Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275651

RESUMO

For the research on real-time accurate testing technology for the explosion point spatial coordinate of munitions, its currently commonly used methods such as acoustic-electric detection or high-speed imaging are limited by the field conditions, response rate, cost, and other factors. In this paper, a method of spatial coordinate testing for the explosion point based on a 2D PSD (position-sensitive detector) intersection is proposed, which has the advantages of a faster response, better real-time performance, and a lower cost. Firstly, a mathematical model of the spatial coordinate testing system was constructed, and an error propagation model for structural parameters was developed. The influence of the position of the optical axes' intersection as well as the azimuth angle and pitch angle on the test accuracy of the system was simulated and analyzed, thus obtaining the distribution and variation trend of the overall error propagation coefficient of the system. Finally, experiments were designed to obtain the test error of the system for validation. The results show that the system test accuracy is high when the azimuth angle is 20°-50°, the overall error propagation coefficient does not exceed 48.80, and the average test error is 56.17 mm. When the pitch angle is -2.5°-2.5°, the system has a higher test accuracy, with the overall error propagation coefficient not exceeding 44.82, and the average test error is 41.87 mm. The test accuracy of the system is higher when the position of the optical axes' intersection is chosen to make sure that explosion points fall in the region of the negative half-axis of the Zw-axis of the world coordinate system, with an overall error propagation coefficient of less than 44.78 and an average test error of 73.38 mm. It is shown that a reasonable selection of system structure parameters can significantly improve the system test accuracy and optimize the system deployment mode under the long-distance field conditions so as to improve the deployment efficiency.

2.
Sensors (Basel) ; 24(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39065961

RESUMO

The seawater refractive index is an essential parameter in ocean observation, making its high-precision measurement necessary. This can be effectively achieved using a position-sensitive detector-based measurement system. However, in the actual measurement process, the impact of the jitter signal measurement error on the results cannot be ignored. In this study, we theoretically analysed the causes of long jitter signals during seawater refractive index measurements and quantified the influencing factors. Through this analysis, it can be seen that the angle between the two windows in the seawater refractive index measurement area caused a large error in the results, which could be effectively reduced by controlling the angle to within 2.06°. At the same time, the factors affecting the position-sensitive detector's measurement accuracy were analysed, with changes to the background light, the photosensitive surface's size, and the working environment's temperature leading to its reduction. To address the above factors, we first added a 0.9 nm bandwidth, narrow-band filter in front of the detector's photosensitive surface during system construction to filter out any light other than that from the signal light source. To ensure the seawater refractive index's measuring range, a position-sensitive detector with a photosensitive surface size of 4 mm × 4 mm was selected; whereas, to reduce the working environment's temperature variation, we partitioned the measurement system. To validate the testing error range of the optimised test system, standard seawater samples were measured under the same conditions, showing a reduction in the measurement system's jitter signal from 0.0022 mm to 0.0011 mm, before and after optimisation, respectively, as well as a reduction in the refractive index's deviation. The experimental results show that the refractive index of seawater was effectively reduced by adjusting the measurement system's optical path and structure.

3.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610262

RESUMO

The refractive index of seawater is one of the essential parameters in ocean observation, so it is necessary to achieve high-precision seawater refractive index measurements. In this paper, we propose a method for measuring the refractive index of seawater, based on a position-sensitive detector (PSD). A theoretical model was established to depict the correlation between laser spot displacement and refractive index change, utilizing a combination of a position-sensitive detector and laser beam deflection principles. Based on this optical measurement method, a seawater refractive index measurement system was established. To effectively enhance the sensitivity of refractive index detection, a focusing lens was incorporated into the optical path of the measuring system, and simulations were conducted to investigate the impact of focal length on refractive index sensitivity. The calibration experiment of the measuring system was performed based on the relationship between the refractive index of seawater and underwater pressure (depth). By measuring laser spot displacement at different depths, changes in displacement, with respect to both refractive index and depth, were determined. The experimental results demonstrate that the system exhibits a sensitivity of 9.93×10-9 RIU (refractive index unit), and the refractive index deviation due to stability is calculated as ±7.54×10-9 RIU. Therefore, the feasibility of this highly sensitive measurement of seawater refractive index is verified. Since the sensitivity of the refractive index measurement of this measurement system is higher than the refractive index change caused by the wake of underwater vehicles, it can also be used in various applications for underwater vehicle wake measurement, as well as seawater refractive index measurement, such as the motion state monitoring of underwater navigation targets such as AUVs and ROVs.

4.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571470

RESUMO

Detection of air bubbles in fluidic channels plays a fundamental role in all that medical equipment where liquids flow inside patients' blood vessels or bodies. In this work, we propose a multi-parameter sensing system for simultaneous recognition of the fluid, on the basis of its refractive index and of the air bubble transit. The selected optofluidic platform has been designed and studied to be integrated into automatic pumps for the administration of commercial liquid. The sensor includes a laser beam that crosses twice a plastic cuvette, provided with a back mirror, and a position-sensitive detector. The identification of fluids is carried out by measuring the displacement of the output beam on the detector active surface and the detection of single air bubbles can be performed with the same instrumental scheme, exploiting a specific signal analysis. When a bubble, traveling along the cuvette, crosses the readout light beam, radiation is strongly scattered and a characteristic fingerprint shape of the photo-detected signals versus time is clearly observed. Experimental testing proves that air bubbles can be successfully detected and counted. Their traveling speed can be estimated while simultaneously monitoring the refractive index of the fluid.

5.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430504

RESUMO

Estimating accurate radiation doses when a radioactive source's location is unknown can protect workers from radiation exposure. Unfortunately, depending on a detector's shape and directional response variations, conventional G(E) function can be prone to inaccurate dose estimations. Therefore, this study estimated accurate radiation doses regardless of source distributions, using the multiple G(E) function groups (i.e., pixel-grouping G(E) functions) within a position-sensitive detector (PSD), which records the response position and energy inside the detector. Investigations revealed that, compared with the conventional G(E) function when source distributions are unknown, this study's proposed pixel-grouping G(E) functions improved dose estimation accuracy by more than 1.5 times. Furthermore, although the conventional G(E) function produced substantially larger errors in certain directions or energy ranges, the proposed pixel-grouping G(E) functions estimate doses with more uniform errors at all directions and energies. Therefore, the proposed method estimates the dose with high accuracy and provides reliable results regardless of the location and energy of the source.

6.
ACS Appl Mater Interfaces ; 15(22): 26993-27001, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218801

RESUMO

Bi2Se3, as a novel 3D topological insulator (TI), is expected to be a strong candidate for next-generation optoelectronic devices due to its intriguing optical and electrical properties. In this study, a series of Bi2Se3 films with different thicknesses of 5-40 nm were successfully prepared on planar-Si substrates and developed as self-powered light position-sensitive detectors (PSDs) by introducing lateral photovoltaic effect (LPE). It is demonstrated that the Bi2Se3/planar-Si heterojunction shows a broad-band response range of 450-1064 nm, and the LPE response is strongly dependent on the Bi2Se3 layer thickness, which can be mainly attributed to the thickness-modulated longitudinal carrier separation and transport. The 15 nm thick PSD shows the best performance with a position sensitivity of up to 89.7 mV/mm, a nonlinearity of lower than 7%, and response time as fast as 62.6/49.4 µs. Moreover, to further enhance the LPE response, a novel Bi2Se3/pyramid-Si heterojunction is built by constructing a nanopyramid structure for the Si substrate. Owing to the improvement of the light absorption capability in the heterojunction, the position sensitivity is largely boosted up to 178.9 mV/mm, which gets an increment of 199% as compared with that of the Bi2Se3/planar-Si heterojunction device. At the same time, the nonlinearity is still kept within 10% as well due to the excellent conduction property of the Bi2Se3 film. In addition, an ultrafast response speed of 173/97.4 µs is also achieved in the newly proposed PSD with excellent stability and reproducibility. This result not only demonstrates the great potential of TIs in PSD but also provides a promising approach for tuning its performance.

7.
Micromachines (Basel) ; 13(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363924

RESUMO

Six degree-of-freedom (6-DOF) posture measurement is an important academic research topic which has been broadly applied in many fields. As a high-speed photoelectronic sensor with ultra-high resolution and precision, position sensitive detector (PSD) has shown to be one of the most competitive candidates in 6-DOF measurement. This review presents the research progress of PSD-based 6-DOF posture measurement systems in the field of large-scale equipment assembly, ultra-precision manufacturing and other emerging areas. A total of six methods for implementing 6-DOF measurement are summarized and their advantages and limitations are discussed. Meanwhile, the paper illustrates challenges, potential solutions and future development trends.

8.
Nano Lett ; 22(12): 4888-4896, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35666185

RESUMO

As a kind of photodetector, position-sensitive-detectors (PSDs) have been widely used in noncontact photoelectric positioning and measurement. However, fabrications and applications of solar-blind PSDs remain yet to be harnessed. Herein, we demonstrate a solar-blind PSD developed from a graphene/Ga2O3 Schottky junction with a 25-nanometer-thick Ga2O3 film, in which the absorption of the nanometer-thick Ga2O3 is enhanced by multibeam interference. The graphene/Ga2O3 junction exhibits a responsivity of 48.5 mA/W and a rise/decay time of 0.8/99.8 µs at zero bias. Moreover, the position of the solar-blind spot can be determined by the output signals of the PSD. Using the device as a sensor of noncontact test systems, we demonstrate its application in measurement of angular, displacement, and light trajectory. In addition, the position-sensitive outputs have been used to demodulate optical signals into electrical signals. The results may prospect the application of solar-blind PSDs in measurement, tracking, communication, and so on.

9.
ACS Appl Mater Interfaces ; 13(45): 54527-54535, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734692

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) have emerged as a versatile class of semiconductors for numerous optoelectronic applications. Here, we demonstrate light-excitation-dependent two-dimensional (2D) position-sensitive detectors (PSDs) using a mixed-phase perovskite, FA0.83Cs0.17Pb(I0.9Br0.1)3, as the active semiconductor, incorporated within a five-terminal device geometry. The light-induced lateral photovoltage, which is initiated by selective charge transfer across the metal-perovskite barrier interface, is utilized to achieve the excitation-position-dependent electric response. The 2D PSD devices exhibit a spatially dependent linear variation of the photosignal with sensitivity >50 µV mm-1 and a low position detection error (1-2%), making them suitable for applications such as quadrant detectors. Further, it is observed that the device architecture plays a key role in controlling the dynamics and linearity of the HOIP PSDs. The large active area devices (up to ∼2 cm × 2 cm) exhibit a distinct spatial variation of the photosignal. We utilize the functionality of the PSD device for light-tracking applications by implementing a continuous detection scheme.

10.
ACS Appl Mater Interfaces ; 13(46): 55329-55338, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752067

RESUMO

It is critical to investigate the charge carrier gradient generation in semiconductor junctions with an asymmetric configuration, which can open a new platform for developing lateral photovoltaic and self-powered devices. This paper reports the generation of a charge carrier gradient in a 3C-SiC/Si heterojunction with an asymmetric electrode configuration. 3C-SiC/Si heterojunction devices with different electrode widths were illuminated by laser beams (wavelengths of 405, 521, and 637 nm) and a halogen bulb. The charge carrier distribution along the heterojunction was investigated by measuring the lateral photovoltage generated when the laser spot scans across the 3C-SiC surface between the two electrodes. The highest lateral photovoltage generated is 130.58 mV, measured in the device with an electrode width ratio of 5 and under 637 nm wavelength and 1000 µW illumination. Interestingly, the lateral photovoltage was generated even under uniform illumination at zero bias, which is unusual for the lateral photovoltage, as it can only be generated when unevenly distributed photogenerated charge carriers exist. In addition, the working mechanism and uncovered behavior of the lateral photovoltaic effect are explained based on the generation and separation of electron-hole pairs under light illumination and charge carrier diffusion theory. The finding further elaborates the underlying physics of the lateral photovoltaic effect in nano-heterojunctions and explores its potential in developing optoelectronic sensors.

11.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200221

RESUMO

Reduced deployment and calibration requirements are key for scalable and cost-effective indoor positioning systems. In this work, we propose a low-complexity, weak calibration procedure for an indoor positioning system based on infrastructure lighting and a positioning-sensitive detector. The proposed calibration relies on genetic algorithms to obtain the relevant system parameters in the real positioning environment without a priori information, and requires a low number of simple measurements. The achievable performance of the proposal was assessed by direct comparison with a formal offline calibration method requiring complex dedicated infrastructure and instruments. The comparative error assessment showed that the maximum accuracy reduction compared to the significantly more costly formal calibration was below 25 mm, and the overall absolute positioning error was smaller than 35 mm with orientation errors of around 0.25°. The performance achieved with the proposed weak calibration procedure is sufficient for many indoor positioning applications and largely reduces the cost and complexity of setting up the positioning system in real environments.

12.
Heliyon ; 7(5): e07019, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34036195

RESUMO

Detecting and analyzing a moving body position are helpful in many fields, such as medicine, sports performance, virtual reality and many more. Therefore, researchers try to develop a tool or a system that helps to detect the motion and tracking its position. This paper shows how a Si solar cell can be modified to function as a Position Sensitive Detector (PSD), which could be used as a large area detector in a position detection system. To develop the new detector, we modeled and simulated the modified solar cell by TCAD simulation tools to calculate the detected photocurrent as a function of the position of an incident laser beam sourced by the moving object. Further, an optical position detection system is implemented containing the modified solar cell, a signal amplifier and a microcontroller. The output is then displayed on a Laptop. By measuring the same simulated output photocurrents, it is found that the measured system output matches the simulation results. This proposed position detection system is relatively cheap because it does not contain high precision optical image building components such as lenses and mirrors. Besides, the proposed system could substitute the optical system by using a large area PSD made from a broad array of solar cells. The electronics are also much more straightforward than those in systems based on image processing. So, it has a high-speed response. The error assessment of the proposed system showed a low position detection error of less than 10%.

13.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962138

RESUMO

Unlike GNSS-based outdoor positioning, there is no technological alternative for Indoor Positioning Systems (IPSs) that generally stands out from the others. In indoor contexts, the measurement technologies and localization strategies to be used depend strongly on the application requirements and are complementary to each other. In this work, we present an optical IPS based on a Position-Sensitive Detector (PSD) and exploiting illumination infrastructure to determine the target position by Angle of Arrival (AoA) measurements. We combine the proposed IPS with different positioning strategies depending on the number of visible emitters (one, two, or more) and available prior or additional information about the scenario and target. The accuracy and precision of the proposal is assessed experimentally for the different strategies in a 2.47 m high space covering approximately 2.2 m2, using high-end geodetic equipment to establish the reference ground truth. When the orientation of the target is known from external measurements, an average positioning error of 8.2 mm is obtained using the signal received from only one emitter. Using simultaneous observations from two emitters, an average positioning error of 9.4 mm is obtained without external information when the target movement is restricted to a plane. Conversely, if four signals are available, an average positioning error of 4.9 cm is demonstrated, yielding the complete 3D pose of the target free of any prior assumption or additional measurements. In all cases, a precision (2σ) better than 5.9 mm is achieved across the complete test space for an integration time of 10 ms. The proposed system represents a prospectively useful alternative for indoor positioning applications requiring fast and reliable cm-level accuracy with moderate cost when smart illumination infrastructure is available in the environment.

14.
Sensors (Basel) ; 20(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213903

RESUMO

Sensors that remotely track the displacement of a moving object have a wide range of applications from robotic control to motion capture. In this paper, we introduce a simple, small silicon integrated circuit sensor that tracks the angular displacement of an object tagged with a small light source, such as a light-emitting diode (LED). This sensor uses a new angular transduction mechanism, differential diffusion of photoelectrons generated from the light spot cast by the light tag onto a Si anode, that is described by a simple physics model using pinhole optics and carrier diffusion. Because the light spot is formed by a pinhole aperture integrated on the sensor chip, no external focusing optics are needed, reducing system complexity, size, and weight. Prototype sensors based on this model were fabricated and their basic characteristics are presented. These sensors transduce angular displacement of an LED across orthogonal latitudinal and longitudinal arcs into normalized differential photocathode currents with signal linearly proportional to LED angular position across a ± 40° field-of-view. These sensors offer potential performance and ease-of-use benefits compared to existing displacement sensor technologies.

15.
Sci Bull (Beijing) ; 65(6): 477-485, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36747437

RESUMO

Cu(In,Ga)Se2 (CIGS) based multilayer heterojunction, as one of the best high efficiency thin film solar cells, has attracted great interest due to its outstanding features. However, the present studies are primarily focused on the structure optimization and modulation in order to enhance the photoelectric conversion efficiency. Here, we exploit another application of this multilayer heterostructure in photoresistance-modulated position sensitive detector by introducing lateral photoresistance effect. The lateral photoresistance measurements show that this multilayer heterojunction exhibits a wide spectral response (~330 to ~1150 nm) and excellent bipolar photoresistance performances (position sensitivity of ~63.26 Ω/mm and nonlinearity <4.5%), and a fast response speed (rise and fall time of ~14.46 and ~14.42 ms, respectively). More importantly, based on the lateral photoresistance effect, the CIGS heterostructure may also be developed as a position-dependent resistance memory device, which can be modulated by changing laser intensity, wavelength, and bias voltage with excellent stability and repeatability, and the position resolution reaches up to 1 µm. These results can be well explained by considering the diffusion and the drift model of carriers in the CIGS multilayer heterojunction. This work provides a new approach of achieving novel photoelectric sensors and memory devices based on the traditional photovoltaic heterostructures.

16.
Sensors (Basel) ; 19(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766345

RESUMO

A PSD-based solar spot position detection system is developed for solar tracking closed-loop control of mobile SOF-FTIR (Solar Occultation Flux method based on Fourier Transform Infrared spectrometer). The positioning error factors of PSD (position sensitive detector) are analyzed in detail. A voltage model for PSD signal conditioning circuit has been established to investigate the noise factors. The model shows that the positioning error is mainly related to PSD dark current and circuit gain. A static voltage deduction calibration method based on genetic algorithm is proposed to eliminate the effect of dark current. The gain ratio between channels is calculated based on the fitting curve slope of discrete position data of PSD center point with different light intensity for circuit gain calibration. The positioning accuracy and precision are greatly enhanced, especially when the light intensity is weak, compared with uncalibrated results. The positioning accuracy of center, middle and edge areas of PSD can reach 0.14%, 0.49%, and 1.09%, respectively, after correction in the range of light intensity voltage from 40 mV to 20 V. The corresponding standard deviations of each region are 0.005, 0.009, and 0.014, respectively. The adjustment methods proposed in this paper improve both measurement accuracy and detection limit. The results demonstrate that the calibrated PSD positioning accuracy can meet the requirements of SOF-FTIR for solar tracking.

17.
Nano Lett ; 19(11): 8132-8137, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31556623

RESUMO

Noncontact optical sensing plays an important role in various applications, for example, motion tracking, pilotless automobile, precision machining, and laser radars. A device with features of high resolution, fast response, and safe detection (operation wavelength at infrared (IR)) is highly desired in such applications. Here, a near IR position-sensitive detector constructed by graphene-Ge Schottky heterojunction has been demonstrated. The device shows high responsivity (minimum detectable power of ∼10 nW), excellent spatial resolution (<1 µm), fast response time (∼µs), and could operate in a wide spectral range (from visible to ∼1600 nm). Applications of precise angle (∼5 × 10-6 degree) and vibration frequency (up to 10 kHz) measurements, as well as the trajectory tracking of a high-speed infrared target (∼100 km/h), have been realized based on this device. This work therefore provides a promising route for a high-performance noncontact IR optical sensing system.

18.
Appl Radiat Isot ; 154: 108844, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31442797

RESUMO

Density well-logging tool is an essential instrument used in the petroleum industry for determining formation density, porosity, and lithology of subsurface strata. To improve the vertical resolution and accuracy of density measurements in thin-bedded sedimentary rocks, we proposed an innovative density well-logging tool in which the traditional short- and long-spacing detectors are replaced with a position-sensitive detector (PSD). This replacement enables the measurement of the continuous gamma-ray flux in the area near the PSD. To demonstrate the feasibility of this new tool, we first simulated the performance of a PSD with NaI(Tl) crystal by using the Monte Carlo simulation method (GEANT4). The outcome shows that both gamma-ray deposited energy and interaction position can be determined by the photoelectron yield at each end of the detector, and the resolutions for energy and position are 19.0% and 1.3 cm, respectively, when the gamma-ray energy is 100 keV. Next, we created a Monte Carlo model of a density well-logging tool using such a PSD and simulated its response in a geologic model of thin-bedded strata. The result proves that the proposed tool can yield a good density evaluation when the thickness of the layer is 5 cm, which is significantly better than that obtained with the 16 cm-thick layer of traditional density tools. This study confirms the feasibility of using a PSD in density well-logging tool in theory and indicates that the proposed tool has a promising application in measuring the density of thin-bedded strata.

19.
Appl Radiat Isot ; 139: 12-19, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29680747

RESUMO

A flexible γ detector using a liquid scintillation light guide (LSLG) was developed. The analyzed pulse height (PHA) spectrum depended on the diameter, length and scintillator concentration of the LSLG, and the distance of a γ ray irradiation point from the head of photomultiplier tube (PMT). From the analysis of PHA spectrum, it was found that the count ratio of two divided channel regions linearly decreases as the distance from the PMT head increases. It was further found that the radiation dose rate can be estimated by setting the flexible LSLG tube to a circular shape since the count rate is proportional to the dose rate measured by a conventional NaI (Tl) scintillation detector. Therefore, a flexible and long LSLG detector using a single PMT is useful for determination of the dose rate and has a potential to detect local contaminations in a certain narrow space.


Assuntos
Raios gama , Radiometria/instrumentação , Contagem de Cintilação/instrumentação , Desenho de Equipamento , Humanos , Luz , Dispositivos Ópticos , Fibras Ópticas , Exposição à Radiação/análise , Radiometria/estatística & dados numéricos , Contagem de Cintilação/estatística & dados numéricos
20.
Robotics Biomim ; 4(1): 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104850

RESUMO

A position-sensitive detector/device (PSD) is a sensor that is capable of tracking the location of a laser beam on its surface. PSDs are used in many scientific instruments and technical applications including but not limited to atomic force microscopy, human eye movement monitoring, mirrors or machine tool alignment, vibration analysis, beam position control and so on. This work intends to propose a new application using the PSD. That is a new microscopy system called scanning PSD microscopy. The working mechanism is about putting an object on the surface of the PSD and fast scanning its area with a laser beam. To achieve a high degree of accuracy and precision, a reliable framework was designed using the PSD. In this work, we first tried to improve the PSD reading and its measurement performance. This was done by minimizing the effects of noise, distortion and other disturbing parameters. After achieving a high degree of confidence, the microscopy system can be implemented based on the improved PSD measurement performance. Later to improve the scanning efficiency, we developed an adaptive local scanning system to scan the whole area of the PSD in a short matter of time. It was validated that our comprehensive and adaptive local scanning method can shorten the scanning time in order of hundreds of times in comparison with the traditional raster scanning without losing any important information about the scanned 2D objects. Methods are also introduced to scan very complicated objects with bifurcations and crossings. By incorporating all these methods, the new microscopy system is capable of scanning very complicated objects in the matter of a few seconds with a resolution that is in order of a few micrometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA