Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Med Image Anal ; 95: 103173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657424

RESUMO

Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Aprendizado de Máquina não Supervisionado , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
2.
Micromachines (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542632

RESUMO

A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as single-port excitation and left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP) when as dual-port excitation, owing to the characteristic of the OMT with the transmitting of orthogonally polarized waves. A CNC-layered fabrication approach is proposed, which means that the antenna prototype integrating with a Boifot-type OMT, turning waveguide, twisting waveguide and phase shifter is divided into three layers along the vertical direction to be fabricated based on computerized numerical control (CNC) technology. In the design, the turning waveguide and twisting waveguide are employed to achieve plane consistency of the antenna branch ports. Furthermore, a phase shifter is designed to compensate the orthogonally polarized waves, which can keep the phase of the orthogonally polarized waves consistent in a wideband frequency range from 75 GHz to 110 GHz. A prototype is fabricated and measured to verify the performance of the proposed multi-polarization antenna, and the measured results agree well with the simulation ones. In the whole W-band, the value of return loss is better than 10 dB of all polarization modes, and the value of AR of the LHCP and RHCP is below 3.5 dB. The maximum gain of the antenna reaches up to 18.8 dBi at 110 GHz. In addition, regarding the layered structure, the possible layered assembly error analysis is discussed, which verifies the feasibility of the layered machining for this antenna.

3.
Entropy (Basel) ; 25(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37895529

RESUMO

Quantum communication systems are susceptible to various perturbations and drifts arising from the operational environment, with phase drift being a crucial challenge. In this paper, we propose an efficient real-time phase drift compensation scheme in which only existing data from the quantum communication process is used to establish a stable closed-loop control subsystem for phase tracking. This scheme ensures the continuous operation of transmission by tracking and compensating for phase drift in the phase-encoding quantum communication system. The experimental results demonstrate the effectiveness and feasibility of the proposed scheme with an average quantum bit error rate of 1.60% and a standard deviation of 0.0583% for 16 h of continuous operation.

4.
Neural Netw ; 160: 175-191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657331

RESUMO

Under the persistent excitation (PE) condition, the real dynamics of the nonlinear system can be obtained through the deterministic learning-based radial basis function neural network (RBFNN) control. However, in this scheme, the learning speed and accuracy are limited by the tradeoff between the PE levels and the approximation capabilities of the neural network (NN). Inspired by the frequency domain phase compensation of linear time-invariant (LTI) systems, this paper presents an adaptive phase compensator employing the pure time delay to improve the performance of the deterministic learning-based adaptive feedforward control with the reference input known a priori. When the adaptive phase compensation is applied to the hidden layer of the RBFNN, the nonlinear approximation capability of the RBFNN is effectively improved such that both the learning performance (learning speed and accuracy) and the control performance of the deterministic learning-based control scheme are improved. Theoretical analysis is conducted to prove the stability of the proposed learning control scheme for a class of systems which are affine in the control. Simulation studies demonstrate the effectiveness of the proposed phase compensation method.


Assuntos
Algoritmos , Dinâmica não Linear , Retroalimentação , Redes Neurais de Computação , Aprendizagem
5.
ISA Trans ; 131: 566-578, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35597608

RESUMO

In the single-excitation-motor inertial flip-flow screen, the vibration phase difference is difficult to maintain at the ideal angle of 180° for two screen frames, which results in the low screening efficiency. To solve this problem, a flip-flow screen driven by double excitation motors is established, together with its control system. The vibration phase difference for two screen frames can reach 180° when the phase difference for two eccentric blocks is 170° based on the experimental model. Therefore, the speed synchronization based on cross-coupling and improved point-based Bang-Bang phase compensation control strategies are proposed and dSPACE is used to build the control platform. Experimental results achieved have been confirmed the control effectiveness during screening process.


Assuntos
Modelos Teóricos , Vibração
6.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884025

RESUMO

The conventional reconstruction method of off-axis digital holographic microscopy (DHM) relies on computational processing that involves spatial filtering of the sample spectrum and tilt compensation between the interfering waves to accurately reconstruct the phase of a biological sample. Additional computational procedures such as numerical focusing may be needed to reconstruct free-of-distortion quantitative phase images based on the optical configuration of the DHM system. Regardless of the implementation, any DHM computational processing leads to long processing times, hampering the use of DHM for video-rate renderings of dynamic biological processes. In this study, we report on a conditional generative adversarial network (cGAN) for robust and fast quantitative phase imaging in DHM. The reconstructed phase images provided by the GAN model present stable background levels, enhancing the visualization of the specimens for different experimental conditions in which the conventional approach often fails. The proposed learning-based method was trained and validated using human red blood cells recorded on an off-axis Mach-Zehnder DHM system. After proper training, the proposed GAN yields a computationally efficient method, reconstructing DHM images seven times faster than conventional computational approaches.


Assuntos
Holografia , Eritrócitos , Humanos
7.
Nanomaterials (Basel) ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443921

RESUMO

The phase delays introduced by anisotropic nanounits include propagation phase delay, resonant phase delay and geometric phase delay. Various phase devices can be formed based on the metasurfaces consisting of anisotropic nanounits and the phase devices of the same kind function have different performances because of different working modes. In this paper, metalenses and vortex metalenses are chosen as examples to compare the optical performance of metasurface phase devices based on three kinds of phase compensation techniques. We design separately three kinds of metalenses and vortex metalenses using the cross nanoholes, L-shaped nanohole and V-shaped nanoholes and simulate numerically their intensity and phase distributions. Additionally, the results show the differences among these elements in structure complexity, polarization dependence, working efficiency and phase uniformity. The comparison for three kinds of metalenses clearly shows the merits of different phase compensation techniques and this work must be helpful for expanding the practical applications of metasurfaces.

8.
Ultrasonics ; 115: 106464, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34000665

RESUMO

Sector-vortex phased irradiation from annular array transducer was numerically studied with breast model constructed from MRI data of real patient. Phase compensation (PC) based on time reversal pre-computation was applied in order to handle phase delay caused by heterogeneity of breast tissues, and results showed great effectiveness on single-focus case, insignificant effectiveness on multi-focus cases with 4 and 8 phase-sectors, but ineffectiveness on multi-focus case with 12 phase-sectors, where enormous undesired outer ablation occurred. For single-focus case, phase compensation not only produced real focus very close to targeted site (0.1 mm deviation), but also decreased thermal peak ratio (outer/focal) largely by 30%. However, phase compensation did not increase total ablated size. For multi-focus cases with 4 and 8 phase-sectors, deformed focal shapes by tissue heterogeneity were restored by phase compensation, but the 4-phase-sector case had higher thermal peak ratio and smaller ablation than 8-phase-sector case for strong cancelling effect between phase-sector borders. Ineffectiveness of phase compensation on multi-focus case with 12 phase-sectors had three considerable reasons. 1st, inequality of piezo-element number between sectors; 2nd, heterogeneous attenuation of breast model; 3rd, insufficient number of piezo-elements per sector; where the 2nd reason originated from breast model, and other two reasons were related to array transducer. This research gave several preliminary indications. 1st, ineffectiveness of phase compensation occurs on case with large phase-sector number when using annular array transducer; 2nd, with same input energy and same irradiation time, sector-vortex phased irradiation creates smaller focal ablation, but withstands longer than single-focus irradiation free of outer ablation; 3rd, phase-difference π between neighboring phase-sectors is disadvantageous because of energy loss; 4th, phase compensation is effective on single-focus for improving pinpoint ablation but not for increasing total ablated size.

9.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535480

RESUMO

Phase compensation is a critical step for the optical measuring system using spatial light modulator (SLM). The wavefront distortion from SLM is mainly caused by the phase modulation non-linearity and non-uniformity of SLM's physical structure and environmental conditions. A phase modulation characteristic calibration and compensation method for liquid crystal on silicon spatial light modulator (LCoS-SLM) with a Twyman-Green interferometer is illustrated in this study. A method using two sequences of phase maps is proposed to calibrate the non-uniformity character over the whole aperture of LCoS-SLM at pixel level. A phase compensation matrix is calculated to correct the actual phase modulation of the LCoS-SLM and ensure that the designed wavefront could be achieved. Compared with previously known compensation methods, the proposed method could obtain the phase modulation characteristic curve of each pixel on the LCoS-SLM, rather than a mono look-up table (LUT) curve or multi-LUT curves corresponding to an array of blocks over the whole aperture of the LCoS-SLM. The experiment results show that the phase compensation precision could reach a peak-valley value of 0.061λ in wavefront and this method can be applied in generating freeform wave front for precise optical performance.

10.
Sensors (Basel) ; 21(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498939

RESUMO

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.

11.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143487

RESUMO

As unmanned aerial vehicles and other small, low-flying, and low-speed aircrafts are being extensively used, studies on their detection are being extensively conducted in radar application research. However, weak echoes, low Doppler frequencies, and target echoes mixed with ground clutter can considerably degrade the detection performance. Therefore, specific methods for the detection of such targets should be devised. We propose herein a phase compensation and coherent accumulation algorithm based on the fractional Fourier transform (FRFT) for detection and speed estimation of this type of target. First, the energy of the target echo is converged using the FRFT. Next, the phase between the peaks of the target echo is analyzed. Phase compensation and coherent accumulation determined from the expected target speed in the fractional domain eliminate ground clutter and further improve the signal-to-interference-plus-noise ratio. Finally, constant false alarm rate detection is used to identify the target, for which radial speed can be estimated directly according to the peak coordinates. The validity of the algorithm is verified via data simulation and application to real data.

12.
J Electromagn Waves Appl ; 34(2): 213-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34135546

RESUMO

Three-dimensional (3D) microwave imaging in very dispersive media using a phase shift and sum (PSAS) algorithm is presented. The phase shift and amplitude attenuation within the dispersive media are compensated individually for each frequency component and then integrated to calculate the pixel values in the region of interest (ROI). Therefore, the multi-speed and multipath issue when an ultra-wide band (UWB) signal propagates in the dispersive media is overcome. The current approach is validated by lab-collected data using our self-developed 3-D UWB microwave measurement system. Image results are compared with prior arts at the end of this paper.

13.
Sensors (Basel) ; 19(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661936

RESUMO

Gaofen-3 is a Chinese remote sensing satellite with multiple working modes, among which the scanning synthetic aperture radar (ScanSAR) mode is used for wide-swath imaging. synthetic aperture radar (SAR) interferometry in the ScanSAR mode provides the most rapid way to obtain a global digital elevation model (DEM), which can also be realized by Gaofen-3. Gaofen-3 ScanSAR interferometry works in the repeat-pass mode, and image pair non-synchronizations can influence its performance. Non-synchronizations can include differences of burst central times, satellite velocities, and burst durations. Therefore, it is necessary to analyze their influences and improve the interferometric coherence. Meanwhile, interferometric phase compensation and rapid DEM geolocation also need to be considered in interferometric processing. In this paper, interferometric coherence was analyzed in detail, followed by an iterative filtering method, which helped to improve the interferometric performance. Further, a phase compensation method for Gaofen-3 was proposed to compensate for the phase error caused by the unsynchronized azimuth time offset of image pair, and a closed-form solution of DEM geolocation with ground control point (GCP) information was derived. Application of our methods to a pair of Gaofen-3 interferometric images showed that these methods were able to process the images with good accuracy and efficiency. Notably, these analysis and processing methods can also be applied to other SAR satellites in the ScanSAR mode to obtain DEMs with high quality.

14.
Sensors (Basel) ; 19(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480574

RESUMO

For parallel bistatic forward-looking synthetic aperture radar (SAR) imaging, the instantaneous slant range is a double-square-root expression due to the separate transmitter-receiver system form. The hyperbolic approximation provides a feasible solution to convert the dual square-root expression into a single-square-root expression. However, some high-order terms of the range Taylor expansion have not been considered during the slant range approximation procedure in existing methods, and therefore, inaccurate phase compensation occurs. To obtain a more accurate compensation result, an improved hyperbolic approximation range form with high-order terms is proposed. Then, a modified omega-K algorithm based on the new slant range form is adopted for parallel bistatic forward-looking SAR imaging. Several simulation results validate the effectiveness of the proposed imaging algorithm.

15.
J Synchrotron Radiat ; 26(Pt 3): 729-736, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074437

RESUMO

As a strong tool for the study of nanoscience, the synchrotron hard X-ray nanoprobe technique enables researchers to investigate complex samples with many advantages, such as in situ setup, high sensitivity and the integration of various experimental methods. In recent years, an important goal has been to push the focusing spot size to the diffraction limit of ∼10 nm. The multilayer-based Kirkpatrick-Baez (KB) mirror system is one of the most important methods used to achieve this goal. This method was chosen by the nanoprobe beamline of the Phase-II project at the Shanghai Synchrotron Radiation Facility. To overcome the limitations of current polishing technologies, the use of an additional phase compensator was necessary to decrease the wavefront distortions. In this experiment, a prototype phase compensator has been created to show how to obtain precise wavefront compensation. With the use of finite-element analysis and Fizeau interferometer measurements, some important factors such as the piezoresponse, different actuator distributions, stability and hysteresis were investigated. A global optimization method based on the measured piezoresponse has also been developed. This method overcame the limitations of the previous local algorithm related to the adjustment of every single actuator for compact piezoelectric layouts. The mirror figure can approach a target figure after several iterations. The figure difference can be reduced to several nanometres, which is far better than the mirror figure errors. The prototype was also used to successfully compensate for the real wavefront errors from upstream and for its own figure errors, measured using the speckle scanning technique. The residual figure error was reduced to a root-mean-square value of 0.7 nm.

16.
Sensors (Basel) ; 18(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751623

RESUMO

The continuous wave interferences (CWIs) and the narrow-band interferences (NBIs) have significantly impacted the acquisition, tracking and positioning accuracy of Beidou Navigation Satellite System (BDS) receivers. As an interference suppression technology with a simple structure and low hardware cost, the adaptive infinite-duration impulse response (IIR) notch filter has been widely employed in the receivers to mitigate the CWIs and the NBIs. However, the nonlinear phase characteristics introduced by the IIR notch filters into the navigation receivers, may cause the distortion of navigation signals. It also leads to amplitude and phase distortion of the correlation peak in acquisition and loop tracking, which consequently brings on positioning errors in the measurement domain. This problem, however, has been ignored by many previous papers. Meanwhile, some other researchers came up with the idea of equalizers and all-pass networks compensating the distortion, which is also highly infeasible. Therefore, we propose a new method of an adaptive linear phase IIR notch filter with low hardware cost which is composed of three parts—the complex IIR notch filters, the IIR linear phase structure, and the adaptive and variable step-size algorithms. Applying this method, interference suppression and the correlation peak distortion compensation can be achieved with a modest increase hardware cost. This paper compares the performance of the new method with other IIR filters in both CWI and NBI scene and presents the effects of its parameters on the anti-jamming performance. Simulation results show that the proposed module has better anti-jamming performance in NBI scene and can compensate for the correlation peak distortion in the meantime.

17.
Sensors (Basel) ; 17(3)2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28245572

RESUMO

Theperformanceoftheglobalnavigationsatellitesystem(GNSS)canbeenhancedsignificantly by introducing the inter-satellite links (ISL) of a navigation constellation. In particular, the improvement of the position, velocity, and time accuracy, and the realization of autonomous functions require the ISL distance measurement data as the original input. For building a high-performance ISL, the ranging consistency between navigation satellites becomes a crucial problem to be addressed. Considering the frequency aging drift and the relativistic effect of the navigation satellite, the frequency and phase adjustment (FPA) instructions for the 10.23 MHz must be injected from the ground station to ensure the time synchronization of the navigation constellation. Moreover, the uncertainty of the initial phase each time the onboard clock equipment boots also results in a pseudo-range offset. In this Ref., we focus on the influence of the frequency and phase characteristics of the onboard clock equipment on the ranging consistency of the ISL and propose a phase compensation sensor design method for the phase offset. The simulation and experimental results show that the proposed method not only realized a phase compensation for the pseudo-range jitter, but, when the 1 PPS (1 pulse per second) falls in the 10.23 MHz skip area, also overcomes the problem of compensating the ambiguous phase by directly tracking the 10.23 MHz to ensure consistency in the ranging.

18.
Sensors (Basel) ; 17(3)2017 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-28335487

RESUMO

Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method.

19.
J Pharm Biomed Anal ; 102: 150-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25271124

RESUMO

Relative quantification of multi-components in complex mixture is significantly affected by the ionization variance caused by mobile phase composition in high-performance liquid chromatography with electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. The normalization methods for eliminating the variance are still less investigated. Herein, the mobile-phase compensation (MPC) method was applied to overcome the above problem. The developed method was firstly used for convenient evaluation of the coeluent interference and subsequently applied for relative quantification of the identified multi-components in Panax notoginseng (Sanqi) samples. The good linearity, precision and low limit of quantification of targeted analytes confirmed that the MPC-HPLC-ESI-MS method in gradient elution could achieve the isocratic test results compared with classical HPLC-ESI-MS. The established method was used for relative quantification of the minor Sanqi saponins by their detected peak areas divided by that of ginsenoside Rd. The results demonstrated the potential of the newly developed method for obtaining the normalized data shared in different laboratories.


Assuntos
Ginsenosídeos/análise , Panax notoginseng/química , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Solventes/análise , Espectrometria de Massas por Ionização por Electrospray
20.
Chin J Nat Med ; 12(11): 857-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25480518

RESUMO

AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection (CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard (determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.


Assuntos
Ginsenosídeos/análise , Panax/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA