Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Eur J Med Chem ; 276: 116673, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029338

RESUMO

Phosphoantigens (pAgs) induce conformational changes after binding to the intracellular region of BTN3A1 which result in its clustering with BTN2A1, forming an activating ligand for the Vγ9Vδ2 T cell receptor. Here, we designed a small panel of bulky analogs of the prototypical pAg (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) that contain an aromatic ring attached to the C-3 position in place of methyl group. These compounds bind with high affinity to BTN3A1 but fail to fully support its interaction with BTN2A1 and only partially trigger T cell activation relative to HMBPP. Furthermore, they can compete with HMBPP for cellular binding to BTN3A1 and reduce the cellular response to HMBPP, a classic partial agonist phenotype. Trifluoromethyl analog 6e was the weakest agonist but the strongest inhibitor of HMBPP ELISA response. Our study provides a rationale for the mode of action of pAg-induced γδ T cell activation and provides insights into other naturally occurring BTN proteins and their respective ligands.

2.
Immunotherapy ; : 1-4, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940301
3.
Front Immunol ; 14: 1058838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006249

RESUMO

Introduction: Malignant pleural mesothelioma (MPM) is a rare and highly aggressive thoracic tumor with poor prognosis and limited therapeutic options. Although immune checkpoint inhibitors exhibit a promising effect in some patients with unresectable MPM in clinical trials, the majority of MPM patients show only modest response rates to the currently available treatments. It is thus imperative to develop novel and innovative therapeutic modalities for MPM, including immune effector cell-based therapies. Methods: γδ T cells were expanded using tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA) and interleukin-2, and the therapeutic potential of γδ T cells was examined through analyzing cell surface markers and cellular cytotoxicity against MPM in vitro using a europium chelate-based time-resolved fluorescence assay system and a luciferase-based luminescence assay system. Results and discussion: We successfully expanded γδ T cells from peripheral blood mononuclear cells of healthy donors and MPM patients. γδ T cells expressed natural killer receptors such as NKG2D and DNAM-1 and exhibited a moderate level of cytotoxicity to MPM cells in the absence of antigens. The inclusion of PTA, (E)-4-hydroxy-3- methylbut-2-enyl diphosphate (HMBPP) or zoledronic acid (ZOL) induced a TCR-dependent cytotoxicity in γδ T cells and secreted interferon-γ (IFN-γ). In addition, γδ T cells expressing CD16 exhibited a significant level of cytotoxicity against MPM cells in the presence of an anti-epidermal growth factor receptor (EGFR) mAb, at lower concentrations than in clinical settings, whereas a detectable level of IFN-γ was not produced. Taken together, γδ T cells showed cytotoxic activity against MPM in three distinct mechanisms through NK receptors, TCRs and CD16. Since major histocompatibility complex (MHC) molecules are not involved in the recognition, both autologous and allogeneic γδ T cells could be used for the development of γδ T cell-based adoptive immunotherapy for MPM.


Assuntos
Antineoplásicos , Mesotelioma Maligno , Humanos , Leucócitos Mononucleares , Antineoplásicos/farmacologia , Citotoxicidade Imunológica , Interferon gama/farmacologia
4.
Cell Rep ; 42(4): 112321, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36995939

RESUMO

Vγ9Vδ2 T cells play critical roles in microbial immunity by detecting target cells exposed to pathogen-derived phosphoantigens (P-Ags). Target cell expression of BTN3A1, the "P-Ag sensor," and BTN2A1, a direct ligand for T cell receptor (TCR) Vγ9, is essential for this process; however, the molecular mechanisms involved are unclear. Here, we characterize BTN2A1 interactions with Vγ9Vδ2 TCR and BTN3A1. Nuclear magnetic resonance (NMR), modeling, and mutagenesis establish a BTN2A1-immunoglobulin V (IgV)/BTN3A1-IgV structural model compatible with their cell-surface association in cis. However, TCR and BTN3A1-IgV binding to BTN2A1-IgV is mutually exclusive, owing to binding site proximity and overlap. Moreover, mutagenesis indicates that the BTN2A1-IgV/BTN3A1-IgV interaction is non-essential for recognition but instead identifies a molecular surface on BTN3A1-IgV essential to P-Ag sensing. These results establish a critical role for BTN3A-IgV in P-Ag sensing, in mediating direct or indirect interactions with the γδ-TCR. They support a composite-ligand model whereby intracellular P-Ag detection coordinates weak extracellular germline TCR/BTN2A1 and clonotypically influenced TCR/BTN3A-mediated interactions to initiate Vγ9Vδ2 TCR triggering.


Assuntos
Ativação Linfocitária , Linfócitos T , Ligantes , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Células Germinativas/metabolismo
5.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771066

RESUMO

Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.


Assuntos
Fosfatos Açúcares , Humanos , Fosfatos Açúcares/metabolismo , Terpenos/farmacologia , Terpenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Eritritol/metabolismo
6.
Anticancer Res ; 43(1): 63-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585162

RESUMO

BACKGROUND/AIM: We previously showed that human hepatic intrasinusoidal (HI) natural killer (NK) T cells selectively eliminate hepatocellular carcinoma (HCC) cell lines. In this study, we investigated the underlying mechanisms on how HI γδ T cells, expanded with zoledronate, exhibit a superior cytotoxic effect on HI NK-resistant Huh7 HCC cells. MATERIALS AND METHODS: γδ T cells were obtained from living liver transplant donors or from peripheral blood mononuclear cells (PBMC) of healthy volunteers and were expanded in the presence of IL-2, IL-15, and zoledronate for 2 weeks. Cytotoxicity was measured using the lactate dehydrogenase (LDH) assay in vitro and by flow cytometry using carboxyfluorescein succinimidyl ester (CFSE) in vivo. RESULTS: The cytotoxicity of expanded HI γδ T cells against Huh7 cells was associated with a higher pyrophosphate expression in Huh7 cells compared to SNU398 cells. In contrast, the cytotoxicity of HI γδ T cells against SNU398 cells depended on NKG2D. HI γδ T cells expressed less PD-1 than PB γδ T cells. The cytotoxicity of HI γδ T cells against Du145 and PC3 prostate cancer cells was also associated with pyrophosphate expression in these cells, as well as NKG2D and DNAM-1. CONCLUSION: The expression levels of phospho-antigen in tumor cells determined the cytotoxicity of HI γδ T cells, although the NK activating receptors, death ligands, and immune checkpoint molecules also contribute to their cytotoxicity. γδ T cells are attractive candidates for cancer immune cell therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Ácido Zoledrônico , Leucócitos Mononucleares , Difosfatos/metabolismo , Carcinoma Hepatocelular/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias Hepáticas/metabolismo , Citotoxicidade Imunológica , Linhagem Celular Tumoral
7.
Front Immunol ; 13: 876493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371078

RESUMO

Butyrophilins (BTN) are relatives of the B7 family (e.g., CD80, PD-L1). They fulfill a wide range of functions including immunomodulation and bind to various receptors such as the γδ T cell receptor (γδTCR) and small molecules. One intensively studied molecule is BTN3A1, which binds via its cytoplasmic B30.2 domain, metabolites of isoprenoid synthesis, designated as phosphoantigen (PAg), The enrichment of PAgs in tumors or infected cells is sensed by Vγ9Vδ2 T cells, leading to the proliferation and execution of effector functions to remove these cells. This article discusses the contribution of BTNs, the related BTNL molecules and SKINT1 to the development, activation, and homeostasis of γδ T cells and their immunomodulatory potential, which makes them interesting targets for therapeutic intervention.


Assuntos
Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta , Adjuvantes Imunológicos , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Fatores Imunológicos , Ligantes , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
8.
Bioorg Med Chem Lett ; 66: 128724, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405283

RESUMO

Bis-amidate derivatives have been viewed as attractive phosphonate prodrug forms because of their straightforward synthesis, lack of phosphorus stereochemistry, plasma stability and nontoxic amino acid metabolites. However, the efficiency of bis-amidate prodrug forms is unclear, as prior studies on this class of prodrugs have not evaluated their activation kinetics. Here, we synthetized a small panel of bis-amidate prodrugs of butyrophilin ligands as potential immunotherapy agents. These compounds were examined relative to other prodrug forms delivering the same payload for their stability in plasma and cell lysate, their ability to stimulate T cell proliferation in human PBMCs, and their activation kinetics in a leukemia co-culture model of T cell cytokine production. The bis-amidate prodrugs demonstrate high plasma stability and improved cellular phosphoantigen activity relative to the free phosphonic acid. However, the efficiency of bis-amidate activation is low relative to other prodrugs that contain at least one ester such as aryl-amidate, aryl-acyloxyalkyl ester, and bis-acyloxyalkyl ester forms. Therefore, bis-amidate prodrugs do not drive rapid cellular payload accumulation and they would be more useful for payloads in which slower, sustained-release kinetics are preferred.


Assuntos
Organofosfonatos , Pró-Fármacos , Ésteres , Humanos , Ligantes , Ativação Linfocitária , Pró-Fármacos/química
9.
Dev Comp Immunol ; 131: 104391, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271861

RESUMO

Gamma delta (γδ) T cells are highly enriched in mucosal barrier sites including intestinal tissues where microbial infections and tumors often originate in mammals. Human γδ T cells recognize stress antigens and microbial signals via their T cell receptor (TCR), natural killer (NK) receptors, and pattern recognition receptors. However, little is known about antigens or ligands capable of stimulating chicken γδ T cells. The results of the present study demonstrated that polyinosinic-polycytidylic acid (poly(I:C)), a Toll-like receptor (TLR)3 ligand, significantly induced upregulation of CD8α molecules on circulating and lung γδ T cells. Moreover, poly(I:C) stimulation induced interferon (IFN)-γ production from splenic and lung CD8α+ γδ T cells while Cytosine-phosphate-Guanine oligodeoxynucleotides (CpG-ODN) 2007, a TLR21 ligand, stimulation induced IFN-γ production by circulating γδ T cells. Neither poly(I:C) nor CpG-ODN 2007 stimulation elicited degranulation of γδ T cells. Additionally, the results revealed that CpG-ODN 2007 induced IFN-γ production from TCR-stimulated γδ T cells sorted from spleen. In our experiments, isopentenyl pyrophosphate (IPP), 4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), or zoledronate (Zol) stimulation did not induce IFN-γ production or degranulation in γδ T cells. Taken together, a combination of CpG-ODN 2007 and anti-CD3ε monoclonal antibodies (mAbs) can stimulate chicken γδ T cells and induce production of IFN-γ by these cells while IFN-γ production by γδ T cells induced by stimulation of poly(I:C) needs signals from other cells. These results suggest that chicken γδ T cells can sense invading pathogens via TLRs and produce IFN-γ as a first line of defense.


Assuntos
Linfócitos Intraepiteliais , Receptor 3 Toll-Like , Animais , Galinhas/metabolismo , Interferon gama/metabolismo , Ligantes , Mamíferos , Oligodesoxirribonucleotídeos , Poli I-C/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta , Receptor Toll-Like 9
10.
Cell Chem Biol ; 29(6): 985-995.e5, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35081362

RESUMO

The ligand-bound (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) receptor (BTN3A1 and BTN2A1) is detectable by the T cell receptor (TCR) of Vγ9Vδ2 T cells. Although BTN3A1 binds to phosphoantigens (pAgs), the mechanisms resulting in receptor activation are not clear. We used CRISPR-Cas9, ELISA, nano-bioluminescence resonance energy transfer (BRET), and isothermal titration calorimetry (ITC) to evaluate the role of BTN2A1. Depletion of BTN2A1 and rescue experiments demonstrate that its internal domain is essential for pAg detection. Internal hetero-BRET signals are observed between BTN2A1 and BTN3A1 that are increased by pAg. ITC detects a direct interaction between the intracellular domains of BTN3A1 and BTN2A1 only in the presence of pAg. This interaction is abrogated by removal of the BTN2A1 juxtamembrane (JM) region but not by removal of the BTN3A1 JM region. Regional mutations between BTN2A1 316-326 clearly affect the interferon γ (IFNγ) response and hetero-BRET signal. Mutations to amino acids L318, W320, and L325 indicate that these amino acids are crucial. This study demonstrates a pAg-inducible interaction between BTN2A1 and BTN3A1 internal domains.


Assuntos
Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta , Aminoácidos , Antígenos CD/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Ligantes , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
11.
J Neurooncol ; 153(3): 403-415, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34125375

RESUMO

PURPOSE: γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells. METHODS: Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas. RESULTS: HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment. CONCLUSION: GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.


Assuntos
Glioblastoma , Meios de Cultivo Condicionados , Difosfatos , Humanos , Ativação Linfocitária , Perforina , Receptores de Antígenos de Linfócitos T gama-delta , Células Th1 , Microambiente Tumoral , Fator de Necrose Tumoral alfa
12.
Cell Mol Immunol ; 18(8): 1861-1870, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183807

RESUMO

The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Ativação Linfocitária , Subpopulações de Linfócitos T
13.
Bioorg Chem ; 114: 105048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34126576

RESUMO

Cell-cleavable protecting groups are an effective tactic for construction of biological probes because such compounds can improve problems with instability, solubility, and cellular uptake. Incorporation of fluorescent groups in the protecting groups may afford useful probes of cellular functions, especially for payloads containing phosphonates that would be highly charged if not protected, but little is known about the steric or electronic factors that impede release of the payload. In this report we present a strategy for the synthesis of a coumarin fluorophore and a 4-((4-(dimethylamino)phenyl)diazenyl)benzoic acid (DABCYL) ester chromophore incorporated as a FRET pair within a single phosphonate. Such compounds were designed to deliver a BTN3A1 ligand payload to its intracellular receptor. Both final products and some synthetic intermediates were evaluated for their ability to undergo metabolic activation in γδ T cell functional assays, and for their photophysical properties by spectrophotometry. One phosphonate bearing a DABCYL acyloxyester and a novel tyramine-linked coumarin fluorophore exhibited strong, rapid, and potent cellular activity for γδ T cell stimulation and also showed FRET interactions. This strategy demonstrates that bioactivatable phosphonates containing FRET pairs can be utilized to develop probes to monitor cellular uptake of otherwise charged payloads.


Assuntos
Ésteres/farmacologia , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/farmacologia , Organofosfonatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ésteres/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Células K562 , Estrutura Molecular , Organofosfonatos/química
14.
Immunol Rev ; 298(1): 134-152, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33136294

RESUMO

As interest increases in harnessing the potential power of tissue-resident cells for human health and disease, γδ T cells have been thrust into the limelight due to their prevalence in peripheral tissues, their sentinel-like phenotypes, and their unique antigen recognition capabilities. This review focuses primarily on human γδ T cells, highlighting their distinctive characteristics including antigen recognition, function, and development, with an emphasis on where they differ from their αß T cell comparators, as well as from γδ T cell populations in the mouse. We review the antigens that have been identified thus far to regulate members of the human Vδ1 population and discuss what players are involved in transducing phosphoantigen-mediated signals to human Vγ9Vδ2 T cells. We also briefly review distinguishing features of these cells in terms of TCR signaling, use of coreceptor and costimulatory molecules and their development. These cells have great potential to be harnessed in a clinical setting, but caution must be taken to understand their unique capabilities and how they differ from the populations to which they are commonly compared.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Animais , Antígenos , Humanos , Camundongos , Transdução de Sinais
15.
Immunol Rev ; 298(1): 254-263, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037700

RESUMO

Unique Vγ2Vδ2 (Vγ9Vδ2) T cells existing only in human and non-human primates, account for the majority of circulating γδ T cells in human adults. Vγ2Vδ2 T cells are the sole γδ T-cell subpopulation capable of recognizing the microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) produced by selected pathogens during infections. Recent seminal studies in non-human primate models have demonstrated that the unique HMBPP-specific Vγ2Vδ2 T cells are fast-acting, multi-functional, and protective during infections. This article reviews the recent seminal observations of Vγ2Vδ2 T cells in protective mechanisms against tuberculosis and other infections.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T
16.
Bioorg Med Chem ; 28(19): 115666, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912439

RESUMO

Phosphoantigens are ligands of BTN3A1 that stimulate anti-cancer functions of γδ T cells, yet the potency of natural phosphoantigens is limited by low cell permeability and low metabolic stability. Derivatives of BTN3A1 ligand prodrugs were synthesized that contain an acetate-protected allylic alcohol and act as doubly protected prodrugs. A novel set of phosphonates, phosphoramidates, and phosphonamidates has been prepared through a new route that simplifies synthesis and postpones the point of divergence into different prodrug forms. One of the new prodrugs, compound 11, potently stimulates γδ T cell proliferation (72 h EC50 = 0.12 nM) and interferon γ response to loaded leukemia cells (4 h EC50 = 19 nM). This phosphonamidate form was > 900x more potent than the corresponding phosphoramidate, and the phosphonamidate form was also significantly more stable in plasma following acetate hydrolysis. Therefore, prodrug modification of phosphonate butyrophilin ligands at the allylic alcohol can both facilitate chemical synthesis and improve potency of γδ T cell stimulation.


Assuntos
Antígenos CD/farmacologia , Antineoplásicos/farmacologia , Butirofilinas/antagonistas & inibidores , Compostos Organofosforados/farmacologia , Pró-Fármacos/farmacologia , Antígenos CD/química , Antígenos CD/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Butirofilinas/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
17.
Front Immunol ; 11: 1396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733462

RESUMO

Vγ9Vδ2 T cells are known to be efficient anti-tumor effectors activated through phosphoantigens (PAg) that are naturally expressed by tumor cells or induced by amino bisphosphonates treatment. This PAg-activation which is TCR and butyrophilin BTN3A dependent can be modulated by NKG2D ligands, immune checkpoint ligands, adhesion molecules, and costimulatory molecules. This could explain the immune-resistance observed in certain clinical trials based on Vγ9Vδ2 T cells therapies. In NSCLC, encouraging responses were obtained with zoledronate administrations for 50% of patients. According to the in vivo results, we showed that the in vitro Vγ9Vδ2 T cell reactivity depends on the NSCLC cell line considered. If the PAg-pretreated KRAS mutated A549 is highly recognized and killed by Vγ9Vδ2 T cells, the EGFR mutated PC9 remains resistant to these killers despite a pre-treatment either with zoledronate or with exogenous BrHPP. The immune resistance of PC9 was shown not to be due to immune checkpoint ligands able to counterbalance NKG2D ligands or adhesion molecules such as ICAM-1 highly expressed by PC9. RHOB has been shown to be involved in the Vγ9Vδ2 TCR signaling against these NSCLC cell lines, in this study we therefore focused on its intracellular behavior. In comparison to a uniform distribution of RHOB in endosomes and at the plasma membrane in A549, the presence of large endosomal clusters of RHOB was visualized by a split-GFP system, suggesting that RHOB rerouting in the PC9 tumor cell could impair the reactivity of the immune response.


Assuntos
Antígenos de Neoplasias/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Endossomos/imunologia , Endossomos/metabolismo , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação
18.
Cells ; 9(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527033

RESUMO

About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.


Assuntos
Antígenos CD/imunologia , Linfócitos T/imunologia , Animais , Humanos
19.
Cells ; 9(5)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456316

RESUMO

γδ T cells have recently gained considerable attention as an attractive tool for cancer adoptive immunotherapy due to their potent anti-tumor activity and unique role in immunosurveillance. The remarkable success of engineered T cells for the treatment of hematological malignancies has revolutionized the field of adoptive cell immunotherapy. Accordingly, major efforts are underway to translate this exciting technology to the treatment of solid tumors and the development of allogeneic therapies. The unique features of γδ T cells, including their major histocompatibility complex (MHC)-independent anti-cancer activity, tissue tropism, and multivalent response against a broad spectrum of the tumors, render them ideal for designing universal 'third-party' cell products, with the potential to overcome the challenges of allogeneic cell therapy. In this review, we describe the crucial role of γδ T cells in anti-tumor immunosurveillance and we summarize the different approaches used for the ex vivo and in vivo expansion of γδ T cells suitable for the development of novel strategies for cancer therapy. We further discuss the different transduction strategies aiming at redirecting or improving the function of γδ T cells, as well as, the considerations for the clinical applications.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Proliferação de Células , Ensaios Clínicos como Assunto , Humanos , Ativação Linfocitária/imunologia , Linfócitos T/citologia
20.
ChemMedChem ; 15(12): 1030-1039, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32453919

RESUMO

Phosphoantigens (pAgs) are small phosphorus-containing molecules that stimulate Vγ9Vδ2 T cells with sub-nanomolar cellular potency. Recent work has revealed that these compounds work through binding to the transmembrane immunoglobulin butyrophilin 3A1 (BTN3A1) within its intracellular B30.2 domain. Engagement of BTN3A1 is critical to the formation of an immune synapse between cells that contain pAgs and the Vγ9Vδ2 T cells. This minireview summarizes the structure-activity relationships of pAgs and their implications to the mechanisms of butyrophilin 3 activation leading to Vγ9Vδ2 T cell response.


Assuntos
Antígenos CD/metabolismo , Butirofilinas/metabolismo , Organofosfatos/farmacologia , Antígenos CD/química , Sítios de Ligação , Butirofilinas/química , Humanos , Linfócitos Intraepiteliais/efeitos dos fármacos , Ligantes , Estrutura Molecular , Organofosfatos/química , Organofosfatos/metabolismo , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA