Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Small ; : e2407388, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39359043

RESUMO

Cancer immunotherapy offers significant clinical benefits for patients with advanced or metastatic tumors. However, immunotherapeutic efficacy is often hindered by the tumor microenvironment's high redox levels, leading to variable patient outcomes. Herein, a therapeutic liposomal gold nanocage (MGL) is innovatively developed based on photo-triggered hyperthermia and a releasable strategy by combining a glutathione (GSH) depletion to remodel the tumor immune microenvironment, fostering a more robust anti-tumor immune response. MGL comprises a thermosensitive liposome shell and a gold nanocage core loaded with maleimide. The flexible shell promotes efficient uptake by cancer cells, enabling targeted destruction through photothermal therapy while triggering immunogenic cell death and the maturation of antigen-presenting cells. The photoactivated release of maleimide depletes intracellular GSH, increasing tumor cell sensitivity to oxidative stress and thermal damage. Conversely, GSH reduction also diminishes immunosuppressive cell activity, enhances antigen presentation, and activates T cells. Moreover, photothermal immunotherapy decreases elevated levels of heat shock proteins in tumor cells, further increasing their sensitivity to hyperthermia. In summary, MGL elicited a robust systemic antitumor immune response through GSH depletion, facilitating an effective photothermal immunotherapeutic strategy that reprograms the tumor microenvironment and significantly inhibits primary and metastatic tumors. This approach demonstrates considerable translational potential and clinical applicability.

2.
J Colloid Interface Sci ; 678(Pt C): 111-119, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39284249

RESUMO

Although zeolitic imidazolate frameworks (ZIFs) possess the merits of orderly porosity, high permeability, and easy functionalization, the transformation of ZIFs into the real active species and the promotion of the catalytic efficiency and stability are still challenging. Herein, CoMo-based three-dimensional (3D) hollow nanocages composed of interconnected nanosheets are fabricated by in-situ etching metal-organic framework (ZIF-67) under the aid of MoO42-. X-ray photoelectron spectroscopy (XPS) and in-situ Raman confirm that Mo leaching can accelerate surface reconstruction and generate CoOOH active sites after continuous oxidation. Benefiting from the nanostructure and electronic properties after surface reconstruction, the engineered CoMo-30 exhibits the lowest overpotential of 280 mV at 30 mA cm-2 and robust stability over 110 h in 1 M KOH media for oxygen evolution reaction (OER), which significantly surpasses the other counterparts and commercial RuO2. Density functional theory (DFT) calculations indicate that CoMo-30 has a lower free energy of *O â†’ *OOH as rate determining step (RDS), suggesting that CoOOH sites play a crucial role in enhancing the activity and kinetics of OER. This work provides valuable insights into the rational design of hollow structures and the structure-composition-activity relationship during the electrochemical reaction process.

3.
Ecotoxicol Environ Saf ; 284: 116986, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241609

RESUMO

A new and highly sensitive voltammetric technique was described in this study for the concurrent detection of endocrine disruptors bisphenol A (BPA) and bisphenol AF (BPAF) based on carbon nanocages (CNCs) and copper oxide nanochains (CuONCs). The CNCs was prepared by the solvothermal method and characterized using various techniques. Utilizing the nanocomposite of CNCs and CuONCs, the voltammetric sensor demonstrated outstanding performance in detecting BPA and BPAF simultaneously with distinct oxidation peaks and increased current peaks. The voltammetric signals have linear relationships with the two bisphenols ranging from 0.500 µM to 100 µM with a detection limit of 0.16 µM for BPA and 0.14 µM for BPAF. The newly designed sensor showed reliable consistency, long-term durability and anti-interference ability, and performed well in analyzing real water samples, indicating great potential for environmental monitoring.


Assuntos
Compostos Benzidrílicos , Carbono , Cobre , Técnicas Eletroquímicas , Disruptores Endócrinos , Fenóis , Poluentes Químicos da Água , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Cobre/análise , Cobre/química , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Carbono/química , Técnicas Eletroquímicas/métodos , Monitoramento Ambiental/métodos , Limite de Detecção , Nanocompostos/química , Fluorocarbonos
4.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274893

RESUMO

Ferritin (Ft) is a protein with a peculiar three-dimensional architecture. It is characterized by a hollow cage structure and is responsible for iron storage and detoxification in almost all living organisms. It has attracted the interest of the scientific community thanks to its appealing features, such as its nano size, thermal and pH stability, ease of functionalization, and low cost for large-scale production. Together with high storage capacity, these properties qualify Ft as a promising nanocarrier for the development of delivery systems for numerous types of biologically active molecules. In this paper, we introduce the basic structural and functional aspects of the protein, and summarize the methods employed to load bioactive molecules within the ferritin nanocage.


Assuntos
Ferritinas , Nanopartículas , Ferritinas/química , Nanopartículas/química , Humanos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais
5.
Talanta ; 279: 126624, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089079

RESUMO

Layered double hydroxides (LDHs) have attracted significant attention due to their compositional and structural flexibility. However, it is challenging but meaningful to design and fabricate hierarchical mixed-dimensional LDHs with synergistic effects to increase the electrical conductivity of LDHs and promote the intrinsic activity. Herein, 3D hollow NiCo-LDH nanocages decorated porous biochar (3D NiCo-LDH/PBC) has been synthesized by using ZIF-67 as precursor, which was utilized for constructing electrochemical sensing platform to realize simultaneous determination of Cu2+ and Hg2+. The 3D NiCo-LDH/PBC possessed the characteristics of hollow material and three-dimensional porous material, revealing a larger surface area, more exposed active sites, and faster electron transfer, which is beneficial to enhancing its electrochemical performance. Consequently, the developed sensor displayed good performance for simultaneously detecting Cu2+ and Hg2+ with ultra-low limit of detection (LOD) of 0.03 µg L-1 and 0.03 µg L-1, respectively. The proposed sensor also demonstrated excellent stability, repeatability and reproducibility. Furthermore, the sensor can be successfully used for the electrochemical analysis of Cu2+ and Hg2+ in lake water sample with satisfactory recovery, which is of great feasibility for practical application.

6.
Int J Biol Macromol ; 277(Pt 2): 134373, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094874

RESUMO

Ferritins are natural proteins which spontaneously self-assemble forming hollow nanocages physiologically deputed to iron storage and homeostasis. Thanks to their high stability and easy production in vitro, ferritins represent an intriguing system for nanobiotechnology. Here we investigated the mechanism of disassembly and reassembly of a human recombinant ferritin constituted by the heavy chain (hHFt) exploiting a new procedure which involves the use of minimal amounts of sodium dodecyl sulfate (SDS) and assessed its effectiveness in comparison with two commonly used protocols based on pH shift at highly acidic and alkaline values. The interest in this ferritin as drug nanocarrier is related to the strong affinity of the human H-chain for the transferrin receptor TfR-1, overexpressed in several tumoral cell lines. Using different techniques, like NMR, TEM and DLS, we demonstrated that the small concentrations of SDS can eliminate the nanocage architecture without detaching the monomers from each other, which instead remain strongly associated. Following this procedure, we encapsulated into the nanocage a small ruthenium complex with a remarkable improvement with respect to previous protocols in terms of yield, structural integrity of the recovered protein and encapsulation efficiency. In our opinion, the extensive network of interchain interactions preserved during the SDS-based disassembly procedure represents the key for a complete and correct hHFt reassembly.


Assuntos
Portadores de Fármacos , Ferritinas , Humanos , Ferritinas/química , Portadores de Fármacos/química , Receptores da Transferrina/metabolismo , Receptores da Transferrina/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Dodecilsulfato de Sódio/química , Antígenos CD
7.
Mikrochim Acta ; 191(8): 477, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039391

RESUMO

A novel biofuel cell (BFC)-based self-powered electrochemical immunosensing platform was developed by integrating the target-induced biofuel release and biogate immunoassay for ultrasensitive 17ß-estradiol (E2) detection. The carbon nanocages/gold nanoparticle composite was employed in the BFCs device as the electrode material, through which bilirubin oxidase and glucose oxidase were wired to form the biocathode and bioanode, respectively. Positively charged mesoporous silica nanoparticles (PMSN) were encapsulated with glucose molecules as biofuel and subsequently coated by the negatively charged AuNPs-labelled anti-E2 antibody (AuNPs-Ab) serving as a biogate. The biogate could be opened efficiently and the trapped glucose released once the target E2 was recognized and captured by AuNPs-Ab due to the decreased adhesion between the antigen-antibody complex and PMSN. Then, glucose oxidase oxidized the glucose to produce a large number of electrons, resulting in significantly increased open-circuit voltage (EOCV). Promisingly, the proposed BFC-based self-powered immunosensor demonstrated exceptional sensitivity for the detection of E2 in the concentration range from 1.0 pg mL-1 to 10.0 ng mL -1, with a detection limit of 0.32 pg mL-1 (S/N = 3). Furthermore, the prepared BFC-based self-powered homogeneous immunosensor showed significant potential for implementation as a viable prototype for a mobile and an on-site bioassay system in food and environmental safety applications.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Estradiol , Glucose Oxidase , Ouro , Limite de Detecção , Nanopartículas Metálicas , Imunoensaio/métodos , Estradiol/química , Estradiol/análise , Ouro/química , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Eletrodos , Glucose/análise , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Anticorpos Imobilizados/imunologia , Dióxido de Silício/química , Enzimas Imobilizadas/química
8.
ACS Nano ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016025

RESUMO

The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.

9.
Adv Sci (Weinh) ; 11(32): e2404112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923806

RESUMO

Multidrug resistance (MDR) is a major obstacle limiting the effectiveness of chemotherapy against cancer. The combination strategy of chemotherapeutic agents and siRNA targeting drug efflux has emerged as an effective cancer treatment to overcome MDR. Herein, stimuli-responsive programmable tetrahedral DNA-RNA nanocages (TDRN) have been rationally designed and developed for dynamic co-delivery of the chemotherapeutic drug doxorubicin and P-glycoprotein (P-gp) siRNA. Specifically, the sense and antisense strand sequences of the P-gp siRNA, which are programmable bricks with terminal disulfide bond conjugation, are precisely embedded in one edge of the DNA tetrahedron. TDRN provides a stimuli-responsive release element for dynamic control of functional cargo P-gp siRNA that is significantly more stable than the "tail-like" TDN nanostructures. The stable and highly rigid 3D nanostructure of the siRNA-organized TDRN nanocages demonstrated a notable improvement in the stability of RNase A and mouse serum, as well as long-term storage stability for up to 4 weeks, as evidenced by this study. These biocompatible and multifunctional TDRN nanocarriers with gold nanocluster-assisted delivery (TDRN@Dox@AuNCp) are successfully used to achieve synergistic RNAi/Chemo-therapy in vitro and in vivo. This programmable TDRN drug delivery system, which integrates RNAi therapy and chemotherapy, offers a promising approach for treating multidrug-resistant tumors.


Assuntos
DNA , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , RNA Interferente Pequeno , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , DNA/genética , DNA/química , Humanos , Nanoestruturas/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus
10.
J Colloid Interface Sci ; 673: 893-900, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38908288

RESUMO

Cervical cancer is one of the most common gynecological malignancies, with the vast majority of which being caused by persistent infection with Human Papillomavirus (HPV) 16 and 18. The current available HPV detection methods are sensitive and genotyped but are restricted by expensive instruments and skilled personnel. The development of an easy-to-use, rapid, and cost-friendly analysis method for HPV is of great need. Herein, hollow palladium-ruthenium nanocages modified with two oligonucleotides (PdRu capture probes) were constructed for genotyping and simultaneous detection of target nucleic acids HPV16 and HPV18 by dual lateral flow assay (DLFA). PdRu capture probes were endowed with bi-functions for the first time, which could be used to output signals and hybridize target nucleic acids. Under optimized conditions, the PdRu based-DLFA with detection limits of 0.93 nM and 0.19 nM, respectively, exhibited convenient operation, and high sensitivity. Meanwhile, the DLFA achieved excellent rapid detection within 20 min, which was attributed to capture probes that can be directly bound to amplification-free target nucleic acids. Therefore, the development of PdRu-based DLFA can be utilized for rapid, sensitive, and simultaneous genotyping detection of HPV16 and HPV18, showing great application for nucleic acid detection.


Assuntos
Papillomavirus Humano 16 , Papillomavirus Humano 18 , Paládio , Paládio/química , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/isolamento & purificação , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/isolamento & purificação , Rutênio/química , Nanoestruturas/química , DNA Viral/análise , DNA Viral/genética , Propriedades de Superfície , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Limite de Detecção , Tamanho da Partícula , Hibridização de Ácido Nucleico , Papillomavirus Humano
11.
J Control Release ; 372: 446-466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917953

RESUMO

Cancer immunotherapy remains a significant challenge due to insufficient proliferation of immune cells and the sturdy immunosuppressive tumor microenvironment. Herein, we proposed the hypothesis of cuproptosis-lactate regulation to provoke cuproptosis and enhance anti-tumor immunity. For this purpose, copper-human serum albumin nanocomplex loaded gold nanocages with bacterial membrane coating (BAu-CuNCs) were developed. The targeted delivery and disassembly of BAu-CuNCs in tumor cells initiated a cascade of reactions. Under near infrared (NIR) laser irradiation, the release of copper-human serum albumin (Cu-HSA) was enhanced that reacted with intratumoral glutathione (GSH) via a disulfide exchange reaction to liberate Cu2+ ions and exert cuproptosis. Subsequently, the cuproptosis effect triggered immunogenic cell death (ICD) in tumor by the release of damage associated molecular patterns (DAMPs) to realize anti-tumor immunity via robust production of cytotoxic T cells (CD8+) and helper T cells (CD4+). Meanwhile, under NIR irradiation, gold nanocages (AuNCs) promoted excessive reactive oxygen species (ROS) generation that played a primary role in inhibiting glycolysis, reducing the lactate and ATP level. The combine action of lower lactate level, ATP reduction and GSH depletion further sensitized the tumor cells to cuproptosis. Also, the lower lactate production led to the significant blockage of immunosuppressive T regulatory cells (Tregs) and boosted the anti-tumor immunity. Additionally, the effective inhibition of breast cancer metastasis to the lungs enhanced the anti-tumor therapeutic impact of BAu-CuNCs + NIR treatment. Hence, BAu-CuNCs + NIR concurrently induced cuproptosis, ICD and hindered lactate production, leading to the inhibition of tumor growth, remodeling of the immunosuppressive tumor microenvironment and suppression of lung metastasis. Therefore, leveraging cuproptosis-lactate regulation, this approach presents a novel strategy for enhanced tumor immunotherapy.


Assuntos
Cobre , Ouro , Imunoterapia , Ácido Láctico , Albumina Sérica Humana , Ouro/química , Cobre/química , Imunoterapia/métodos , Humanos , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/administração & dosagem , Ácido Láctico/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Materiais Biomiméticos/química , Microambiente Tumoral , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Camundongos
12.
Vaccines (Basel) ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38793697

RESUMO

SARS-CoV-2 virus variants of concern (VOCs) have rapidly changed their transmissibility and pathogenicity primarily through mutations in the structural proteins. Herein, we present molecular details with dynamics of the ferritin nanocages stitched with synthetic chimeras displaying the Spike receptor binding domains (RBDs). Our findings demonstrated the potential usage of ferritin-based vaccines that may effectively inhibit viral entry by blocking the Spike-ACE2 network and may induce cross-protective antibody responses. Taking the nanocage constructs into consideration, we evaluated the effects of variants on the docked interface of the SARS-CoV-2 Spike RBD with the ACE2 (angiotensin-converting enzyme 2) host cell receptor and neutralizing antibodies (Abs). Investigating the VOCs revealed that most of the mutations reported a possibly reduced structural stability within the Spike RBD domain. Point mutations have moderate or no effect for VVH-72, CR3022, and S309 Abs when bound with the Spike RBD, whereas a significant effect was observed for B38, CB6, and m396 over the surface of the H-ferritin nanocage. In addition to providing useful therapeutic approaches against COVID-19 (coronavirus disease 2019), these structural details can also be used to fight future coronavirus outbreaks.

13.
Nanomaterials (Basel) ; 14(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38727403

RESUMO

With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely on platinum-based catalysts, posing a challenge to the development of efficient low-Pt or Pt-free catalysts. Low-cost ruthenium-based anodes are being considered as alternatives to platinum. However, they still suffer from stability issues and strong oxophilicity. Here, we employ a metal-organic framework compound as a template to construct three-dimensional porous ruthenium-tungsten-zinc nanocages via solvothermal and high-temperature pyrolysis methods. The experimental results demonstrate that this porous ruthenium-tungsten-zinc nanocage with an electrochemical surface area of 116 m2 g-1 exhibits excellent catalytic activity for hydrogen oxidation reaction in alkali, with a kinetic density 1.82 times and a mass activity 8.18 times higher than that of commercial Pt/C, and a good catalytic stability, showing no obvious degradation of the current density after continuous operation for 10,000 s. These findings suggest that the developed catalyst holds promise for use in alkaline anion-exchange membrane fuel cells.

14.
Anal Chim Acta ; 1306: 342599, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692792

RESUMO

BACKGROUND: Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy. RESULTS: CeO2 nanocages (CeO2 NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO2 NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO2 NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL-1) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained. SIGNIFICANCE: This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.


Assuntos
Cério , Colorimetria , Toxinas Marinhas , Microcistinas , Microcistinas/análise , Colorimetria/métodos , Toxinas Marinhas/análise , Cério/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Nanoestruturas/química , Técnicas Biossensoriais/métodos
15.
Front Oncol ; 14: 1344852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699639

RESUMO

Non-small cell lung cancer (NSCLC) caused more deaths in 2017 than breast cancer, prostate, and brain cancers combined. This is primarily due to their aggressive metastatic nature, leading to more fatal rates of cancer patients. Despite this condition, there are no clinically approved drugs that can target metastasis. The NSCLC with EGFR T790M-overexpressing HER2 shows the resistance to osimertinib and trastuzumab starting 10-18 months after the therapy, and thus prospects are grim to these patients. To target the recalcitrant ERBB2 driver oncogene, we developed two engineered destabilizing 3'UTR ERBB2 constructs that degrade the endogenous ERBB2 transcript and proteins by overwriting the encoded endogenous ERBB2 mRNA with the destabilizing message. When iron oxide nanocages (IO nanocages) were used as vehicles to deliver them to tumors and whole tissues in mice bearing tumors, it was well tolerated and safe and caused no genome rearrangement whereas they were integrated into genome deserts (non-coding regions). We achieved significant reduction of the primary tumor volume with desARE3'UTRERBB2-30, achieving 50% complete tumor lysis and inhibiting 60%-80% of liver metastasis, hepatomegaly, and 90% of lung metastasis, through ERBB2 downregulation. These constructs were distributed robustly into tumors, livers, lungs, kidneys, and spleen and mildly in the brain and not in the heart. They caused no abnormality in both short- and long-term administrations as well as in healthy mice. In summary, we accomplished significant breakthrough for the therapeutics of intractable lung cancer patients whose cancers become resistant and metastasize.

16.
Sci Rep ; 14(1): 11533, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773170

RESUMO

Tauopathies, including Alzheimer's disease and Frontotemporal Dementia, are debilitating neurodegenerative disorders marked by cognitive decline. Despite extensive research, achieving effective treatments and significant symptom management remains challenging. Accurate diagnosis is crucial for developing effective therapeutic strategies, with hyperphosphorylated protein units and tau oligomers serving as reliable biomarkers for these conditions. This study introduces a novel approach using nanotechnology to enhance the diagnostic process for tauopathies. We developed humanized ferritin nanocages, a novel nanoscale delivery system, designed to encapsulate and transport a tau-specific fluorophore, BT1, into human retinal cells for detecting neurofibrillary tangles in retinal tissue, a key marker of tauopathies. The delivery of BT1 into living cells was successfully achieved through these nanocages, demonstrating efficient encapsulation and delivery into retinal cells derived from human induced pluripotent stem cells. Our experiments confirmed the colocalization of BT1 with pathological forms of tau in living retinal cells, highlighting the method's potential in identifying tauopathies. Using ferritin nanocages for BT1 delivery represents a significant contribution to nanobiotechnology, particularly in neurodegenerative disease diagnostics. This method offers a promising tool for the early detection of tau tangles in retinal tissue, with significant implications for improving the diagnosis and management of tauopathies. This study exemplifies the integration of nanotechnology with biomedical science, expanding the frontiers of nanomedicine and diagnostic techniques.


Assuntos
Ferritinas , Retina , Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Ferritinas/metabolismo , Retina/metabolismo , Retina/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/diagnóstico , Células-Tronco Pluripotentes Induzidas/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia
17.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766663

RESUMO

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Assuntos
Neoplasias da Mama , Verde de Indocianina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Feminino , Humanos , Antígenos CD/metabolismo , Apoferritinas/química , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ferritinas/química , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Células MCF-7 , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Receptores da Transferrina/metabolismo
18.
Small ; 20(31): e2310913, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38726952

RESUMO

Naturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen. Here, a versatile engineering approach is described by mimicking the HIV-1 Gap polyprotein precursor. Various PREcursors of nanoCages (PREC) are designed and created by linking two ferritin subunits via a flexible linker peptide containing a protease cleavage site. These precursors can have additional proteins at their N-terminus, and their protease cleavage generates ferritin-like nanocages named protease-induced nanocages (PINCs). It is demonstrated that PINC formation allows concurrent surface decoration with a protein and hydrophilic or hydrophobic drug encapsulation up to fourfold more than the amount achieved using other methods. The PINCs/Drug complex is stable and efficiently kills cancer cells. This work provides insight into the precursors' design rules and the mechanism of PINCs formation. The engineering approach and mechanistic insight described here will facilitate nanocages' applications in drug delivery or as a platform for making multifunctional therapeutics like mosaic vaccines.


Assuntos
Ferritinas , Humanos , Ferritinas/química , Propriedades de Superfície , HIV-1 , Interações Hidrofóbicas e Hidrofílicas , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Materiais Biomiméticos/química , Biomimética/métodos
19.
Small ; 20(38): e2400605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38794874

RESUMO

The developments of mixed matrix membranes (MMMs) are severely hindered by the complex inter-phase interaction and the resulting poor utilization of inorganics' microporosity. Herein, a dual porosity framework is constructed in MMMs to enhance the accessibility of inorganics' microporosity to external gas molecules for the effective application of microporosity for gas separation. Nanocomposite organogels are first prepared from the supramolecular complexation of rigid polymers and 2 nm microporous coordination nanocages (CNCs). The network structures can be maintained with microporous features after solvent removal originated from the rigid nature of polymers, and the strong coordination and hydrogen bond between the two components. Moreover, the strong supramolecular attraction reinforces the frustrated packing of the rigid polymers on CNC surface, leading to polymer networks' extrinsic pores and the interconnection of CNCs' micro-cavities for the fast gas transportation. The gas permeabilities of the MMMs are 869 times for H2 and 1099 times for CO2 higher than those of pure polymers. The open metal sites from nanocage also contribute to the enhanced gas selectivity and the overall performance surpasses 2008 H2/CO2 Robeson upper bound. The supramolecular complexation reinforced packing frustration strategy offers a simple and practical solution to achieve improved gas permselectivity in MMMs.

20.
J Nanobiotechnology ; 22(1): 184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622644

RESUMO

Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Leucócitos Mononucleares , Terapia Neoadjuvante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA