Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Oxf Med Case Reports ; 2024(6): omae067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860019

RESUMO

Pigmentary retinal dystrophy (PRD) is a group of inherited disorders involving the progressive degeneration of rod and cone photoreceptors and the retinal pigment epithelium (RPE), which can progress to pigmentary retinopathy (PR). We present a case of PRD in a female pediatric patient who has pathogenic variants in the PRPH2 and PEX1 genes. The patient has associated macular edema and secondary visual impairment. Treatment has included serial dexamethasone intravitreal implant injections and topical dorzolamide. The PEX1 gene mutation is associated with peroxisome biogenesis disorder-Zellweger syndrome spectrum (PBD-ZSS) and resulting retinal dystrophies. The PRPH2 mutation may play a role in macular edema and PRD, as it is implicated in macular degeneration, choroid defects, and photoreceptor dysfunction. In this case, we review multiple gene mutations playing potential etiologic roles for PRD and discuss care management.

3.
Transl Pediatr ; 13(1): 192-199, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323187

RESUMO

Background: The protein PEX26 is involved in the biogenesis and maintenance of peroxisomes, which are organelles within cells. Dysfunction of PEX26 results in peroxisome biogenesis disorders (PBDs) complementation group 8 (CG8), leading to Zellweger spectrum disorders (ZSDs). These disorders present as a syndrome with multiple congenital anomalies, varying in clinical severity. Case Description: We present the case of a 7-month-old boy who exhibited hepatic impairment with hepatomegaly, sensorineural hearing loss, developmental delay, abnormal ossification, and mild craniofacial dysmorphology. Tandem mass spectrometry analysis of plasma isolated from whole blood revealed a significant increase in the levels of very long chain fatty acids (VLCFAs) C26:0, C26:0/C22:0, and C24:0/C22:0, consistent with peroxisomal fatty acid oxidation disorder. Exome sequencing identified two variants in the PEX26 gene (c.347T>C and c.616C>T), with the latter being a suspected pathogenic variation. The variant can lead to a defect in the PEX26 gene, resulting in impaired peroxisome biogenesis, ß-oxidation of VLCFAs, and disruption of other biochemical pathways. Ultimately, this cascade of events manifests as ZSDs. Currently, symptomatic supportive treatment is the main approach for managing this condition and regular follow-up is being conducted for the patient. Conclusions: The present study introduces a novel heterozygous variant comprising two previously unidentified variants in the PEX26 gene, thereby expanding the range of known genetic alterations and highlighting the effectiveness of highly efficient exome sequencing in patients with undetermined multiple system dysfunctions.

4.
Children (Basel) ; 10(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980088

RESUMO

The aim of this paper is to describe the temporal progression and clinical picture of a 2-year-old child with infantile Refsum disease, as well as the diagnostic procedures performed; this case presented multiple hematologic, metabolic, and developmental complications and progressive disabilities. Genetic testing revealed a mutation of the PEX6 (Peroxisomal Biogenesis Factor 6) gene, and the metabolic profile was consistent with the diagnosis. Particularly, the child also presented altered coagulation factors and developed a spontaneous brain hemorrhage. The clinical picture includes several neurological, ophthalmological, digestive, cutaneous, and endocrine disorders as a result of the very long chain fatty acid accumulation as well as secondary oxidative anomalies. The study of metabolic disorders occurring because of genetic mutations is a subject of core importance in the pathology of children today. The PEX mutations, difficult to identify antepartum, are linked to an array of cell anomalies with severe consequences on the patient's status, afflicting multiple organs and systems. This is the reason for which our case history may be relevant, including a vast number of symptoms, as well as modified biological parameters.

5.
Cells ; 11(12)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741019

RESUMO

Zellweger spectrum disorder (ZSD) is a rare, debilitating genetic disorder of peroxisome biogenesis that affects multiple organ systems and presents with broad clinical heterogeneity. Although severe, intermediate, and mild forms of ZSD have been described, these designations are often arbitrary, presenting difficulty in understanding individual prognosis and treatment effectiveness. The purpose of this study is to conduct a scoping review and meta-analysis of existing literature and a medical chart review to determine if characterization of clinical findings can predict severity in ZSD. Our PubMed search for articles describing severity, clinical findings, and survival in ZSD resulted in 107 studies (representing 307 patients) that were included in the review and meta-analysis. We also collected and analyzed these same parameters from medical records of 136 ZSD individuals from our natural history study. Common clinical findings that were significantly different across severity categories included seizures, hypotonia, reduced mobility, feeding difficulties, renal cysts, adrenal insufficiency, hearing and vision loss, and a shortened lifespan. Our primary data analysis also revealed significant differences across severity categories in failure to thrive, gastroesophageal reflux, bone fractures, global developmental delay, verbal communication difficulties, and cardiac abnormalities. Univariable multinomial logistic modeling analysis of clinical findings and very long chain fatty acid (VLCFA) hexacosanoic acid (C26:0) levels showed that the number of clinical findings present among seizures, abnormal EEG, renal cysts, and cardiac abnormalities, as well as plasma C26:0 fatty acid levels could differentiate severity categories. We report the largest characterization of clinical findings in relation to overall disease severity in ZSD. This information will be useful in determining appropriate outcomes for specific subjects in clinical trials for ZSD.


Assuntos
Doenças Renais Císticas , Síndrome de Zellweger , Ácidos Graxos , Humanos , Proteínas de Membrana/genética , Convulsões , Síndrome de Zellweger/diagnóstico
6.
Neurogenetics ; 23(2): 115-127, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106698

RESUMO

Peroxisome biogenesis disorders-Zellweger spectrum disorders (PBD-ZSD)-are primarily autosomal recessive disorders caused by mutations in any of 13 PEX genes involved in peroxisome assembly. Compared to other PEX-related disorders, some PEX16 defects are associated with an atypical phenotype consisting of spasticity, cerebellar dysfunction, preserved cognition, and prolonged survival. In this case series, medical records and brain MRIs from 7 patients with this PEX16 presentation were reviewed to further characterize this phenotype. Classic PBD features such as sensory deficits and amelogenesis imperfecta were absent in all 7 patients, while all patients had hypertonia. Five patients were noted to have dystonia and received a treatment trial of levodopa/carbidopa. Four treated patients had partial but significant improvements in their dystonia and tremors, and 1 patient had only minimal response. Brain MRI studies commonly showed T2/FLAIR hyperintensities in the brainstem, superior and middle cerebellar peduncles, corticospinal tracts, and splenium of the corpus callosum. Genetic analysis revealed novel biallelic variants in 3 probands (c.683C > T/372delG; c.692A > G homozygous; c.865C > G/451C > T) and 1 novel variant (c.956_958delCGC) in another proband. We demonstrated residual PEX16 protein amounts by immunoblotting in fibroblasts available from 5 patients with this atypical PEX16 disease (3 from this series, 2 previously reported), in contrast to the absence of PEX16 protein in fibroblasts from a patient with the severe ZSD presentation. This study further characterizes the phenotype of PEX16 defects by highlighting novel and distinctive clinical, neuroradiological, and molecular features of the disease and proposes a potential treatment for the dystonia. ClinicalTrials.gov Identifier: NCT01668186. Date of registration: January 2012.


Assuntos
Distonia , Síndrome de Zellweger , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Mutação , Transtornos Peroxissômicos , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
7.
Mol Ther Methods Clin Dev ; 23: 225-240, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703844

RESUMO

Patients with Zellweger spectrum disorder (ZSD) commonly present with vision loss due to mutations in PEX genes required for peroxisome assembly and function. Here, we evaluate PEX1 retinal gene augmentation therapy in a mouse model of mild ZSD bearing the murine equivalent (PEX1-p[Gly844Asp]) of the most common human mutation. Experimental adeno-associated virus 8.cytomegalovirus.human PEX1.hemagglutinin (AAV8.CMV.HsPEX1.HA) and control AAV8.CMV.EGFP vectors were administered by subretinal injection in contralateral eyes of early (5-week-old)- or later (9-week-old)-stage retinopathy cohorts. HsPEX1.HA protein was expressed in the retina with no gross histologic side effects. Peroxisomal metabolic functions, assessed by retinal C26:0 lysophosphatidylcholine (lyso-PC) levels, were partially normalized after therapeutic vector treatment. Full-field flash electroretinogram (ffERG) analyses at 8 weeks post-injection showed a 2-fold improved retinal response in the therapeutic relative to control vector-injected eyes. ffERG improved by 1.6- to 2.5-fold in the therapeutic vector-injected eyes when each cohort reached 25 weeks of age. At 32 weeks of age, the average ffERG response was double in the therapeutic relative to control vector-injected eyes in both cohorts. Optomotor reflex analyses trended toward improvement. These proof-of-concept studies represent the first application of gene augmentation therapy to treat peroxisome biogenesis disorders and support the potential for retinal gene delivery to improve vision in these patients.

8.
Orphanet J Rare Dis ; 16(1): 388, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521419

RESUMO

BACKGROUND: Zellweger spectrum disorders (ZSDs) are a rare, heterogenous group of autosomal recessively inherited disorders characterized by reduced peroxisomes numbers, impaired peroxisomal formation, and/or defective peroxisomal functioning. In the absence of functional peroxisomes, bile acid synthesis is disrupted, and multisystem disease ensues with abnormalities in the brain, liver, kidneys, muscle, eyes, ears, and nervous system. MAIN BODY: Liver disease may play an important role in morbidity and mortality, with hepatic fibrosis that can develop as early as the postnatal period and often progressing to cirrhosis within the first year of life. Because hepatic dysfunction can have numerous secondary effects on other organ systems, thereby impacting the overall disease severity, the treatment of liver disease in patients with ZSD is an important focus of disease management. Cholbam® (cholic acid), approved by the U.S. Food and Drug Administration in March 2015, is currently the only therapy approved as adjunctive treatment for patients with ZSDs and single enzyme bile acid synthesis disorders. This review will focus on the use of CA therapy in the treatment of liver disease associated with ZSDs, including recommendations for initiating and maintaining CA therapy and the limitations of available clinical data supporting its use in this patient population. CONCLUSIONS: Cholbam is a safe and well-tolerated treatment for patients with ZSDs that has been shown to improve liver chemistries and reduce toxic bile acid intermediates in the majority of patients with ZSD. Due to the systemic impacts of hepatic damage, Cholbam should be initiated in patients without signs of advanced liver disease.


Assuntos
Hepatopatias , Síndrome de Zellweger , Ácidos e Sais Biliares , Ácido Cólico , Humanos , Estados Unidos , Síndrome de Zellweger/genética
9.
Biomolecules ; 11(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356630

RESUMO

Premature termination codon (PTC) mutations account for approximately 10% of pathogenic variants in monogenic diseases. Stimulation of translational readthrough, also known as stop codon suppression, using translational readthrough-inducing drugs (TRIDs) may serve as a possible therapeutic strategy for the treatment of genetic PTC diseases. One important parameter governing readthrough is the stop codon context (SCC)-the stop codon itself and the nucleotides in the vicinity of the stop codon on the mRNA. However, the quantitative influence of the SCC on treatment outcome and on appropriate drug concentrations are largely unknown. Here, we analyze the readthrough-stimulatory effect of various readthrough-inducing drugs on the SCCs of five common premature termination codon mutations of PEX5 in a sensitive dual reporter system. Mutations in PEX5, encoding the peroxisomal targeting signal 1 receptor, can cause peroxisomal biogenesis disorders of the Zellweger spectrum. We show that the stop context has a strong influence on the levels of readthrough stimulation and impacts the choice of the most effective drug and its concentration. These results highlight potential advantages and the personalized medicine nature of an SCC-based strategy in the therapy of rare diseases.


Assuntos
Códon sem Sentido , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Biossíntese de Proteínas , RNA Mensageiro , Células HeLa , Humanos , Transtornos Peroxissômicos/terapia , Receptor 1 de Sinal de Orientação para Peroxissomos/biossíntese , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Metabolites ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072483

RESUMO

Peroxisomes are central hubs for cell metabolism and their dysfunction is linked to devastating human disorders, such as peroxisomal biogenesis disorders and single peroxisomal enzyme/protein deficiencies. For decades, biochemical diagnostics have been carried out using classical markers such as very long-chain fatty acids (VLCFA), which can be inconspicuous in milder and atypical cases. Holistic metabolomics studies revealed several potentially new biomarkers for peroxisomal disorders for advanced laboratory diagnostics including atypical cases. However, establishing these new markers is a major challenge in routine diagnostic laboratories. We therefore investigated whether the commercially available AbsoluteIDQ p180 kit (Biocrates Lifesciences), which utilizes flow injection and liquid chromatography mass spectrometry, may be used to reproduce some key results from previous global metabolomics studies. We applied it to serum samples from patients with mutations in peroxisomal target genes PEX1, ABCD1, and the HSD17B4 gene. Here we found various changes in sphingomyelins and lysophosphatidylcholines. In conclusion, this kit can be used to carry out extended diagnostics for peroxisomal disorders in routine laboratories, even without access to a metabolomics unit.

11.
Front Cell Dev Biol ; 9: 661298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869228

RESUMO

Peroxisome biogenesis disorders within the Zellweger spectrum (PBD-ZSDs) are most frequently associated with the c.2528G>A (p.G843D) mutation in the PEX1 gene (PEX1-G843D), which results in impaired import of peroxisomal matrix proteins and, consequently, defective peroxisomal functions. A recent study suggested that treatment with autophagy inhibitors, in particular hydroxychloroquine, would be a potential therapeutic option for PBD-ZSD patients carrying the PEX1-G843D mutation. Here, we studied whether autophagy inhibition by chloroquine, hydroxychloroquine and 3-methyladenine indeed can improve peroxisomal functions in four different cell types with the PEX1-G843D mutation, including primary patient cells. Furthermore, we studied whether autophagy inhibition may be the mechanism underlying the previously reported improvement of peroxisomal functions by L-arginine in PEX1-G843D cells. In contrast to L-arginine, we observed no improvement but a worsening of peroxisomal metabolic functions and peroxisomal matrix protein import by the autophagy inhibitors, while genetic knock-down of ATG5 and NBR1 in primary patient cells resulted in only a minimal improvement. Our results do not support the use of autophagy inhibitors as potential treatment for PBD-ZSD patients, whereas L-arginine remains a therapeutically promising compound.

12.
Iran J Child Neurol ; 15(1): 93-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33558817

RESUMO

PEX11ß ([OMIM] 614920) mutation causes an extremely rare subgroup of peroxisomal biogenesis disorders, with only six cases reported to date. In this article, we reported a patient with episodic migraine-like attacks, delirium, mood and behavior change, polyneuropathy, and history of congenital cataract. Whole exome sequencing showed novel c.743_744delTCinsA mutation in the exon 4 of the PEX11ß gene. In contrast to previously reported patients, our case presented milder features and extended the spectrum of the clinical phenotype of this mutation. This study helps to extend the phenotype of this syndrome; besides, recognizing novel mutation variants will provide a better genotype-phenotype correlation and improve clinical clues.

13.
Mol Genet Metab Rep ; 25: 100694, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33335840

RESUMO

Zellweger spectrum disorders (ZSD) are rare, debilitating genetic diseases of peroxisome biogenesis that affect multiple organ systems and present with broad clinical heterogeneity. Although many case studies have characterized the multitude of signs and symptoms associated with ZSD, there are few reports on the prevalence of symptoms to help inform the development of meaningful endpoints for future clinical trials in ZSD. In the present study, we used an online survey tool completed by family caregivers to study the occurrence, frequency and severity of symptoms in individuals diagnosed with ZSD. Responses from caregivers representing 54 living and 25 deceased individuals with ZSD were collected over an 8-month period. Both perception of disease severity and prevalence of various symptoms were greater in responses from family caregivers of deceased individuals compared to those of living individuals with ZSD. Compared with previous reports for ZSD, the combined prevalence of seizures (53%) and adrenal insufficiency (45%) were nearly twice as high. Overall, this community-engaged approach to rare disease data collection is the largest study reporting on the prevalence of symptoms in ZSD, and our findings suggest that previous reports may be underreporting the true prevalence of several symptoms in ZSD. Studies such as this used in conjunction with clinician- led reports may be useful for informing the design of future clinical trials addressing ZSD.

14.
Mol Genet Metab Rep ; 25: 100664, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33101983

RESUMO

Defects in PEX3 are associated with a severe neonatal-lethal form of Zellweger spectrum disorder. We report two moderately affected siblings whose clinical and biochemical phenotypes expand the reported spectrum of PEX3-related disease. Genome sequencing of an adolescent male with progressive movement disorder, spasticity and neurodegeneration, and previous non-diagnostic plasma very-long chain fatty acid analysis, revealed a homozygous likely pathogenic missense variant in PEX3 [c.991G > A; p.(Gly331Arg)]. A younger sibling with significant motor decline since the age of three years was also subsequently found to be homozygous for the familial PEX3 variant. A comprehensive review of the scientific literature identified three additional families with non-lethal infantile- or childhood-onset PEX3-related disease, which together with this clinical report illustrate the potential for highly variable disease severity. Our findings demonstrate the diagnostic utility of genome-wide sequencing for identifying clinically and biochemically heterogeneous inherited metabolic disorders such as the peroxisome biogenesis disorders.

15.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165900, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693164

RESUMO

Zellweger spectrum disorders (ZSD) are inborn errors of metabolism caused by mutations in PEX genes that lead to peroxisomal biogenesis disorder (PBD). No validated treatment is able to modify the dismal progression of the disease. ZSD mouse models used to develop therapeutic approaches are limited by poor survival and breeding restrictions. To overcome these limitations, we backcrossed the hypomorphic Pex1 p.G844D allele to NMRI background. NMRI mouse breeding restored an autosomal recessive Mendelian inheritance pattern and delivered twice larger litters. Mice were longitudinally phenotyped up to 6 months of age to make this model suitable for therapeutic interventions. ZSD mice exhibited growth retardation and relative hepatomegaly associated to progressive hepatocyte hypertrophy. Biochemical studies associated with RNA sequencing deciphered ZSD liver glycogen metabolism alterations. Affected fibroblasts displayed classical immunofluorescence pattern and biochemical alterations associated with PBD. Plasma and liver showed very long-chain fatty acids, specific oxysterols and C27 bile acids intermediates elevation in ZSD mice along with a specific urine organic acid profile. With ageing, C26 fatty acid and phytanic acid levels tended to normalize in ZSD mice, as described in patients reaching adulthood. In conclusion, our mouse model recapitulates a mild ZSD phenotype and is suitable for liver-targeted therapies evaluation.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Síndrome de Zellweger/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Alelos , Animais , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Feminino , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Estudos Longitudinais , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxisteróis/metabolismo , RNA-Seq , Síndrome de Zellweger/genética
16.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393673

RESUMO

Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.


Assuntos
Transtornos Peroxissômicos , Peroxissomos , Animais , Membranas Intracelulares/metabolismo , Camundongos , Peroxinas , Transtornos Peroxissômicos/genética , Peroxissomos/metabolismo , Transporte Proteico
17.
Histochem Cell Biol ; 153(5): 295-306, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124009

RESUMO

Peroxisomes are ubiquitous organelles formed by peroxisome biogenesis (PB). During PB, peroxisomal matrix proteins harboring a peroxisome targeting signal (PTS) are imported inside peroxisomes by peroxins, encoded by PEX genes. Genetic alterations in PEX genes lead to a spectrum of incurable diseases called Zellweger spectrum disorders (ZSD). In vitro drug screening is part of the quest for a cure in ZSD by restoring PB in ZSD cell models. In vitro PB evaluation is commonly achieved by immunofluorescent staining or transient peroxisome fluorescent reporter expression. Both techniques have several drawbacks (cost, time-consuming technique, etc.) which we overcame by developing a third-generation lentiviral transfer plasmid expressing an enhanced green fluorescent protein fused to PTS1 (eGFP-PTS1). By eGFP-PTS1 lentiviral transduction, we quantified PB and peroxisome motility in ZSD and control mouse and human fibroblasts. We confirmed the stable eGFP-PTS1 expression along cell passages. eGFP signal analysis distinguished ZSD from control eGFP-PTS1-transduced cells. Live eGFP-PTS1 transduced cells imaging quantified peroxisomes motility. In conclusion, we developed a lentiviral transfer plasmid allowing stable eGFP-PTS1 expression to study PB (deposited on Addgene: #133282). This tool meets the needs for in vitro PB evaluation and ZSD drug discovery.


Assuntos
Proteínas de Fluorescência Verde/genética , Sinais de Orientação para Peroxissomos/genética , Peroxissomos/metabolismo , Síndrome de Zellweger/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Síndrome de Zellweger/patologia
18.
J Biol Chem ; 295(16): 5321-5334, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32165495

RESUMO

The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid ß-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid ß-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Citosol/metabolismo , Ácidos Graxos/metabolismo , Hipocampo/citologia , Humanos , Oxirredução , Plasmalogênios/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
19.
Adv Exp Med Biol ; 1299: 71-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417208

RESUMO

Zellweger syndrome disorders (ZSD) is the principal group of peroxisomal disorders characterized by a defect of peroxisome biogenesis due to mutations in one of the 13 PEX genes. The clinical spectrum is very large with a continuum from antenatal forms to adult presentation. Whereas biochemical profile in body fluids is classically used for their diagnosis, the revolution of high-throughput sequencing has extended the knowledge about these disorders. The aim of this review is to offer a large panorama on molecular basis, clinical presentation and treatment of ZSD, and to update the diagnosis strategy of these disorders in the era of next-generation sequencing (NGS).


Assuntos
Doenças do Recém-Nascido , Síndrome de Zellweger , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/patologia , Mutação , Peroxissomos/metabolismo , Peroxissomos/patologia , Síndrome de Zellweger/diagnóstico , Síndrome de Zellweger/genética , Síndrome de Zellweger/patologia
20.
Cells ; 10(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396635

RESUMO

Genetic alterations in PEX genes lead to peroxisome biogenesis disorder. In humans, they are associated with Zellweger spectrum disorders (ZSD). No validated treatment has been shown to modify the dismal natural history of ZSD. Liver transplantation (LT) improved clinical and biochemical outcomes in mild ZSD patients. Hepatocyte transplantation (HT), developed to overcome LT limitations, was performed in a mild ZSD 4-year-old child with encouraging short-term results. Here, we evaluated low dose (12.5 million hepatocytes/kg) and high dose (50 million hepatocytes/kg) syngeneic male HT via intrasplenic infusion in the Pex1-G844D NMRI mouse model which recapitulates a mild ZSD phenotype. HT was feasible and safe in growth retarded ZSD mice. Clinical (weight and food intake) and biochemical parameters (very long-chain fatty acids, abnormal bile acids, etc.) were in accordance with ZSD phenotype but they were not robustly modified by HT. As expected, one third of the infused cells were detected in the liver 24 h post-HT. No liver nor spleen microchimerism was detected after 7, 14 and 30 days. Future optimizations are required to improve hepatocyte engraftment in Pex1-G844D NMRI mouse liver. The mouse model exhibited the robustness required for ZSD liver-targeted therapies evaluation.


Assuntos
Modelos Animais de Doenças , Hepatócitos , Síndrome de Zellweger , Animais , Biomarcadores/metabolismo , Hepatócitos/citologia , Hepatócitos/transplante , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Peroxissomos/metabolismo , Fenótipo , Síndrome de Zellweger/metabolismo , Síndrome de Zellweger/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA