Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epigenetics ; 18(1): 2139986, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328762

RESUMO

Clinically, developmental exposure to the endocrine disrupting chemical, diethylstilboestrol (DES), results in long-term male and female infertility. Experimentally, developmental exposure to DES results in abnormal reproductive tract phenotypes in male and female mice. Previously, we reported that neonatal DES exposure causes ERα-mediated aberrations in the transcriptome and in DNA methylation in seminal vesicles (SVs) of adult mice. However, only a subset of DES-altered genes could be explained by changes in DNA methylation. We hypothesized that alterations in histone modification may also contribute to the altered transcriptome during SV development. To test this idea, we performed a series of genome-wide analyses of mouse SVs at pubertal and adult developmental stages in control and DES-exposed wild-type and ERα knockout mice. Neonatal DES exposure altered ERα-mediated mRNA and lncRNA expression in adult SV, including genes encoding chromatin-modifying proteins that can impact histone H3K27ac modification. H3K27ac patterns, particularly at enhancers, and DNA methylation were reprogrammed over time during normal SV development and after DES exposure. Some of these reprogramming changes were ERα-dependent, but others were ERα-independent. A substantial number of DES-altered genes had differential H3K27ac peaks at nearby enhancers. Comparison of gene expression changes, H3K27ac marks and DNA methylation marks between adult SV and adult uterine tissue from ovariectomized mice neonatally exposed to DES revealed that most of the epigenetic changes and altered genes were distinct in the two tissues. These findings indicate that the effects of developmental DES exposure cause reprogramming of reproductive tract tissue differentiation through multiple epigenetic mechanisms.


Assuntos
Dietilestilbestrol , Receptor alfa de Estrogênio , Animais , Camundongos , Masculino , Feminino , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/genética , Metilação de DNA , Estudo de Associação Genômica Ampla , Epigênese Genética , Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 115(18): E4189-E4198, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666266

RESUMO

Early transient developmental exposure to an endocrine active compound, diethylstilbestrol (DES), a synthetic estrogen, causes late-stage effects in the reproductive tract of adult mice. Estrogen receptor alpha (ERα) plays a role in mediating these developmental effects. However, the developmental mechanism is not well known in male tissues. Here, we present genome-wide transcriptome and DNA methylation profiling of the seminal vesicles (SVs) during normal development and after DES exposure. ERα mediates aberrations of the mRNA transcriptome in SVs of adult mice following neonatal DES exposure. This developmental exposure impacts differential diseases between male (SVs) and female (uterus) tissues when mice reach adulthood due to most DES-altered genes that appear to be tissue specific during mouse development. Certain estrogen-responsive gene changes in SVs are cell-type specific. DNA methylation dynamically changes during development in the SVs of wild-type (WT) and ERα-knockout (αERKO) mice, which increases both the loss and gain of differentially methylated regions (DMRs). There are more gains of DMRs in αERKO compared with WT. Interestingly, the methylation changes between the two genotypes are in different genomic loci. Additionally, the expression levels of a subset of DES-altered genes are associated with their DNA methylation status following developmental DES exposure. Taken together, these findings provide an important basis for understanding the molecular and cellular mechanism of endocrine-disrupting chemicals (EDCs), such as DES, during development in the male mouse tissues. This unique evidence contributes to our understanding of developmental actions of EDCs in human health.


Assuntos
Metilação de DNA/efeitos dos fármacos , Dietilestilbestrol/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Estrogênios não Esteroides/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Glândulas Seminais/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Metilação de DNA/genética , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Estrogênios não Esteroides/farmacologia , Loci Gênicos , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA