Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Neuropharmacology ; 257: 110057, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964596

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.

2.
Front Syst Neurosci ; 18: 1413780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966330

RESUMO

Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.

3.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230231, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853566

RESUMO

Neurons are plastic. That is, they change their activity according to different behavioural conditions. This endows pyramidal neurons with an incredible computational power for the integration and processing of synaptic inputs. Plasticity can be investigated at different levels of investigation within a single neuron, from spines to dendrites, to synaptic input. Although most of our knowledge stems from the in vitro brain slice preparation, plasticity plays a vital role during behaviour by providing a flexible substrate for the execution of appropriate actions in our ever-changing environment. Owing to advances in recording techniques, the plasticity of neurons and the neural networks in which they are embedded is now beginning to be realized in the in vivo intact brain. This review focuses on the structural and functional synaptic plasticity of pyramidal neurons, with a specific focus on the latest developments from in vivo studies. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Plasticidade Neuronal , Células Piramidais , Células Piramidais/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/fisiologia , Encéfalo/citologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Humanos
4.
Front Physiol ; 15: 1359560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720787

RESUMO

Introduction: The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods: We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results: Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 µM) and CPA (1 µM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion: We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.

5.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38719447

RESUMO

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Assuntos
Giro do Cíngulo , Macaca mulatta , Animais , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiologia , Masculino , Feminino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Acetilcolina/metabolismo , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
6.
Neuroscience ; 549: 76-83, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38734304

RESUMO

Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. Male Sprague-Dawley rats (n = 36) were divided into four groups: saline (pMCAO - Saline), CBL (pMCAO + CBL), NAM (pMCAO + NAM), and experimental (pMCAO + CBL-NAM) (n = 9 per group). A permanent middle cerebral artery occlusion (pMCAO) was induced through electrocauterization of the middle cerebral artery, followed by the administration of CBL (2.5 ml/kg), NAM (500 mg/kg) or combined immediately after skin suture, as well as at 24, 48, and 72 h post-surgery. The rats were evaluated in the novel object recognition test; hippocampal infarct area measurement; reconstruction of neurons from CA1 for Sholl analysis; and, measurement of brain-derived neurotrophic factor (BDNF) levels near the infarct zone. Our findings revealed that the administration of CBL or NAM induced infarct reduction, improved cognition, and increased BDNF levels. Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.


Assuntos
Aminoácidos , Cognição , Hipocampo , Infarto da Artéria Cerebral Média , Neurônios , Fármacos Neuroprotetores , Niacinamida , Ratos Sprague-Dawley , Animais , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Aminoácidos/farmacologia , Aminoácidos/administração & dosagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Cognição/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Quimioterapia Combinada , Modelos Animais de Doenças
7.
BMC Biol ; 22(1): 95, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679719

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS: IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS: By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.


Assuntos
Conectoma , Camundongos Transgênicos , Córtex Pré-Frontal , Células Piramidais , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Camundongos , Masculino
8.
Neurosci Biobehav Rev ; 161: 105688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670298

RESUMO

Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.


Assuntos
Deficiências da Aprendizagem , Humanos , Animais , Deficiências da Aprendizagem/fisiopatologia , Deficiências da Aprendizagem/etiologia , Células Piramidais/fisiologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Síndrome de Down/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia
9.
Biol Sex Differ ; 15(1): 29, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561860

RESUMO

BACKGROUND: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. METHODS: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions. RESULTS: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females. CONCLUSIONS: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.


This study investigates differences in the insular cortex (IC), a region of the brain responsible for emotions and sensory perceptions, between male and female mice. The IC has two parts: the front (aIC) deals with emotions and social cues, while the back (pIC) is focused on sensing pain and bodily sensations. We examined specific brain cells called pyramidal neurons in both aIC and pIC and discovered noteworthy distinctions between these neurons in adult male and female mice. Firstly, aIC neurons were larger and had unique electrical properties in both male and female mice. Males had more excitable pIC neurons compared to females, indicating that their neurons were more likely to transmit signals. We also explored how these neurons communicate with each other through connections known as synapses. In adult females, the aIC had stronger connections than the pIC. Finally, we observed that specific types of basic synaptic learning occurred exclusively in males in the aIC. These findings underscore significant disparities in the IC between males and females, offering valuable insights into the potential reasons behind variations in behaviors and emotions between sexes.


Assuntos
Córtex Cerebral , Córtex Insular , Camundongos , Animais , Feminino , Masculino , Córtex Cerebral/fisiologia , Neurônios
10.
Math Biosci ; 372: 109192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640998

RESUMO

Computational models of brain regions are crucial for understanding neuronal network dynamics and the emergence of cognitive functions. However, current supercomputing limitations hinder the implementation of large networks with millions of morphological and biophysical accurate neurons. Consequently, research has focused on simplified spiking neuron models, ranging from the computationally fast Leaky Integrate and Fire (LIF) linear models to more sophisticated non-linear implementations like Adaptive Exponential (AdEX) and Izhikevic models, through Generalized Leaky Integrate and Fire (GLIF) approaches. However, in almost all cases, these models are tuned (and can be validated) only under constant current injections and they may not, in general, also reproduce experimental findings under variable currents. This study introduces an Adaptive GLIF (A-GLIF) approach that addresses this limitation by incorporating a new set of update rules. The extended A-GLIF model successfully reproduces both constant and variable current inputs, and it was validated against the results obtained using a biophysical accurate model neuron. This enhancement provides researchers with a tool to optimize spiking neuron models using classic experimental traces under constant current injections, reliably predicting responses to synaptic inputs, which can be confidently used for large-scale network implementations.


Assuntos
Região CA1 Hipocampal , Interneurônios , Modelos Neurológicos , Células Piramidais , Células Piramidais/fisiologia , Interneurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Animais , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Simulação por Computador
11.
J Physiol ; 602(10): 2343-2358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654583

RESUMO

Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.


Assuntos
Camundongos Transgênicos , Plasticidade Neuronal , Células Piramidais , Animais , Plasticidade Neuronal/fisiologia , Camundongos , Células Piramidais/fisiologia , Neurônios GABAérgicos/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Sinapses/fisiologia , Optogenética , Inibição Neural/fisiologia , Córtex Piriforme/fisiologia , Camundongos Endogâmicos C57BL , Depressão Sináptica de Longo Prazo/fisiologia
12.
Math Biosci ; 371: 109179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521453

RESUMO

Efficient and accurate large-scale networks are a fundamental tool in modeling brain areas, to advance our understanding of neuronal dynamics. However, their implementation faces two key issues: computational efficiency and heterogeneity. Computational efficiency is achieved using simplified neurons, whereas there are no practical solutions available to solve the problem of reproducing in a large-scale network the experimentally observed heterogeneity of the intrinsic properties of neurons. This is important, because the use of identical nodes in a network can generate artifacts which can hinder an adequate representation of the properties of a real network. To this aim, we introduce a mathematical procedure to generate an arbitrary large number of copies of simplified hippocampal CA1 pyramidal neurons and interneurons models, which exhibit the full range of firing dynamics observed in these cells - including adapting, non-adapting and bursting. For this purpose, we rely on a recently published adaptive generalized leaky integrate-and-fire (A-GLIF) modeling approach, leveraging on its ability to reproduce the rich set of electrophysiological behaviors of these types of neurons under a variety of different stimulation currents. The generation procedure is based on a perturbation of model's parameters related to the initial data, firing block, and internal dynamics, and suitably validated against experimental data to ensure that the firing dynamics of any given cell copy remains within the experimental range. A classification procedure confirmed that the firing behavior of most of the pyramidal/interneuron copies was consistent with the experimental data. This approach allows to obtain heterogeneous copies with mathematically controlled firing properties. A full set of heterogeneous neurons composing the CA1 region of a rat hippocampus (approximately 1.2 million neurons), are provided in a database freely available in the live paper section of the EBRAINS platform. By adapting the underlying A-GLIF framework, it will be possible to extend the numerical approach presented here to create, in a mathematically controlled manner, an arbitrarily large number of non-identical copies of cell populations with firing properties related to other brain areas.


Assuntos
Região CA1 Hipocampal , Interneurônios , Modelos Neurológicos , Células Piramidais , Interneurônios/fisiologia , Células Piramidais/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Animais , Ratos , Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Simulação por Computador
13.
J Neurosci Res ; 102(3): e25318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491847

RESUMO

The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.


Assuntos
Prosencéfalo Basal , Complexo Nuclear Basolateral da Amígdala , Neuroanatomia , Neurônios/ultraestrutura , Colinérgicos
14.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474398

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, yet its underlying causes remain elusive. The conventional perspective on disease pathogenesis attributes alterations in neuronal excitability to molecular changes resulting in synaptic dysfunction. Early hyperexcitability is succeeded by a progressive cessation of electrical activity in neurons, with amyloid beta (Aß) oligomers and tau protein hyperphosphorylation identified as the initial events leading to hyperactivity. In addition to these key proteins, voltage-gated sodium and potassium channels play a decisive role in the altered electrical properties of neurons in AD. Impaired synaptic function and reduced neuronal plasticity contribute to a vicious cycle, resulting in a reduction in the number of synapses and synaptic proteins, impacting their transportation inside the neuron. An understanding of these neurophysiological alterations, combined with abnormalities in the morphology of brain cells, emerges as a crucial avenue for new treatment investigations. This review aims to delve into the detailed exploration of electrical neuronal alterations observed in different AD models affecting single neurons and neuronal networks.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Progressão da Doença
15.
Biomolecules ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540722

RESUMO

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann's area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Córtex Cerebral/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo
16.
J Comp Neurol ; 532(3): e25604, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38477395

RESUMO

The hippocampal subfield prosubiculum (ProS), is a conserved neuroanatomic region in mouse, monkey, and human. This area lies between CA1 and subiculum (Sub) and particularly lacks consensus on its boundaries; reports have varied on the description of its features and location. In this report, we review, refine, and evaluate four cytoarchitectural features that differentiate ProS from its neighboring subfields: (1) small neurons, (2) lightly stained neurons, (3) superficial clustered neurons, and (4) a cell sparse zone. ProS was delineated in all cases (n = 10). ProS was examined for its cytoarchitectonic features and location rostrocaudally, from the anterior head through the body in the hippocampus. The most common feature was small pyramidal neurons, which were intermingled with larger pyramidal neurons in ProS. We quantitatively measured ProS pyramidal neurons, which showed (average, width at pyramidal base = 14.31 µm, n = 400 per subfield). CA1 neurons averaged 15.57 µm and Sub neurons averaged 15.63 µm, both were significantly different than ProS (Kruskal-Wallis test, p < .0001). The other three features observed were lightly stained neurons, clustered neurons, and a cell sparse zone. Taken together, these findings suggest that ProS is an independent subfield, likely with distinct functional contributions to the broader interconnected hippocampal network. Our results suggest that ProS is a cytoarchitecturally varied subfield, both for features and among individuals. This diverse architecture in features and individuals for ProS could explain the long-standing complexity regarding the identification of this subfield.


Assuntos
Hipocampo , Neurônios , Humanos , Camundongos , Animais , Hipocampo/fisiologia , Células Piramidais/fisiologia
17.
Int Ophthalmol ; 44(1): 118, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416231

RESUMO

Studies have explored the consequences of excessive exposure to white-light-emitting diodes (LEDs) in the retina. Hence, we aimed to assess the implications of such exposure on structural alterations of the visual cortex, learning and memory, and amelioration by blue-light-blocking lenses (BBLs). Eight-week-old Wistar rats (n = 24) were used for the experiment and divided into four groups (n = 6 in each group) as control, white LED light exposure (LE), BBL Crizal Prevencia-1 (CP), and DuraVision Blue-2 (DB). Animals in the exposure group were exposed to white LED directly for 28 days (12:12-h light/dark cycle), whereas animals in the BBL groups were exposed to similar light with BBLs attached to the LEDs. Post-exposure, a Morris water maze was performed for memory retention, followed by structural analysis of layer 5 pyramidal neurons in the visual cortex. We observed a significant difference (P < 0.001) in the functional test on day 1 and day 2 of training in the LE group. Structural analysis of Golgi-Cox-stained visual cortex layer 5 pyramidal neurons showed significant alterations in the apical and basal branching points (p < 0.001) and basal intersection points (p < 0.001) in the LE group. Post hoc analysis revealed significant changes between (p < 0.001) LE and CP and (p < 0.001) CP and DB groups. Constant and cumulative exposure to white LEDs presented with structural and functional alterations in the visual cortex, which are partly remodeled by BBLs.


Assuntos
Cristalino , Córtex Visual Primário , Ratos , Animais , Ratos Wistar , Células Piramidais , Luz Azul
18.
Exp Neurol ; 374: 114706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311020

RESUMO

Motor cortical circuit functions depend on the coordinated fine-tuning of two functionally diverse neuronal populations: glutamatergic pyramidal neurons providing synaptic excitation and GABAergic interneurons adjusting the response of pyramidal neurons through synaptic inhibition. Microglia are brain resident macrophages which dynamically refine cortical circuits by monitoring perineuronal extracellular matrix and remodelling synapses. Previously, we showed that colony-stimulating factor 1 receptor (CSF1R)-mediated myeloid cell depletion extended the lifespan, but impaired motor functions of MBP29 mice, a mouse model for multiple system atrophy. In order to better understand the mechanisms underlying these motor deficits we characterized the microglial involvement in the cortical balance of GABAergic interneurons and glutamatergic pyramidal neurons in 4-months-old MBP29 mice following CSF1R inhibition for 12 weeks. Lack of myeloid cells resulted in a decreased number of COUP TF1 interacting protein 2-positive (CTIP2+) layer V pyramidal neurons, however in a proportional increase of calretinin-positive GABAergic interneurons in MBP29 mice. While myeloid cell depletion did not alter the expression of important presynaptic and postsynaptic proteins, the loss of cortical perineuronal net area was attenuated by CSF1R inhibition in MBP29 mice. These cortical changes may restrict synaptic plasticity and potentially modify parvalbumin-positive perisomatic input. Collectively, this study suggests, that the lack of myeloid cells shifts the neuronal balance toward an increased inhibitory connectivity in the motor cortex of MBP29 mice thereby potentially deteriorating motor functions.


Assuntos
Córtex Motor , Atrofia de Múltiplos Sistemas , Camundongos , Animais , Neurônios , Células Piramidais/fisiologia , Interneurônios/fisiologia , Receptores Proteína Tirosina Quinases , Células Mieloides
19.
Neurosci Bull ; 40(7): 887-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321347

RESUMO

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.


Assuntos
Região CA1 Hipocampal , Camundongos Knockout , Plasticidade Neuronal , Células Piramidais , Comportamento Social , Sinapses , Animais , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Memória/fisiologia , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos Endogâmicos C57BL
20.
FEBS Open Bio ; 14(4): 555-573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342633

RESUMO

Anesthetics have varying physiological effects, but most notably alter ion channel kinetics. Alfaxalone is a rapid induction and washout neuroactive anesthetic, which potentiates γ-aminobutyric acid (GABA)-activated GABAA receptor (GABAA-R) currents. This study aims to identify any long-term effects of alfaxalone sedation on pyramidal neuron action potential and GABAA-R properties, to determine if its impact on neuronal function can be reversed in a sufficiently short timeframe to allow for same-day electrophysiological studies in goldfish brain. The goldfish (Carassius auratus) is an anoxia-tolerant vertebrate and is a useful model to study anoxia tolerance mechanisms. The results show that alfaxalone sedation did not significantly impact action potential properties. Additionally, the acute application of alfaxalone onto naive brain slices caused the potentiation of whole-cell GABAA-R current decay time and area under the curve. Following whole-animal sedation with alfaxalone, a 3-h wash of brain slices in alfaxalone-free saline, with saline exchanged every 30 min, was required to remove any potentiating impact of alfaxalone on GABAA-R whole-cell currents. These results demonstrate that alfaxalone is an effective anesthetic for same-day electrophysiological experiments with goldfish brain slices.


Assuntos
Anestésicos , Pregnanodionas , Receptores de GABA-A , Animais , Receptores de GABA-A/fisiologia , Potenciais de Ação , Carpa Dourada/fisiologia , Ácido gama-Aminobutírico , Células Piramidais/fisiologia , Anestésicos/farmacologia , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA