Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Genomics ; 22(Suppl 5): 921, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681126

RESUMO

BACKGROUND: The collection of circRNAs mostly focused on their sequence composition such as protein/miRNA binding motif, and/or regulatory elements such as internal ribosome entry site. However, less attention was paid to subcellular localization. CircVIS aimed to provide a collection of circRNAs with information of subcellular compartments and also integrated the circRNA entries from previous circRNA databases. RESULTS: A collection of circRNAs from public circRNA databases and de novo identification were annotated according to subcellular localizations including nucleoplasm, chromatin-associated parts, cytoplasm and polyribosome. All circRNAs were aligned to a selected major transcript, and if presence, the circRNA-derived open reading frame with annotation of functional domain were compared to its parental protein. The results showed that distinct circRNAs may exert their molecular and cellular functions in different subcellular compartments. The web service is made freely available at http://lab-x-omics.nchu.edu.tw/circVIS . CONCLUSIONS: CircVIS allows users to visualize the alignment between a given circRNA and its most relevant reference transcript along with information of subcellular localization.


Assuntos
MicroRNAs , RNA Circular , Sítios Internos de Entrada Ribossomal , MicroRNAs/genética , Fases de Leitura Aberta , Proteínas/genética , RNA/metabolismo
2.
Autophagy ; 18(8): 1822-1840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34870550

RESUMO

Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer.Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/ß-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteína 12 Relacionada à Autofagia , Autofagia , Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Recidiva Local de Neoplasia , Proteínas
3.
J Biosci Bioeng ; 133(3): 273-280, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34930670

RESUMO

Chinese hamster ovary (CHO) cells are widely used for constructing expression systems to produce therapeutic proteins. However, the establishment of high-producer clones remains a laborious and time-consuming process, despite various progresses having been made in cell line development. We previously developed a new strategy for screening high monoclonal antibody (mAb)-producing cells using flow cytometry (FCM). We also reported that p180 and SF3b4 play key roles in active translation on the endoplasmic reticulum, and that the productivity of secreted alkaline phosphatase was enhanced by the overexpression of p180 and SF3b4. Here, we attempted to apply the translational enhancing technology to high mAb-producing cells obtained after high-producer cell sorting. A high mAb-producing CHO clone, L003, which showed an mAb production level of >3 g/L in fed-batch culture, was established from a high mAb-producing cell pool fractionated by FCM. Clones generated by the overexpression of p180 and SF3b4 in L003 cells were evaluated by fed-batch culture. The specific productivity of clones overexpressing these two factors was ∼3.1-fold higher than that of parental L003 cells in the early phase of the culture period. Furthermore, the final mAb concentration was increased to 9.5 g/L during 17 days of fed-batch culture after optimizing the medium and culture process. These results indicate that the overexpression of p180 and SF3b4 would be promising for establishing high-producer cell lines applicable to industrial production.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura Celular por Lotes , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes , Tecnologia
4.
mBio ; 12(5): e0193221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488454

RESUMO

The essential endoribonuclease RNase E, which is a component of the Escherichia coli multienzyme RNA degradosome, has a global role in RNA processing and degradation. RNase E localizes to the inner cytoplasmic membrane in small, short-lived clusters (puncta). Rifampin, which arrests transcription, inhibits RNase E clustering and increases its rate of diffusion. Here, we show that inhibition of clustering is due to the arrest of transcription using a rifampin-resistant control strain. Two components of the RNA degradosome, the 3' exoribonuclease polynucleotide phosphorylase (PNPase) and the DEAD box RNA helicase RhlB, colocalize with RNase E in puncta. Clustering of PNPase and RhlB is inhibited by rifampin, and their diffusion rates increase, as evidenced by in vivo photobleaching measurements. Results with rifampin treatment reported here show that RNA degradosome diffusion is constrained by interaction with RNA substrate. Kasugamycin, which arrests translation initiation, inhibits formation of puncta and increases RNA degradosome diffusion rates. Since kasugamycin treatment results in continued synthesis and turnover of ribosome-free mRNA but inhibits polyribosome formation, RNA degradosome clustering is therefore polyribosome dependent. Chloramphenicol, which arrests translation elongation, results in formation of large clusters (foci) of RNA degradosomes that are distinct from puncta. Since chloramphenicol-treated ribosomes are stable, the formation of RNA degradosome foci could be part of a stress response that protects inactive polyribosomes from degradation. Our results strongly suggest that puncta are sites where translationally active polyribosomes are captured by membrane-associated RNA degradosomes. These sites could be part of a scanning process that is an initial step in mRNA degradation. IMPORTANCE Here, we show that RNase E, RhlB, and PNPase act together as components of the multienzyme RNA degradosome in polyribosome-dependent clustering to form puncta on the inner cytoplasmic membrane. Our results support the hypothesis that RNA degradosome puncta are sites of mRNA degradation. We propose that clustering of RNA degradosomes is a pre-RNase E cleavage step in which polyribosomes are scanned in a search for ribosome-free mRNA. This work is part of an emerging view that posttranscriptional events such as tRNA maturation, late steps in ribosome assembly, and mRNA degradation are membrane associated and partitioned from translation in the cytoplasm and transcription in the nucleoid. This separation could protect newly synthesized transcripts from premature destructive interactions with the RNA degradosome. The scanning of ribosomes and polyribosomes could be part of a general mechanism in which defective stable RNA or ribosome-free mRNA is targeted for destruction by the RNA degradosome.


Assuntos
Escherichia coli/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribossomos/metabolismo , Estabilidade de RNA/genética , Análise por Conglomerados , Endorribonucleases/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Exorribonucleases , Complexos Multienzimáticos , RNA Helicases , Processamento Pós-Transcricional do RNA , RNA Bacteriano , RNA Mensageiro/metabolismo , Rifampina/farmacologia
5.
J Comp Neurol ; 529(11): 3112-3126, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864263

RESUMO

Local translation can provide a rapid, spatially targeted supply of new proteins in distal dendrites to support synaptic changes that underlie learning. Learning and memory are especially sensitive to manipulations of translational control mechanisms, particularly those that target the initiation step, and translation initiation at synapses could be a means of maintaining synapse specificity during plasticity. Initiation predominantly occurs via recruitment of ribosomes to the 5' mRNA cap by complexes of eukaryotic initiation factors (eIFs), and the interaction between eIF4E and eIF4G1 is a particularly important target of translational control pathways. Pharmacological inhibition of eIF4E-eIF4G1 binding impairs formation of memory for aversive Pavlovian conditioning as well as the accompanying increase in polyribosomes in the heads of dendritic spines in the lateral amygdala (LA). This is consistent with a role for initiation at synapses in memory formation, but whether eIFs are even present near synapses is unknown. To determine whether dendritic spines contain eIFs and whether eIF distribution is affected by learning, we combined immunolabeling with serial section transmission electron microscopy (ssTEM) volume reconstructions of LA dendrites after Pavlovian conditioning. Labeling for eIF4E, eIF4G1, and eIF2α-another key target of regulation-occurred in roughly half of dendritic spines, but learning effects were only found for eIF4E, which was upregulated in the heads of dendritic spines. Our results support the possibility of regulated translation initiation as a means of synapse-specific protein targeting during learning and are consistent with the model of eIF4E availability as a central point of control.


Assuntos
Espinhas Dendríticas/metabolismo , Fator de Iniciação 4E em Eucariotos/biossíntese , Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Regulação para Cima/fisiologia , Animais , Espinhas Dendríticas/ultraestrutura , Fator de Iniciação 4E em Eucariotos/genética , Fatores de Iniciação em Eucariotos/biossíntese , Fatores de Iniciação em Eucariotos/genética , Masculino , Ratos , Ratos Sprague-Dawley
6.
J Biol Chem ; 295(52): 18459-18473, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33082139

RESUMO

The amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)-linked RNA-binding protein called FUS (fused in sarcoma) has been implicated in several aspects of RNA regulation, including mRNA translation. The mechanism by which FUS affects the translation of polyribosomes has not been established. Here we show that FUS can associate with stalled polyribosomes and that this association is sensitive to mTOR (mammalian target of rapamycin) kinase activity. Specifically, we show that FUS association with polyribosomes is increased by Torin1 treatment or when cells are cultured in nutrient-deficient media, but not when cells are treated with rapamycin, the allosteric inhibitor of mTORC1. Moreover, we report that FUS is necessary for efficient stalling of translation because deficient cells are refractory to the inhibition of mTOR-dependent signaling by Torin1. We also show that ALS-linked FUS mutants R521G and P525L associate abundantly with polyribosomes and decrease global protein synthesis. Importantly, the inhibitory effect on translation by FUS is impaired by mutations that reduce its RNA-binding affinity. These findings demonstrate that FUS is an important RNA-binding protein that mediates translational repression through mTOR-dependent signaling and that ALS-linked FUS mutants can cause a toxic gain of function in the cytoplasm by repressing the translation of mRNA at polyribosomes.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Mutação , Polirribossomos/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Corpos de Inclusão , Polirribossomos/genética , Biossíntese de Proteínas , Proteína FUS de Ligação a RNA/genética , Serina-Treonina Quinases TOR/genética
7.
J Biol Chem ; 295(27): 8999-9011, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32385111

RESUMO

Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a "one-size-fits-all" ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.


Assuntos
Bactérias/genética , Ribossomos/genética , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Perfil Genético , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Ribossômico/metabolismo
8.
Circulation ; 141(22): 1787-1799, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32272846

RESUMO

BACKGROUND: Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. METHODS: Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. RESULTS: In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. CONCLUSIONS: These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.


Assuntos
Modelos Animais de Doenças , Insuficiência da Valva Mitral/patologia , Miócitos Cardíacos/patologia , Animais , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Forma Celular , Tamanho Celular , Ecocardiografia , Fibrose , Perfilação da Expressão Gênica , Hipertrofia , Bombas de Infusão Implantáveis , Imageamento por Ressonância Magnética , Masculino , Camundongos , Valva Mitral/lesões , Insuficiência da Valva Mitral/complicações , Insuficiência da Valva Mitral/diagnóstico por imagem , Miócitos Cardíacos/metabolismo , Polirribossomos/ultraestrutura , RNA Mensageiro/biossíntese , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Sístole , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/fisiologia , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/patologia
9.
J Biol Chem ; 295(22): 7763-7773, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32312751

RESUMO

One long-standing knowledge gap is the role of nuclear proteins in mRNA translation. Nuclear RNA helicase A (DHX9/RHA) is necessary for the translation of the mRNAs of JUND (JunD proto-oncogene AP-1 transcription factor subunit) and HIV-1 genes, and nuclear cap-binding protein 1 (NCBP1)/CBP80 is a component of HIV-1 polysomes. The protein kinase mTOR activates canonical messenger ribonucleoproteins by post-translationally down-regulating the eIF4E inhibitory protein 4E-BP1. We posited here that NCBP1 and DHX9/RHA (RHA) support a translation pathway of JUND RNA that is independent of mTOR. We present evidence from reciprocal immunoprecipitation experiments indicating that NCBP1 and RHA both are components of messenger ribonucleoproteins in several cell types. Moreover, tandem affinity and RT-quantitative PCR results revealed that JUND mRNA is a component of a previously unknown ribonucleoprotein complex. Results from the tandem IP indicated that another component of the JUND-containing ribonucleoprotein complex is NCBP3, a recently identified ortholog of NCBP2/CBP20. We also found that NCBP1, NCBP3, and RHA, but not NCBP2, are components of JUND-containing polysomes. Mutational analysis uncovered two dsRNA-binding domains of RHA that are necessary to tether JUND-NCBP1/NCBP3 to polysomes. We also found that JUND translation is unaffected by inhibition of mTOR, unless RHA was down-regulated by siRNA. These findings uncover a noncanonical cap-binding complex consisting of NCBP1/NCBP3 and RHA substitutes for the eukaryotic translation initiation factors 4E and 4G and activates mTOR-independent translation of the mRNA encoding the tumor suppressor JUND.


Assuntos
Complexos Multiproteicos/metabolismo , Polirribossomos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Proto-Oncogene Mas
10.
Curr Protoc Neurosci ; 88(1): e77, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216392

RESUMO

Ribosome tagging has become a very useful in vivo approach for analyzing gene expression and mRNA translation in specific cell types that are difficult and time consuming to isolate by conventional methods. The approach is based on selectively expressing a hemagglutinin A (HA)-tagged ribosomal protein in a target cell type and then using antibodies against HA to purify the polysomes and associated mRNAs from the target cell. The original approach makes use of a mouse line (RiboTag) harboring a modified allele of Rpl22 (Rpl22-HA) that is induced by the action of Cre recombinase. The Rpl22-HA gene can also be introduced into the animal by stereotaxic injection of an AAV-DIO-Rpl22-HA that is then activated in Cre-expressing cells. Both methods for tagging ribosomes facilitate the immunoprecipitation of ribosome-bound mRNAs and their analysis by qRT-PCR or RNA-Seq. This protocol will discuss the technical procedures and describe important considerations relevant to the analysis of the data. © 2019 by John Wiley & Sons, Inc.


Assuntos
RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ribossomos/genética , Análise de Sequência de RNA/métodos , Animais , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ribossomos/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(19): 9340-9349, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004060

RESUMO

One of the morphological hallmarks of terminally differentiated secretory cells is highly proliferated membrane of the rough endoplasmic reticulum (ER), but the molecular basis for the high rate of protein biosynthesis in these cells remains poorly documented. An important aspect of ER translational control is the molecular mechanism that supports efficient use of targeted mRNAs in polyribosomes. Here, we identify an enhancement system for ER translation promoted by p180, an integral ER membrane protein we previously reported as an essential factor for the assembly of ER polyribosomes. We provide evidence that association of target mRNAs with p180 is critical for efficient translation, and that SF3b4, an RNA-binding protein in the splicing factor SF3b, functions as a cofactor for p180 at the ER and plays a key role in enhanced translation of secretory proteins. A cis-element in the 5' untranslated region of collagen and fibronectin genes is important to increase translational efficiency in the presence of p180 and SF3b4. These data demonstrate that a unique system comprising a p180-SF3b4-mRNA complex facilitates the selective assembly of polyribosomes on the ER.


Assuntos
Retículo Endoplasmático/genética , Polirribossomos/genética , Biossíntese de Proteínas , Fatores de Processamento de RNA/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Polirribossomos/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
12.
J Neurosci Methods ; 293: 226-233, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993203

RESUMO

BACKGROUND: Here we describe a detailed, reliable protocol for isolation of polysomal fractions from mouse brain synaptoneurosomes. This method is an important tool to study local protein synthesis in neurons. NEW METHOD: We combined rapid preparation of synaptoneurosomes by filtration with polysome profiling. We provide a detailed protocol highlighting difficulties and critical steps of: i) preparation of synaptoneurosomes; ii) polyribosome fractionation from synaptoneurosomes; iii) extraction of proteins and RNA from sucrose gradient fractions. RESULTS: and Comparison with Existing Methods We fractionated polyribosomes from synaptoneurosomes and detected the association of Mmp9, Camk2a and Stx1B mRNA with polysomes in the unstimulated conditions. Synaptic stimulation led to increased levels of Mmp9 and Camk2a mRNA in the heavy polysomal fractions. We compared our protocol with existing methods CONCLUSIONS: We have developed a reliable, effective method to prepare polyribosomal fractions from synaptoneurosomes to study polyribosomal binding of mRNAs as an aspect of synaptic translation in vitro.


Assuntos
Córtex Cerebral/química , Hipocampo/química , Técnicas de Preparação Histocitológica , Polirribossomos/química , RNA Mensageiro/análise , Sinaptossomos/química , Animais , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Dissecação , Eletroforese em Gel de Poliacrilamida , Hipocampo/metabolismo , Masculino , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sacarose/análise , Sinaptossomos/metabolismo , Sintaxina 1/análise , Sintaxina 1/metabolismo
13.
J Biol Methods ; 3(4): e59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31453221

RESUMO

Gene expression involves multiple steps from the transcription of a mRNA in the nucleus to the production of the encoded protein in the cytoplasm. This final step occurs through a highly regulated process of mRNA translation on ribosomes that is required to maintain cell homeostasis. Alterations in the control of mRNA translation may lead to cell's transformation, a hallmark of cancer development. Indeed, recent advances indicated that increased translation of mRNAs encoding tumor-promoting proteins may be a key mechanism of tumor resistance in several cancers. Moreover, it was found that proteins whose encoding mRNAs are translated at higher efficiencies may be effective biomarkers. Evaluation of global changes in translation efficiency in human tumors has thus the potential of better understanding what can be used as biomarkers and therapeutic targets. Investigating changes in translation efficiency in human cancer cells has been made possible through the development and use of the polyribosome profiling combined with DNA microarray or deep RNA sequencing (RNA-Seq). While helpful, the use of cancer cell lines has many limitations and it is essential to define translational changes in human tumor samples in order to properly prioritize genes implicated in cancer phenotype. We present an optimized polyribosome RNA-Seq protocol suitable for quantitative analysis of mRNA translation that occurs in human tumor samples and murine xenografts. Applying this innovative approach to human tumors, which requires a complementary bioinformatics analysis, unlocks the potential to identify key mRNA which are preferentially translated in tumor tissue compared to benign tissue as well as translational changes which occur following treatment. These technical advances will be of interest to those researching all solid tumors, opening possibilities for understanding what may be therapeutic Achilles heels' or relevant biomarkers.

14.
Methods Mol Biol ; 1358: 99-108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463379

RESUMO

Gene expression profiling is widely used as a measure of the protein output of cells. However, it is becoming more evident that there are multiple layers of post-transcriptional gene regulation that greatly impact protein output (Battle et al., Science 347:664-667, 2014; Khan et al., Science 342:1100-1104, 2013; Vogel et al., Mol Syst Biol 6:400, 2010). Alternative splicing (AS) impacts the expression of protein coding genes in several ways. Firstly, AS increases exponentially the coding-capacity of genes generating multiple transcripts from the same genomic sequence. Secondly, alternatively spliced mRNAs are subjected differentially to RNA-degradation via pathways such as nonsense mediated decay (AS-NMD) or microRNAs (Shyu et al., EMBO J 27:471-481, 2008). And thirdly, cytoplasmic export from the nucleus and translation are regulated in an isoform-specific manner, adding an extra layer of regulation that impacts the protein output of the cell (Martin and Ephrussi, Cell 136:719-730, 2009; Sterne-Weiler et al., Genome Res 23:1615-1623, 2013). These data highlight the need of a method that allows analyzing both the nuclear events (AS) and the cytoplasmic fate (polyribosome-binding) of individual mRNA isoforms.In order to determine how alternative splicing determines the polyribosome association of mRNA isoforms we developed Frac-seq. Frac-seq combines subcellular fractionation and high throughput RNA sequencing (RNA-seq). Frac-seq gives a window onto the translational fate of specific alternatively spliced isoforms on a genome-wide scale. There is evidence of preferential translation of specific mRNA isoforms (Coldwell and Morley, Mol Cell Biol 26:8448-8460, 2006; Sanford et al., Genes Dev 18:755-768; Zhong et al., Mol Cell 35:1-10, 2009; Michlewski et al., Mol Cell 30:179-189, 2008); the advantage of Frac-seq is that it allows analyzing the binding of alternatively spliced isoforms to polyribosomes and comparing their relative abundance to the cytosolic fraction. Polyribosomes are resolved by sucrose gradient centrifugation of cytoplasmic extracts, subsequent reading and extraction. The total mRNA fraction is taken prior ultracentrifugation as a measure of all mRNAs present in the sample. Both populations of RNAs are then isolated using phenol-chloroform precipitation; polyadenylated RNAs are selected and converted into libraries and sequenced. Bioinformatics analysis is then performed to measure alternatively spliced isoforms; several tools can be used such as MISO, RSEM, or Cufflinks (Katz et al., Nat Methods 7:1009-1015, 2010; Li and Dewey, BMC Bioinformatics 12:323, 2011; Trapnell et al., Nat Protoc 7:562-578, 2012). Comparison of total mRNAs and polyribosome-bound mRNAs can be used as a measure of the polyribosome association of specific isoforms based on the presence/absence of specific alternative splicing events in each fraction. Frac-seq shows that not all isoforms from a gene are equally loaded into polyribosomes, that mRNA preferential loading does not always correlate to its expression in the cytoplasm and that the presence of specific events such as microRNA binding sites or Premature Termination Codons determine the loading of specific isoforms into polyribosomes.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polirribossomos/genética , Splicing de RNA/genética , Processamento Alternativo/genética , Genoma , Isoformas de RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
15.
ACS Nano ; 8(11): 11552-9, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25354757

RESUMO

Ribosomes are molecular machines that function in polyribosome complexes to translate genetic information, guide the synthesis of polypeptides, and modulate the folding of nascent proteins. Here, we report a surprising function for polyribosomes as a result of a systematic examination of the assembly of a large ribonucleoprotein complex, the vault particle. Structural and functional evidence points to a model of vault assembly whereby the polyribosome acts like a 3D nanoprinter to direct the ordered translation and assembly of the multi-subunit vault homopolymer, a process which we refer to as polyribosome templating. Structure-based mutagenesis and cell-free in vitro expression studies further demonstrated the critical importance of the polyribosome in vault assembly. Polyribosome templating prevents chaos by ensuring efficiency and order in the production of large homopolymeric protein structures in the crowded cellular environment and might explain the origin of many polyribosome-associated molecular assemblies inside the cell.


Assuntos
Polirribossomos , Impressão Tridimensional , Sequência de Aminoácidos , Animais , Linhagem Celular , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Spodoptera , Tomografia Computadorizada por Raios X
16.
Diabetes Obes Metab ; 15 Suppl 3: 159-69, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24003933

RESUMO

Emerging data illustrate a pivotal role for activation of ß-cell endoplasmic reticulum (ER) stress pathways in diabetes pathophysiology. The purpose of this review is to appraise the evidence for ß-cell ER stress in human type 1 and 2 diabetes, review the molecular signalling pathways involved in the unfolded protein response and ER stress signalling, and to provide data from polyribosome profiling to illustrate the impact of ER stress on the mRNA translation response. Finally, we will discuss existing and novel therapeutic strategies that target ß-cell ER stress and discuss their use in rodent and human type 1 and 2 diabetes.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/fisiopatologia , Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/fisiologia , Biossíntese de Proteínas/fisiologia , Resposta a Proteínas não Dobradas , Animais , Humanos , RNA Mensageiro/metabolismo , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA