Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Transl Res ; 16(7): 2777-2792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114703

RESUMO

Introduction: The kinetics of brain cell death in Alzheimer's disease (AD) is being studied using mathematical models. These mathematical models utilize techniques like differential equations, stochastic processes, and network theory to explore crucial signalling pathways and interactions between different cell types. One crucial area of research is the intentional cell death known as apoptosis, which is crucial for the nervous system. The main purpose behind the mathematical modelling of this is for identification of which biomarkers and pathways are most influential in the progression of AD. In addition, we can also predict the natural history of the disease, by which we can make early diagnosis. Mathematical modelling of AD: Current mathematical models include the Apolipoprotein E (APOE) Gene Model, the Tau Protein Kinetics Model, and the Amyloid Beta Peptide Kinetic Model. The Bcl-2 and Bax apoptosis theories postulate that the balance of pro- and anti-apoptotic proteins in cells determines whether a cell experiences apoptosis, where the Bcl-2 model, depicts the interaction of pro- and anti-apoptotic proteins, it is also being used in research on cell death in a range of cell types, including neurons and glial cells. How peptides are produced and eliminated in the brain is explained by the Amyloid beta Peptide (Aß) Kinetics Model. The tau protein kinetics model focuses on production, aggregation, and clearance of tau protein processes, which are hypothesized to be involved in AD. The APOE gene model investigates the connection between the risk of Alzheimer's disease and the APOE gene. These models have been used to predict how Alzheimer's disease would develop and to evaluate how different inhibitors will affect the illness's course. Conclusion: These mathematical models reflect physiological meaningful characteristics and demonstrates robust fits to training data. Incorporating biomarkers like Aß, Tau, APOE and markers of neuronal loss and cognitive impairment can generate sound predictions of biomarker trajectories over time in Alzheimer's disease.

2.
Animal ; 18(6): 101184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843665

RESUMO

To avoid a high body protein mobilization in modern lean sows during lactation, an adequate dietary amino acid (AA) supply and an efficient AA utilization are crucial. This study evaluated the effects of dietary CP and in vitro protein digestion kinetics on changes in sow body condition, litter weight gain, milk composition, blood metabolites, protein utilization efficiency and subsequent reproductive performance. We hypothesized that a slower digestion of dietary protein would improve AA availability and utilization. In total, 110 multiparous sows were fed one of four lactation diets in a 2 × 2 factorial design, with two CP concentrations: 140 g/kg vs 180 g/kg, and two protein digestion kinetics, expressed as a percentage of slow protein (in vitro degradation between 30 and 240 min): 8 vs 16% of total protein. Feeding sows the high CP diets reduced sow weight loss (Δ = 7.6 kg, P < 0.01), estimated body fat loss (Δ = 2.6 kg, P = 0.02), and estimated body protein loss (Δ = 1.0 kg, P = 0.08), but only at a high percentage of slow protein. A higher percentage of slow protein increased litter weight gain throughout lactation (Δ = 2.6 kg, P = 0.04) regardless of CP concentrations, whereas a higher CP only increased litter weight gain during week 3 of lactation (Δ = 1.2 kg, P = 0.01). On Day 15 postfarrowing, serial blood samples were taken from a subsample of sows fed with the high CP diets. In these sows, a high percentage of slow protein resulted in higher plasma AA concentrations at 150 and 180 min after feeding (Δ = 0.89, P = 0.02, Δ = 0.78, P = 0.03, mmol/L, respectively) and lower increases in urea at 90 and 120 min after feeding (Δ = 0.67, P = 0.04, Δ = 0.70, P = 0.03, mmol/L, respectively). The higher dietary CP concentration increased total nitrogen loss to the environment (Δ = 604 g, P < 0.01) with a reduction of protein efficiency (Δ = 14.8%, P < 0.01). In the next farrowing, a higher percentage of slow protein increased subsequent liveborn litter size (Δ = 0.7, P < 0.05). In conclusion, feeding sows with a high dietary CP concentration alleviated maternal weight loss during lactation when the dietary protein digestion rate was slower, but lowered protein efficiency. A slower protein digestion improved litter weight gain, possibly by reducing AA oxidation and improving plasma AA availability, thus, improving protein efficiency.


Assuntos
Aminoácidos , Ração Animal , Dieta , Digestão , Lactação , Reprodução , Aumento de Peso , Animais , Feminino , Aminoácidos/metabolismo , Aminoácidos/sangue , Ração Animal/análise , Dieta/veterinária , Suínos/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Digestão/efeitos dos fármacos , Digestão/fisiologia , Período Pós-Prandial , Redução de Peso , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Leite/química , Leite/metabolismo , Gravidez
3.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38766191

RESUMO

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the time scale of ps-µs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of µs-ms, corresponding to large-scale protein motions, is inaccessible to those methods. To extend SDSL-EPR to the longer time domain, the perturbation method of pressure-jump relaxation is implemented. Here, we describe a complete high-pressure EPR system at Q-band for both static pressure and millisecond-timescale pressure-jump measurements on spin-labeled proteins. The instrument enables pressure jumps both up and down from any holding pressure, ranging from atmospheric pressure to the maximum pressure capacity of the system components (~3500 bar). To demonstrate the utility of the system, we characterize a local folding-unfolding equilibrium of T4 lysozyme. The results illustrate the ability of the system to measure thermodynamic and kinetic parameters of protein conformational exchange on the millisecond timescale.

4.
J Hepatocell Carcinoma ; 10: 2009-2019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954495

RESUMO

Purpose: In recent years, a new therapeutic approach, known as immune checkpoint blockade (ICB), has been proposed as approach to improve outcomes in patients with intermediate stage (Barcelona Clinic Liver Cancer, BCLC B) or advanced stage (BCLC C) hepatocellular carcinoma (HCC). Unfortunately, only a select patients can benefit from ICB. Hence, biomarkers that can predict the success and survival of treatment are still necessary. Patients and Methods: Between 2018 to 2021, 132 patients received ICB treatment for intermediate or advanced stage HCC. Based on the early kinetics of C-reactive protein (CRP), the patients were classified into three groups. The study endpoints were progression-free survival (PFS) and overall survival (OS). Results: Our findings support the predictive power of early CRP kinetics in determining immunotherapy response for intermediate or advanced HCC. Objective response rates (ORR) were found in 41.2% of CRP flare-responders, 13.3% of CRP responders, and 3.5% of CRP non-responders (p<0.001). Disease control rates (DCR) in the three groups were substantially different (p<0.001). The improved PFS and OS were strongly correlated with the early kinetics of CRP. Compared to CRP non-responders, CRP responders, especially CRP flare-responders, had significantly longer PFS (median PFS: CRP flare-responders: 11.6 months vs CRP responders: 5.2 months vs CRP non-responders: 2.3 months, p<0.001). Conclusion: The CRP flare response robustly predicts the immunotherapy response and outcomes in patients with HCC. Early CRP kinetics may be an inexpensive, easily implemented and non-invasive biomarker to anticipate response to ICB therapy in intermediate or advanced HCC, with the potential to optimize treatment monitoring.

5.
Int J Biol Macromol ; 250: 126160, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549761

RESUMO

The ß-lactamase BlaC conveys resistance to a broad spectrum of ß-lactam antibiotics to its host Mycobacterium tuberculosis but poorly hydrolyzes third-generation cephalosporins, such as ceftazidime. Variants of other ß-lactamases have been reported to gain activity against ceftazidime at the cost of the native activity. To understand this trade-off, laboratory evolution was performed, screening for enhanced ceftazidime activity. The variant BlaC Pro167Ser shows faster breakdown of ceftazidime, poor hydrolysis of ampicillin and only moderately reduced activity against nitrocefin. NMR spectroscopy, crystallography and kinetic assays demonstrate that the resting state of BlaC P167S exists in an open and a closed state. The open state is more active in the hydrolysis of ceftazidime. In this state the catalytic residue Glu166, generally believed to be involved in the activation of the water molecule required for deacylation, is rotated away from the active site, suggesting it plays no role in the hydrolysis of ceftazidime. In the closed state, deacylation of the BlaC-ceftazidime adduct is slow, while hydrolysis of nitrocefin, which requires the presence of Glu166 in the active site, is barely affected, providing a structural explanation for the trade-off in activities.

6.
J Clin Endocrinol Metab ; 108(9): e671-e678, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036819

RESUMO

BACKGROUND: Active acromegaly is characterized by increased lean body mass, but the mechanisms underlying the protein anabolic effect are unclear. AIM: To study if active acromegaly induces reversible changes in whole-body and skeletal muscle protein kinetics. PATIENTS AND METHODS: Eighteen patients with acromegaly were investigated before and 47 ± 10 weeks after disease control by surgery (n = 8) and/or medical treatment (n = 10). Labeled phenylalanine and tyrosine tracers were employed to assess whole-body and regional forearm muscle protein kinetics. Intramyocellular protein signaling was assessed in skeletal muscle biopsies, and whole-body dual-energy X-ray absorptiometry scan and indirect calorimetry assessed lean body mass (LBM) and resting energy expenditure, respectively. RESULTS: Disease control induced a 7% decrease in lean body mass (P < .000) and a 14% decrease in LBM-adjusted energy expenditure. Whole-body phenylalanine breakdown decreased after disease control (P = .005) accompanied by a decrease in the degradation of phenylalanine to tyrosine (P = .005) and a decrease in whole-body phenylalanine synthesis (P = .030). Skeletal muscle protein synthesis tended to decrease after disease control (P = .122), whereas the muscle protein breakdown (P = .437) and muscle protein loss were unaltered (P = .371). Unc-51 like autophagy activating kinase 1 phosphorylation, an activator of protein breakdown, increased after disease control (P = .042). CONCLUSIONS: Active acromegaly represents a reversible high flux state in which both whole-body protein breakdown and synthesis are increased, whereas forearm muscle protein kinetics are unaltered. Future studies are needed to decipher the link between protein kinetics and the structure and function of the associated growth hormone-induced increase in lean body mass.


Assuntos
Acromegalia , Humanos , Acromegalia/terapia , Acromegalia/metabolismo , Antebraço , Tirosina , Fenilalanina , Proteínas Musculares/metabolismo , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo
7.
J Comput Chem ; 44(9): 988-1001, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575994

RESUMO

AzoChignolin is a photoswitchable variant of the mini-protein Chignolin with an azobenzene (AMPP) replacing the central loop. AzoChignolin is unfolded with AMPP in the trans-isomer. Transition to the cis-isomer causes ß-hairpin folding similar to Chignolin. The AzoChignolin system is excellently suited for comprehensive analysis of folding nucleation kinetics. Utilizing multiple long-time MD simulations of AzoChignolin and Chignolin in MeOH and water, we estimated Markov models to examine folding kinetics of both peptides. We show that while AzoChignolin mimics Chignolin's structure well, the folding kinetics are quite different. Not only folding times but also intermediate states differ, particularly Chignolin is able to fold in MeOH into an α-helical intermediate which is impossible to form in AzoChignolin. The Markov models demonstrate that AzoChignolin's kinetics are generally faster, specifically when comparing the two main microfolding processes of hydrophobic collapse and turn formation. Photoswitchable loops are used frequently to understand the kinetics of elementary protein folding nucleation. However, our results indicate that intermediates and folding kinetics may differ between natural loops and photoswitchable variants.


Assuntos
Oligopeptídeos , Peptídeos , Oligopeptídeos/química , Peptídeos/química , Dobramento de Proteína , Cinética
8.
J Virol ; 96(13): e0068522, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35674432

RESUMO

Since its outbreak in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread with high transmission efficiency across the world, putting health care as well as economic systems under pressure. During the course of the pandemic, the originally identified SARS-CoV-2 variant has been multiple times replaced by various mutant versions, which showed enhanced fitness due to increased infection and transmission rates. In order to find an explanation for why SARS-CoV-2 and its emerging mutated versions showed enhanced transmission efficiency compared with SARS-CoV (2002), an enhanced binding affinity of the spike protein to human angiotensin converting enzyme 2 (hACE2) has been proposed by crystal structure analysis and was identified in cell culture models. Kinetic analysis of the interaction of various spike protein constructs with hACE2 was considered to be best described by a Langmuir-based 1:1 stoichiometric interaction. However, we demonstrate in this report that the SARS-CoV-2 spike protein interaction with hACE2 is best described by a two-step interaction, which is defined by an initial binding event followed by a slower secondary rate transition that enhances the stability of the complex by a factor of ~190 (primary versus secondary state) with an overall equilibrium dissociation constant (KD) of 0.20 nM. In addition, we show that the secondary rate transition is not only present in SARS-CoV-2 wild type ("wt"; Wuhan strain) but also found in the B.1.1.7 variant, where its transition rate is 5-fold increased. IMPORTANCE The current SARS-CoV-2 pandemic is characterized by the high infectivity of SARS-CoV-2 and its derived variants of concern (VOCs). It has been widely assumed that the reason for its increased cell entry compared with SARS-CoV (2002) is due to alterations in the viral spike protein, where single amino acid residue substitutions can increase affinity for hACE2. So far, the interaction of a single unit of the CoV-2 spike protein has been described using the 1:1 Langmuir interaction kinetic. However, we demonstrate here that there is a secondary state binding step that may be essential for novel VOCs in order to further increase their infectivity. These findings are important for quantitatively understanding the infection process of SARS-CoV-2 and characterization of emerging SARS-CoV-2 variants of spike proteins. Thus, they provide a tool for predicting the potential infectivity of the respective viral variants based on secondary rate transition and secondary complex stability.


Assuntos
Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Humanos , Cinética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Clin Nutr ESPEN ; 49: 385-389, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623841

RESUMO

BACKGROUND & AIMS: Protein kinetic responses to nutrition and exercise interventions are commonly evaluated using a primed-constant infusion of stable isotope tracers. While this methodology is state-of-the-art, the required preparation at a certified pharmacy makes the utilization of isotope infusion both expensive and logistically cumbersome. Oral tracer ingestion has been used to quantify 24-h whole-body protein status; however, this does not permit examination of acute interventional effects. Ingestion of a priming bolus, followed by continuous ingestion of stable isotope tracer in a 'sip feeding' fashion may provide a more feasible alternative for quantifying acute kinetic responses. Therefore, the purpose of this study was to evaluate the viability of a primed continuous oral sip-ingestion method of stable isotope tracers for the evaluation of whole-body protein kinetics. METHODS: In a randomized, crossover design, eight healthy adults (63% female; Age: 29.4 ± 5.8 yrs; BMI: 24.3 ± 2.7 kg/m2) completed two, two-period stable isotope oral ingestion studies, consisting of a 3 h basal fasted period, followed by a 4-h post-ingestion period. After the basal period, subjects ingested either 6.3 g (Low) or 12.6 g (High) of an essential amino acid (EAA) enriched whey protein supplement. The continuous oral sip-feed method was initiated with a primed oral bolus dose of L-[ring-2H5]phenylalanine, L-[ring-2H2]tyrosine, and L-[ring-2H4]tyrosine, followed by oral sip doses of L-[ring-2H5]phenylalanine, L-[ring-2H2]tyrosine every 10 min to approximate steady state tracer enrichment. Blood samples were taken throughout the basal and post-meal periods to determine tracer enrichment. Whole-body net protein balance (NB), synthesis (PS), breakdown (PB), and exogenous hydroxylation were calculated for each period. Repeated measure ANOVAs (treatment × time) were used to assess differences in protein kinetics. RESULTS: Using the sip feed method, NB, PS, and hydroxylation were significantly increased with ingestion of protein (p < 0.05) during the postprandial period, regardless of amount of protein ingested; ΔNB from the postabsorptive to postprandial period was significantly greater for high compared to low protein (p = 0.026; low = 6.2 ± 5.1 g protein·240 min-1; high = 11.8 ± 3.9 g protein·240 min-1). CONCLUSION: The current study provides preliminary evidence that continuous oral sip-feeding of stable isotope tracer is a feasible method that provides physiologically relevant measures of protein metabolism. Assessments of variance and individual responses revealed high measurement variability with the sip-feed method compared to previously published constant infusion responses, but ΔNB, ΔPS, and ΔPB were comparable. In situations where constant infusion is not feasible, oral sip-feeding could be used as an alternative method for measurement of acute, postprandial protein metabolism.


Assuntos
Fenilalanina , Proteínas , Adulto , Estudos Cross-Over , Ingestão de Alimentos , Feminino , Humanos , Isótopos , Masculino , Fenilalanina/metabolismo , Proteínas/metabolismo , Tirosina
10.
J Biol Phys ; 47(4): 337-353, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762226

RESUMO

Hans Frauenfelder's discovery of conformational substates in studies of myoglobin carbon monoxide geminate rebinding kinetics at cryogenic temperatures (Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, & Gunsalus IC (1975) Dynamics of Ligand Binding to Myoglobin. Biochemistry 14(24):5355-5373) followed by his introduction of energy landscape theory with Peter Wolynes (Frauenfelder H, Sligar SG, & Wolynes PG (1991) The Energy Landscapes and Motions of Proteins. Science 254(5038):1598-1603) marked the beginning of a new era in the physics and physical chemistry of proteins. Their work played a major role in demonstrating the power and importance of dynamics and of Kramers reaction rate theory for understanding protein function. The biggest impact of energy landscape theory has been in the protein folding field, which is well-known and has been documented in numerous articles and reviews, including a recent one of my own (Eaton WA (2021) Modern Kinetics and Mechanism of Protein Folding: a Retrospective. J. Phys. Chem. B. 125(14):3452-3467). Here I will describe the much less well-known impact of their modern view of proteins on both experimental and theoretical studies of hemoglobin kinetics and function. I will first describe how Frauenfelder's experiments motivated and influenced my own research on myoglobin, which were key ingredients to my work on understanding hemoglobin.


Assuntos
Mioglobina , Física , Hemoglobinas , Cinética , Mioglobina/metabolismo , Conformação Proteica , Estudos Retrospectivos
11.
Biomedicines ; 9(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572428

RESUMO

Cells are constantly exposed to numerous mutagens that produce diverse types of DNA lesions. Eukaryotic cells have evolved an impressive array of DNA repair mechanisms that are able to detect and repair these lesions, thus preventing genomic instability. The DNA repair process is subjected to precise spatiotemporal coordination, and repair proteins are recruited to lesions in an orderly fashion, depending on their function. Here, we present DNArepairK, a unique open-access database that contains the kinetics of recruitment and removal of 70 fluorescently tagged DNA repair proteins to complex DNA damage sites in living HeLa Kyoto cells. An interactive graphical representation of the data complemented with live cell imaging movies facilitates straightforward comparisons between the dynamics of proteins contributing to different DNA repair pathways. Notably, most of the proteins included in DNArepairK are represented by their kinetics in both nontreated and PARP1/2 inhibitor-treated (talazoparib) cells, thereby providing an unprecedented overview of the effects of anticancer drugs on the regular dynamics of the DNA damage response. We believe that the exclusive dataset available in DNArepairK will be of value to scientists exploring the DNA damage response but, also, to inform and guide the development and evaluation of novel DNA repair-targeting anticancer drugs.

12.
FEBS J ; 288(22): 6410-6427, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34043859

RESUMO

Large serine integrases (LSIs) offer tremendous potential for rapid genetic engineering as well as building biological systems capable of responding to stimuli and integrating information. Currently, there is no unified metric for directly measuring the enzymatic characteristics of LSI function, which hinders evaluation of their suitability to specific applications. Here, we present an experimental protocol for recording DNA recombination in HEK293 cells in real-time through fluorophore expression and software which fits the kinetic data to a model tailored to LSI recombination dynamics. Our model captures the activity of LSIs as three parameters: expression level (Kexp ), catalytic rate (kcat ), and substrate affinity (Kd ). The expression level and catalytic rate for phiC31 and Bxb1 varied greatly, suggesting disparate routes to high recombination efficiencies. Moreover, the expression level and substrate affinity jointly impacted downstream reporter expression, potentially by obstructing transcriptional machinery. We validated these observations by swapping between promoters and mutating key recombinase residues and DNA recognition sites to individually modulate each parameter. Our model for identifying key LSI parameters in cellulo provides insight into selecting the optimal recombinase for various applications as well as for guiding the engineering of improved LSIs.


Assuntos
Integrases/metabolismo , Serina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Integrases/química , Cinética , Modelos Moleculares , Serina/química , Software
13.
Cancer Immunol Immunother ; 70(3): 657-665, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32876736

RESUMO

OBJECTIVE: To assess the prognostic and predictive ability of early C-reactive protein (CRP) kinetics, dynamic changes in CRP levels, in patients with advanced urothelial cancer treated with pembrolizumab. PATIENTS AND METHODS: We retrospectively evaluated 97 patients with advanced urothelial cancer treated with pembrolizumab in second-line or later settings. Patients were divided into three early CRP kinetics groups: non-elevated (baseline CRP < 5 mg/L), responder (baseline CRP ≥ 5 mg/L and CRP decreased below baseline at least once within 30 days), and non-responder (baseline CRP ≥ 5 mg/L and CRP never decreased to baseline within 30 days). Association between early CRP kinetics and pembrolizumab efficacy including objective response rate (ORR), disease control rate (DCR), and overall survival (OS) were evaluated. RESULTS: Based on early CRP kinetics, 40, 27, and 30 patients were classified as non-elevated, responder, and non-responder, respectively. ORR and DCR were 33% and 60% in non-elevated, 30% and 48% in responder, and 17% and 40% in non-responder; without a statistically significant difference. OS was significantly different among the non-elevated, responder, and non-responder groups (p < 0.01), with 1-year survival rates of 69%, 61%, and 31%, respectively. Early CRP kinetics could discriminate the OS of patients without objective response. Non-responder was an independent predictor for OS (HR 3.65, p < 0.01), as well as liver metastasis and ECOG PS ≥ 2. CONCLUSION: Early CRP kinetics is associated with survival of advanced urothelial cancer patients treated with pembrolizumab and could be a potential biomarker for clinical benefit from immune checkpoint inhibitors.


Assuntos
Biomarcadores , Proteína C-Reativa/metabolismo , Neoplasias Urológicas/sangue , Neoplasias Urológicas/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Resultado do Tratamento , Neoplasias Urológicas/tratamento farmacológico
14.
Physiol Rep ; 9(1): e14655, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369879

RESUMO

The purpose of this study was to compare the independent and combined effects of high-intensity interval training (HIIT) and essential amino acids (EAA) on lean mass, muscle characteristics of the quadriceps, and 24-hr whole-body protein turnover (WBPT) in overweight and obese adults. An exploratory aim was to evaluate potential modulatory effects of sex. Sixty-six adults (50% female; Age: 36.7 ± 6.0 yrs; %BF: 36.0 ± 7.8%) were assigned to 8 wks of: (a) HIIT, 2 days/wk; (b) EAA supplementation, 3.6 g twice daily; (c) HIIT + EAA; or (d) control. At baseline, 4 wks, and 8 wks, total body, thigh LM and muscle characteristics were measured via dual-energy x-ray absorptiometry and B-mode ultrasound, respectively. In a subsample, changes in WBPT was measured using [N15 ]alanine. Differences between groups were assessed using linear mixed models adjusted for baseline values, followed by 95% confidence intervals on adjusted mean change scores (Δ). HIIT and HIIT + EAA improved thigh LM (Δ: +0.17 ± 0.05 kg [0.08, 0.27]; +0.22 ± 0.05 kg [0.12,0.31]) and vastus lateralis cross-sectional area (Δ: +2.73 ± 0.52 cm2 [1.69,3.77]; +2.64 ± 0.53 cm2 [1.58,3.70]), volume (Δ: +54.50 ± 11.69 cm3 [31.07, 77.92]; +62.39 ± 12.05 cm3 [38.26, 86.52]), and quality (Δ: -5.46 ± 2.68a.u. [-10.84, -0.09]; -7.97 ± 2.76a.u.[-13.49, -2.45]). Protein synthesis, breakdown, and flux were greater with HIIT + EAA and EAA compared to HIIT (p < .05). Sex differences were minimal. Compared to women, men tended to respond more to HIIT, with or without EAA. For women, responses were greater with HIIT + EAA than HIIT. In overweight and obese adults, 8 weeks of HIIT, with or without EAA, improved thigh LM size and quality; EAA may enhance muscular adaptation via increases in protein turnover, supporting greater improvements in muscular size and quality.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Treinamento Intervalado de Alta Intensidade , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia , Músculo Quadríceps/metabolismo , Adulto , Feminino , Humanos , Masculino , Sobrepeso/fisiopatologia , Urina/química
15.
Methods Mol Biol ; 1993: 193-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148088

RESUMO

The cellular microenvironment often plays a crucial role in disease development and progression. In recessive dystrophic epidermolysis bullosa (RDEB), biallelic mutations of the gene COL7A1, encoding for collagen VII, the main component of anchoring fibrils, lead to a loss of collagen VII in the extracellular matrix (ECM). Loss of collagen VII in skin is linked to a destabilization of the dermal-epidermal junction zone, blister formation, chronic wounds, fibrosis, and aggressive skin cancer. Thus, RDEB cells can serve as a model system to study the effects of a perturbed ECM on the cellular proteome. In this chapter, we describe in detail the combination of stable isotope labeling by amino acids in cell culture (SILAC) of primary skin fibroblasts with reseeding of fibroblasts on decellularized collagen VII-positive and -negative ECM to study the consequences of collagen VII loss on the cellular proteome. This approach allows the quantitative, time-resolved analysis of cellular protein dynamics in response to ECM perturbation by liquid chromatography-mass spectrometry.


Assuntos
Colágeno Tipo VII/metabolismo , Fibroblastos/metabolismo , Proteoma/genética , Proteômica/métodos , Células Cultivadas , Cromatografia Líquida , Matriz Extracelular , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Pele/citologia
16.
FEBS J ; 286(11): 2193-2215, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811856

RESUMO

Cation diffusion facilitator (CDF) proteins are a conserved family of transmembrane transporters that ensure cellular homeostasis of divalent transition metal cations. Metal cations bind to CDF protein's cytoplasmic C-terminal domain (CTD), leading to closure from its apo open V-shaped dimer to a tighter packed structure, followed by a conformational change of the transmembrane domain, thus enabling transport of the metal cation. By implementing a comprehensive range of biochemical and biophysical methods, we studied the molecular mechanism of metal binding to the magnetotactic bacterial CDF protein MamM CTD. Our results reveal that the CTD is rather dynamic in its apo form, and that two dependent metal-binding sites, a single central binding site and two symmetrical, peripheral sites, are available for metal binding. However, only cation binding to the peripheral sites leads to conformational changes that lock the protein in a compact state. Thus, this work reveals how metal binding is regulating the sequential uptakes of metal cations by MamM, and extends our understanding of the complex regulation mechanism of CDF proteins. DATABASE: Structural data are available in RCSB Protein Data Bank under the accession numbers: 6G64, 6G55, 6G5E and 6G6I (for CS, C267S, CS-C267S and W247A, respectively).


Assuntos
Proteínas de Bactérias/química , Cátions/metabolismo , Magnetospirillum/química , Zinco/metabolismo , Apoproteínas/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
17.
Biochim Biophys Acta Gen Subj ; 1863(4): 732-741, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684523

RESUMO

BACKGROUND: Abl1 is a protein tyrosine kinase whose aberrant activation due to mutations is the culprit of several cancers, most notably chronic myeloid leukaemia. Several Abl1 inhibitors are used as anti-cancer drugs. Unfortunately, drug resistance limits their effectiveness. The main cause for drug resistance is mutations in the kinase domain (KD) of Abl1 that evolve in patients. The T315I mutation confers resistance against all clinically-available inhibitors except ponatinib. Resistance to ponatinib can develop by compound (double) mutations. METHODS: Kinetic measurements of the KD of Abl1 and its mutants were carried out to examine their catalytic activity. Specifically, mutants that lead to drug resistance against ponatinib were considered. Molecular dynamics simulations and multiple sequence analysis were used for explanation of the experimental findings. RESULTS: The catalytic efficiency of the T315I pan-resistance mutant is more than two times lower than that of the native KD. All ponatinib resistant mutations restore the catalytic efficiency of the enzyme. Two of them (G250E/T315I and Y253H/E255V) have a catalytic efficiency that is more than five times that of the native KD. CONCLUSIONS: The measurements and analysis suggest that resistance is at least partially due to the development of a highly efficient kinase through subsequent mutations. The simulations highlight modifications in two structurally important regions of Abl1, the activation and phosphate binding loops, upon mutations. GENERAL SIGNIFICANCE: Experimental and computational methods were used together to explain how mutations in the kinase domain of Abl1 lead to resistance against the most advanced drug currently in use to treat chronic myeloid leukaemia.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Proteínas Proto-Oncogênicas c-abl/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Biocatálise , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Imidazóis/farmacologia , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Piridazinas/química , Piridazinas/farmacologia
18.
Clin Nutr ; 38(2): 652-659, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29739680

RESUMO

BACKGROUND & AIMS: Physical inactivity is associated with lean body mass wasting, oxidative stress and pro-inflammatory changes of cell membrane lipids. Alkalinization may potentially counteract these alterations. We evaluated the effects of potassium bicarbonate supplementation on protein kinetics, glutathione status and pro- and anti-inflammatory polyunsaturated fatty acids (PUFA) in erythrocyte membranes in humans, during experimental bed rest. METHODS: Healthy, young, male volunteers were investigated at the end of two 21-day bed rest periods, one with, and the other without, daily potassium bicarbonate supplementation (90 mmol × d-1), according to a cross-over design. Oxidative stress in erythrocytes was evaluated by determining the ratio between reduced (GSH) and oxidized glutathione (GSSG). Glutathione turnover and phenylalanine kinetics, a marker of whole body protein metabolism, were determined by stable isotope infusions. Erythrocyte membranes PUFA composition was analyzed by gas-chromatography. RESULTS: At the end of the two study periods, urinary pH was 10 ± 3% greater in subjects receiving potassium bicarbonate supplementation (7.23 ± 0.15 vs. 6.68 ± 0.11, p < 0.001). Alkalinization increased total glutathione concentrations by 5 ± 2% (p < 0.05) and decreased its rate of clearance by 38 ± 13% (p < 0.05), without significantly changing GSH-to-GSSG ratio. After alkalinization, net protein balance in the postabsorptive state improved significantly by 17 ± 5% (p < 0.05) as well as the sum of n-3 PUFA and the n-3-to-n-6 PUFA ratio in erythrocyte membranes (p < 0.05). CONCLUSIONS: Alkalinization during long-term inactivity is associated with improved glutathione status, anti-inflammatory lipid pattern in cell membranes and reduction in protein catabolism at whole body level. This study suggests that, in clinical conditions characterized by inactivity, oxidative stress and inflammation, alkalinization could be a useful adjuvant therapeutic strategy.


Assuntos
Repouso em Cama/efeitos adversos , Bicarbonatos/farmacologia , Glutationa/efeitos dos fármacos , Glutationa/urina , Compostos de Potássio/farmacologia , Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Adulto , Cromatografia Gasosa , Estudos Cross-Over , Membrana Eritrocítica/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Cinética , Masculino , Estresse Oxidativo/efeitos dos fármacos , Valores de Referência , Comportamento Sedentário , Voluntários
19.
Clin Nutr ; 37(4): 1163-1171, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28527646

RESUMO

BACKGROUND & AIMS: Surgical stress provokes protein catabolism and hyperglycaemia that is enhanced in patients with type 2 diabetes (T2DM), and increases perioperative morbidity. This study hypothesized that perioperative administration of high dose intravenous (IV) amino acids (AA) will augment protein balance in T2DM patients receiving tight plasma glucose control via continuous IV insulin compared to standard plasma glucose control via subcutaneous (SC) insulin sliding scale. METHODS: Eighteen patients with well-controlled T2DM (HbA1C% < 7.1) undergoing colorectal surgery were assigned randomly to receive standard glucose control (6-10 mmol/l, SC insulin, n = 9) or tight glucose control (4-6 mmol/l, IV insulin, n = 9). Both groups received general anaesthesia and epidural analgesia. AA (1 ml/kg h Aminoven™ 10%, ∼2.4 g/kg d) were infused via a peripheral vein for two 3-h periods: at the beginning of surgery and in the post-operative care unit. Whole-body protein and glucose kinetics were assessed by stable isotope tracers, L-[1-13C]leucine and [6,6-2H2]glucose. RESULTS: Whole-body protein balance was positive after surgery in all patients. Since protein synthesis, breakdown and leucine oxidation were comparable in both groups, whole body protein balance was not different (p = 0.605). Tight glucose control suppressed endogenous glucose production (EGP, p < 0.001) and increased glucose clearance (p < 0.001) compared to standard glucose control during both study periods. No episode of hypoglycaemia occurred in either group. CONCLUSION: High-dose perioperative AA administration under optimal anti-catabolic care with epidural analgesia was effective in achieving a positive protein balance in T2DM patients undergoing surgery that was independent of glycaemic control strategy. Continuous IV insulin maintained normoglycaemia by inhibiting EGP and increasing glucose clearance. Improved glucose control, without a pronounced increase in protein balance with the intravenous insulin regimen, suggests perioperative protein metabolism may be less sensitive to insulin than is glucose.


Assuntos
Aminoácidos , Glicemia , Diabetes Mellitus Tipo 2 , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Glicemia/análise , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Neoplasias Colorretais/complicações , Neoplasias Colorretais/cirurgia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Feminino , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Apoio Nutricional , Assistência Perioperatória
20.
Methods Mol Biol ; 1563: 243-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324613

RESUMO

Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Proteínas/metabolismo , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Software , Estatística como Assunto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA