Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 21(12): 146-154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124774

RESUMO

PURPOSE: To evaluate the dosimetric impact of daily positioning variations measured with cone-beam computed tomography (CBCT) on whole-breast radiotherapy patients treated in the prone position. METHODS: Daily CBCT was prospectively acquired for 30 consecutive patients positioned prone. Treatment for early-stage (≤II) breast cancer was prescribed with standard dose (50 Gy/25 fractions) or hypofractionation (42.56 Gy/16 fractions) for 13 and 17 patients, respectively. Systematic and random errors were calculated from the translational CBCT shifts and used to determine population-based setup margins. Mean translations (±one standard deviation) for each patient were used to simulate the dosimetric impact on targets (PTV_eval and lumpectomy cavity), heart, and lung. Paired Student's t tests at α = 0.01 were used to compare dose metrics after correction for multiple testing (P < 0.002). Significant correlation coefficients were used to identify associations (P < 0.01). RESULTS: Of 597 total fractions, 20 ± 13% required patient rotation. Mean translations were 0.29 ± 0.27 cm, 0.41 ± 0.34 cm, and 0.48 ± 0.33 cm in the anterior-posterior, superior-inferior, and lateral directions leading to calculated setup margins of 0.63, 0.88, and 1.10 cm, respectively. Average three-dimensional (3D) shifts correlated with the maximum distance of breast tissue from the sternum (r = 0.62) but not with body-mass index. Simulated shifts showed significant, but minor, changes in dose metrics for PTV_eval, lung, and heart. For left-sided treatments (n = 18), mean heart dose increased from 109 ± 75 cGy to 148 ± 115 cGy. Shifts from the original plan caused PTV_eval hotspots (V105%) to increase by 5.2% ± 3.8%, which correlated with the total MU of wedged fields (r = 0.59). No significant change in V95% to the cavity was found. CONCLUSIONS: Large translational variations that occur when positioning prone breast patients had small but significant dosimetric effects on 3DCRT plans. Daily CBCT may still be necessary to correct for rotational variations that occur in 20% of treatments. To maintain planned dose metrics, unintended beam shifts toward the heart and the contribution of wedged fields should be minimized.


Assuntos
Neoplasias da Mama , Radioterapia Conformacional , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Decúbito Ventral , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Artigo em Inglês | MEDLINE | ID: mdl-32095564

RESUMO

PURPOSE: To evaluate different registration methods, setup margins and number of corrections for CBCT-based position verification for oesophageal cancer and to evaluate anatomical changes during the course of radiotherapy treatment. METHODS: From 50 patients, 440 CBCT-scans were registered automatically using a soft tissue or bone registration algorithm and compared to the clinical match. Moreover, relevant anatomical changes were monitored. A sub-analysis was performed to evaluate if tumour location influenced setup variations. Margin calculation was performed and the number of setup corrections was estimated. Results were compared to a patient group previously treated with MV-EPID based position verification. RESULTS: CBCT-based setup variations were smaller than EPID-based setup variations, resulting in smaller setup margins of 5.9 mm (RL), 7.5 mm (CC) and 4.7 mm (AP) versus 6.0 mm, 7.8 mm and 5.5 mm, respectively. A reduction in average number of setup corrections per patient was found from 0.75 to 0.36. From all automatically registered CBCT-scans, a clipbox around PTV and vertebras combined with soft tissue registration resulted in the smallest setup margins of 5.9 mm (RL), 7.7 mm (CC), 4.8 mm (AP) and smallest average number of corrections of 0.38. For distally located tumours, a setup margin of 7.7 mm (CC) was required compared to 5.6 mm for proximal tumours. Reduction of GTV volume, heart volume and change in diaphragm position were observed in 16, 10 and 15 patients, respectively. CONCLUSIONS: CBCT-based set-up variations are smaller than EPID-based variations and vary according to tumour location. When using kV-CBCT a large variety of anatomical changes is revealed, which cannot be observed with MV-EPID.

3.
Rep Pract Oncol Radiother ; 20(4): 292-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26109917

RESUMO

AIM: Patient setup errors were aimed to be reduced in radiotherapy (RT) of head-and-neck (H&N) cancer. Some remedies in patient setup procedure were proposed for this purpose. BACKGROUND: RT of H&N cancer has challenges due to patient rotation and flexible anatomy. Residual position errors occurring in treatment situation and required setup margins were estimated for relevant bony landmarks after the remedies made in setup process and compared with previous results. MATERIALS AND METHODS: The formation process for thermoplastic masks was improved. Also image matching was harmonized to the vertebrae in the middle of the target and a 5 mm threshold was introduced for immediate correction of systematic errors of the landmarks. After the remedies, residual position errors of bony landmarks were retrospectively determined from 748 orthogonal X-ray images of 40 H&N cancer patients. The landmarks were the vertebrae C1-2, C5-7, the occiput bone and the mandible. The errors include contributions from patient rotation, flexible anatomy and inter-observer variation in image matching. Setup margins (3D) were calculated with the Van Herk formula. RESULTS: Systematic residual errors of the landmarks were reduced maximally by 49.8% (p ≤ 0.05) and the margins by 3.1 mm after the remedies. With daily image guidance the setup margins of the landmarks were within 4.4 mm, but larger margins of 6.4 mm were required for the mandible. CONCLUSIONS: Remarkable decrease in the residual errors of the bony landmarks and setup margins were achieved through the remedies made in the setup process. The importance of quality assurance of the setup process was demonstrated.

4.
Rep Pract Oncol Radiother ; 19(6): 369-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25337409

RESUMO

AIM: The aim was to find an optimal setup image matching position and minimal setup margins to maximally spare the organs at risk in breast radiotherapy. BACKGROUND: Radiotherapy of breast cancer is a routine task but has many challenges. We investigated residual position errors in whole breast radiotherapy when orthogonal setup images were matched to different bony landmarks. MATERIALS AND METHODS: A total of 1111 orthogonal setup image pairs and tangential field images were analyzed retrospectively for 50 consecutive patients. Residual errors in the treatment field images were determined by matching the orthogonal setup images to the vertebrae, sternum, ribs and their compromises. The most important region was the chest wall as it is crucial for the dose delivered to the heart and the ipsilateral lung. Inter-observer variation in online image matching was investigated. RESULTS: The best general image matching position was the compromise of the vertebrae, ribs and sternum, while the worst position was the vertebrae alone (p ≤ 0.03). The setup margins required for the chest wall varied from 4.3 mm to 5.5 mm in the lung direction while in the superior-inferior (SI) direction the margins varied from 5.1 mm to 7.6 mm. The inter-observer variation increased the minimal margins by approximately 1 mm. The margin of the lymph node areas should be at least 4.8 mm. CONCLUSIONS: Setup margins can be reduced by proper selection of a matching position for the orthogonal setup images. To retain the minimal margins sufficient, systematic error of the chest wall should not exceed 4 mm in the tangential field image.

5.
Med Dosim ; 39(1): 74-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24393499

RESUMO

We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance. The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients.


Assuntos
Ossos Pélvicos/diagnóstico por imagem , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Pontos de Referência Anatômicos/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA