to chronic liver injury, resulting in the formation of fibrous scars. This process is initiated and driven by collagen-producing activated myofibroblasts which reportedly express high levels of platelet derived growth factor receptor-ß (PDGFRß). We therefore regard PDGFRß as an anchor for diagnosis and therapy. The Fibrobody® SP02SP26-ABD is a biparatopic VHH-construct targeting PDGFRß. Here, we explore its potential as a theranostic vector for liver fibrosis. METHODS: Specificity, cross-species binding, and cellular uptake of SP02SP26-ABD was assessed using human, mouse and rat PDGFRß ectodomains and PDGFRß-expressing cells. Cellular uptake by PDGFRß-expressing cells was also evaluated by equipping the Fibrobody® with auristatinF and reading out in vitro cytotoxicity. The validity of PDGFRß as a marker for active fibrosis was confirmed in human liver samples and 3 mouse models of liver fibrosis (DDC, CCl4, CDA-HFD) through immunohistochemistry and RT-PCR. After radiolabeling of DFO*-SP02SP26-ABD with 89Zr, its in vivo targeting ability was assessed in healthy mice and mice with liver fibrosis by PET-CT imaging, ex vivo biodistribution and autoradiography. RESULTS: SP02SP26-ABD shows similar nanomolar affinity for human, mouse and rat PDGFRß. Cellular uptake and hence subnanomolar cytotoxic potency of auristatinF-conjugated SP02SP26-ABD was observed in PDGFRß-expressing cell lines. Immunohistochemistry of mouse and human fibrotic livers confirmed co-localization of PDGFRß with markers of active fibrosis. In all three liver fibrosis models, PET-CT imaging and biodistribution analysis of [89Zr]Zr-SP02SP26-ABD revealed increased PDGFRß-specific uptake in fibrotic livers. In the DDC model, liver uptake was 12.15 ± 0.45, 15.07 ± 0.90, 20.23 ± 1.34, and 20.93 ± 4.35%ID/g after 1,2,3 and 4 weeks of fibrogenesis, respectively, compared to 7.56 ± 0.85%ID/g in healthy mice. Autoradiography revealed preferential uptake in the fibrotic (PDGFRß-expressing) periportal areas. CONCLUSION: The anti-PDGFRß Fibrobody® SP02SP26-ABD shows selective and high-degree targeting of activated myofibroblasts in liver fibrosis, and qualifies as a vector for diagnostic and therapeutic purposes.

9.
Trends Mol Med ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38890028

RESUMO

Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.

10.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920695

RESUMO

Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor ß1 (TGFß1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFß1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFß1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFß1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFß1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.


Assuntos
Diferenciação Celular , Proliferação de Células , Fibroblastos , Miofibroblastos , Ácidos Siálicos , Pele , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Pele/metabolismo , Pele/patologia , Ácidos Siálicos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sialiltransferases/metabolismo , Sialiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas
11.
Head Neck Pathol ; 18(1): 40, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727794

RESUMO

BACKGROUND: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS: It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS: Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS: CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.


Assuntos
Ameloblastoma , Caderinas , Canais de Cloreto , Transição Epitelial-Mesenquimal , Tumores Odontogênicos , Vimentina , Humanos , Transição Epitelial-Mesenquimal/fisiologia , Canais de Cloreto/metabolismo , Canais de Cloreto/análise , Caderinas/metabolismo , Tumores Odontogênicos/patologia , Tumores Odontogênicos/metabolismo , Ameloblastoma/patologia , Ameloblastoma/metabolismo , Vimentina/metabolismo , Adulto , Feminino , Cistos Odontogênicos/patologia , Cistos Odontogênicos/metabolismo , Masculino , Actinas/metabolismo , Adulto Jovem , Pessoa de Meia-Idade , Antígenos CD/metabolismo , Adolescente
12.
JHEP Rep ; 6(5): 101036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694958

RESUMO

Background & Aims: Chronic liver disease (CLD) remains a global health issue associated with a significant disease burden. Liver fibrosis, a hallmark of CLD, is characterised by the activation of hepatic stellate cells (HSCs) that gain profibrotic characteristics including increased production of extracellular matrix protein. Currently, no antifibrotic therapies are available clinically, in part because of the lack of HSC-specific drug targets. Here, we aimed to identify HSC-specific membrane proteins that can serve as targets for antifibrotic drug development. Methods: Small interfering RNA-mediated knockdown of GPR176 was used to assess the in vitro function of GPR176 in HSCs and in precision cut liver slices (PCLS). The in vivo role of GPR176 was assessed using the carbon tetrachloride (CCl4) and common bile duct ligation (BDL) models in wild-type and GPR176 knockout mice. GPR176 in human CLD was assessed by immunohistochemistry of diseased human livers and RNA expression analysis in human primary HSCs and transcriptomic data sets. Results: We identified Gpr176, an orphan G-protein coupled receptor, as an HSC-enriched activation associated gene. In vitro, Gpr176 is strongly induced upon culture-induced and hepatocyte-damage-induced activation of primary HSCs. Knockdown of GPR176 in primary mouse HSCs or PCLS cultures resulted in reduced fibrogenic characteristics. Absence of GPR176 did not influence liver homeostasis, but Gpr176-/- mice developed less severe fibrosis in CCl4 and BDL fibrosis models. In humans, GPR176 expression was correlated with in vitro HSC activation and with fibrosis stage in patients with CLD. Conclusions: GPR176 is a functional protein during liver fibrosis and reducing its activity attenuates fibrogenesis. These results highlight the potential of GPR176 as an HSC-specific antifibrotic candidate to treat CLD. Impact and implications: The lack of effective antifibrotic drugs is partly attributed to the insufficient knowledge about the mechanisms involved in the development of liver fibrosis. We demonstrate that the G-protein coupled receptor GPR176 contributes to fibrosis development. Since GPR176 is specifically expressed on the membrane of activated hepatic stellate cells and is linked with fibrosis progression in humans, it opens new avenues for the development of targeted interventions.

13.
Investig Clin Urol ; 65(3): 263-278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714517

RESUMO

PURPOSE: Myofibroblastic cancer-associated fibroblasts (myCAFs) are important components of the tumor microenvironment closely associated with tumor stromal remodeling and immunosuppression. This study aimed to explore myCAFs marker gene biomarkers for clinical diagnosis and therapy for patients with bladder cancer (BC). MATERIALS AND METHODS: BC single-cell RNA sequencing (scRNA-seq) data were obtained from the National Center for Biotechnology Information Sequence Read Archive. Transcriptome and clinical data were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Subsequently, univariate Cox and LASSO (Least Absolute Shrinkage and Selection Operator regression) regression analyses were performed to construct a prognostic signature. Immune cell activity was estimated using single-sample gene set enrichment analysis whilst the TIDE (tumor immune dysfunction and exclusion) method was employed to assess patient response to immunotherapy. The chemotherapy response of patients with BC was evaluated using genomics of drug sensitivity in cancer. Furthermore, Immunohistochemistry was used to verify the correlation between MAP1B expression and immunotherapy efficacy. The scRNA-seq data were analyzed to identify myCAFs marker genes. RESULTS: Combined with bulk RNA-sequencing data, we constructed a two-gene (COL6A1 and MAP1B) risk signature. In patients with BC, the signature demonstrated outstanding prognostic value, immune infiltration, and immunotherapy response. This signature served as a crucial guide for the selection of anti-tumor chemotherapy medications. Additionally, immunohistochemistry confirmed that MAP1B expression was significantly correlated with immunotherapy efficacy. CONCLUSIONS: Our findings revealed a typical prognostic signature based on myCAF marker genes, which offers patients with BC a novel treatment target alongside theoretical justification.


Assuntos
Biomarcadores Tumorais , Fibroblastos Associados a Câncer , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Prognóstico , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Transcriptoma , Resultado do Tratamento , Miofibroblastos
14.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790620

RESUMO

Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.

15.
Front Physiol ; 15: 1296504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808357

RESUMO

We propose that the key initiators of renal fibrosis are myofibroblasts which originate from four predominant sources-fibroblasts, pericytes, endothelial cells and macrophages. Increased accumulation of renal interstitial myofibroblasts correlates with an increase in collagen, fibrillar proteins, and fibrosis severity. The canonical TGF-ß pathway, signaling via Smad proteins, is the central molecular hub that initiates these cellular transformations. However, directly targeting these classical pathway molecules has proven challenging due their integral roles in metabolic process, and/or non-sustainable effects involving compensatory cross-talk with TGF-ß. This review explores recently discovered alternative molecular targets that drive transdifferentiation into myofibroblasts. Discovering targets outside of the classical TGF-ß/Smad pathway is crucial for advancing antifibrotic therapies, and strategically targeting the development of myofibroblasts offers a promising approach to control excessive extracellular matrix deposition and impede fibrosis progression.

16.
BMC Urol ; 24(1): 115, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816716

RESUMO

BACKGROUND: Congenital inguinal hernia, hydrocele and undescended testis (UDT) are associated with patent processus vaginalis. The smooth muscles present in the processus vaginalis aid in the descent of the testis and undergo programmed cell death after testicular descent leading to obliteration. The persisting amount of smooth muscle in the processus vaginalis influences the clinical outcome as inguinal hernia, hydrocele or UDT. Therefore, a study was conducted to evaluate the processus vaginalis in these three conditions to observe the presence and phenotype of smooth muscle cells and the presence of myofibroblasts. MATERIALS AND METHODS: The processus vaginalis sacs in patients with inguinal hernia, hydrocele and UDT were examined using light microscopy for the presence and distribution of smooth muscle cells and immunohistochemical staining for vimentin, desmin, and α-smooth muscle actin (SMA) to identify the smooth muscle phenotype. Transmission electron microscopy was also performed in all the sacs to observe the presence of myofibroblasts. RESULTS: Seventy-eight specimens of processus vaginalis (from seventy-four patients), distributed as 47%, 27%, and 26% as inguinal hernia, hydrocele and UDT respectively, were included in the study. The sacs from inguinal hernia and hydrocele had significantly more presence of smooth muscles distributed as multiple smooth muscle bundles (p < 0.001). Desmin and SMA staining of smooth muscle cells was observed in significantly more sacs from hydrocele, followed by inguinal hernia and UDT (p < 0.001). The sacs from UDT had a significant presence of striated muscles (p = 0.028). The sacs from inguinal hernia had a significant presence of myofibroblasts, followed by hydrocele and UDT (p < 0.001) and this significantly correlated with the light microscopy and immunohistochemical features. The processus vaginalis sacs from four female patients did not differ statistically from the male inguinal hernia sacs in any of the above parameters. CONCLUSION: The processus vaginalis sacs in pediatric inguinal hernia, hydrocele and undescended testis differ in the presence, distribution and phenotype of smooth muscles and the presence of myofibroblasts. The clinical presentations in these entities reflect these differences.


Assuntos
Criptorquidismo , Hérnia Inguinal , Miócitos de Músculo Liso , Miofibroblastos , Hidrocele Testicular , Humanos , Masculino , Hidrocele Testicular/patologia , Hérnia Inguinal/patologia , Lactente , Criptorquidismo/patologia , Pré-Escolar , Miócitos de Músculo Liso/patologia , Criança , Miofibroblastos/patologia , Recém-Nascido
17.
Front Biosci (Landmark Ed) ; 29(4): 141, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682199

RESUMO

Pericytes, a specific type of mesenchymal cell that surround the basement membrane of pulmonary venules and capillaries. They are crucial pathological features observed in individuals with the severe lung disease of pulmonary fibrosis (PF). The presence of pericytes leads to inflammation and fibrosis in the lung interstitium and alveolar space due to the release of various cytokines and chemokines. Pericytes also stimulate the proliferation and activation of fibroblasts, thereby promoting the progression of PF. Previous studies examining the mechanism of action of pericytes have primarily focused on cell signal transduction pathways, cell growth and death processes, and the synthesis and breakdown of extracellular matrix (ECM). Notably, the transforming growth factor-ß (TGF-ß) and Wnt signaling pathways have been associated with the action of pericytes in driving the progression of PF. It is therefore clear that pericytes play an essential role in the development of PF, while also offering possible avenues for targeted therapeutic intervention against this condition. The current article provides a comprehensive review on how pericytes contribute to inflammatory responses, as well as their importance for understanding the mechanism of PF. In addition, this review discusses the potential use of pericyte-targeted approaches for the treatment of patients affected by this debilitating lung disease.


Assuntos
Pericitos , Fibrose Pulmonar , Pericitos/patologia , Pericitos/metabolismo , Humanos , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismo , Via de Sinalização Wnt
18.
Life Sci ; 346: 122626, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614295

RESUMO

AIM: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive condition with unknown aetiology that causes the lung parenchyma to scar incessantly, lowering the quality of life and hastening death. In this investigation, we studied the anti-fibrotic activity of Geneticin (a derivative of gentamycin) using in vitro and in vivo models. MAIN METHODS: The TGF-ß-mediated differentiation model was adopted to investigate (fibrotic marker's levels/expression) the anti-fibrotic activity of geneticin (GNC) in in-vitro scenarios (LL29 and DHLF cells). In vivo, the bleomycin (BLM)-induced pulmonary fibrosis model was employed by administering BLM intratracheally. Post 14 days of BLM administration, animals were treated with geneticin (6.25, 12.5, and 25 mg·kg-1) for another 14 days, and their therapeutic effect was investigated using a spectrum of techniques. KEY FINDINGS: RTqPCR and western-blot results revealed that geneticin treatment significantly attenuated the TGF-ß/BLM mediated fibrotic cascade of markers in both in-vitro and in-vivo models respectively. Further, the BLM-induced pulmonary fibrosis model revealed, that geneticin dose-dependently reduced the BLM-induced inflammatory cell infiltrations, and thickness of the alveoli walls, improved the structural distortion of the lung, and aided in improving the survival rate of the rats. Picrosirus and Masson's trichrome staining indicated that geneticin therapy reduced collagen deposition and, as a result, lung functional characteristics were improved as assessed by flexivent. Mechanistic studies have shown that geneticin reduced fibrosis by attenuating the TGF-ß/Smad through modulating the AMPK/SIRT1 signaling. SIGNIFICANCE: These findings suggest that geneticin may be a promising therapeutic agent for the treatment of pulmonary fibrosis in clinical settings.


Assuntos
Proteínas Quinases Ativadas por AMP , Bleomicina , Fibrose Pulmonar , Transdução de Sinais , Sirtuína 1 , Fator de Crescimento Transformador beta , Animais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Ratos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Masculino , Bleomicina/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Smad/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças
19.
Methods Mol Biol ; 2782: 97-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622395

RESUMO

Simple and reproducible 3D cell culture systems that mimic biological interactions within physiological tissues (biomimetics) can provide unique insight for scientific inquiries compared to 2D cell cultures. Fibroblast-populated collagen lattices (FPCLs) are commonly used for mimicking physiological collagen matrices, potentiating biomechanical stresses on embedded fibroblasts. Here, we describe a novel 3D co-culture model that incorporates human Tenon's capsule fibroblasts embedded in FPCLs co-cultured with THP-1 monocytes suspended in culture media. This method can be used for the assessment of cell-cell interactions in various stages of the wound healing process and can facilitate various types of immune cells in co-culture. This system can also be used to study pharmacological agents that may eventually improve clinical outcomes in patients affected by inflammatory disorders.


Assuntos
Monócitos , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Técnicas de Cocultura , Monócitos/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo
20.
Front Bioeng Biotechnol ; 12: 1386896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646012

RESUMO

Introduction: Autologous cell suspension (ACS)-based therapy represents a highly promising approach for burns and chronic wounds. However, existing technologies have not achieved the desired clinical success due to several limitations. To overcome practical and cost-associated obstacles of existing ACS methods, we have established a novel methodology for rapid, enzymatic disaggregation of human skin cells and their isolation using a procedure that requires no specialist laboratory instrumentation and is performed at room temperature. Methods: Cells were isolated using enzymatic disaggregation of split-thickness human skin followed by several filtration steps for isolation of cell populations, and cell viability was determined. Individual population recovery was confirmed in appropriate culture medium types, and the presence of epidermal stem cells (EpSCs) within keratinocyte sub-populations was defined by flow cytometry via detection of CD49 and CD71. Positive mediators of wound healing secreted by ACS-derived cultures established on a collagen-based wound-bed mimic were detected by proteome arrays and quantified by ELISA, and the role of such mediators was determined by cell proliferation assays. The effect of ACS-derived conditioned-medium on myofibroblasts was investigated using an in-vitro model of myofibroblast differentiation via detection of α-SMA using immunoblotting and immunofluorescence microscopy. Results: Our methodology permitted efficient recovery of keratinocytes, fibroblasts and melanocytes, which remained viable upon long-term culture. ACS-derivatives comprised sub-populations with the CD49-high/CD71-low expression profile known to demarcate EpSCs. Via secretion of mitogenic factors and wound healing-enhancing mediators, the ACS secretome accelerated keratinocyte proliferation and markedly curtailed cytodifferentiation of myofibroblasts, the latter being key mediators of fibrosis and scarring. Discussion: The systematic characterisation of the cell types within our ACS isolates provided evidence for their superior cell viability and the presence of EpSCs that are critical drivers of wound healing. We defined the biological properties of ACS-derived keratinocytes, which include ability to secrete positive mediators of wound healing as well as suppression of myofibroblast cytodifferentiation. Thus, our study provides several lines of evidence that the established ACS isolates comprise highly-viable cell populations which can physically support wound healing and possess biological properties that have the potential to enhance not only the speed but also the quality of wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA