Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(31)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38663418

RESUMO

Topological insulator (TI) surface states exert strong spin-orbit torques. When the magnetization is in the plane its interaction with the TI conduction electrons is non-trivial, and is influenced by extrinsic spin-orbit scattering. This is expected to be strong in TIs but is difficult to calculate and to measure unambiguously. Here we show that extrinsic spin-orbit scattering sizably renormalizes the surface state spin-orbit torque resulting in a strong density dependence. The magnitude of the renormalization of the spin torque and the effect of spin-orbit scattering on the relative sizes of the in-plane and out-of-plane field-like torques have strong implications for experiment: We propose two separate experimental signatures for the measurement of its presence.

2.
Adv Mater ; 36(24): e2312008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501999

RESUMO

Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

3.
Natl Sci Rev ; 10(10): nwad093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37671323

RESUMO

Versatile memory is strongly desired for end users, to protect their information in the information era. In particular, bit-level switchable memory that can be switched from rewritable to read-only function would allow end users to prevent important data being tampered with. However, no such switchable memory has been reported. We demonstrate that the rewritable function can be converted into read-only function by applying a sufficiently large current pulse in a U-shaped domain-wall memory, which comprises an asymmetric Pt/Co/Ru/AlOx heterostructure with strong Dzyaloshinskii-Moriya interaction. Wafer-scale switchable magnetic domain-wall memory arrays on 4-inch Si/SiO2 substrate are demonstrated. Furthermore, we confirm that the information can be stored in rewritable or read-only states at bit level according to the security needs of end users. Our work not only provides a solution for personal confidential data, but also paves the way for developing multifunctional spintronic devices.

4.
Adv Mater ; 35(45): e2304905, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37568279

RESUMO

Topological insulators have attracted great interest as generators of spin-orbit torques (SOTs) in spintronic devices. Bi1-x Sbx is a prominent topological insulator that has a high charge-to-spin conversion efficiency. However, the origin and magnitude of the SOTs induced by current-injection in Bi1-x Sbx remain controversial. Here, the investigation of the SOTs and spin Hall magnetoresistance resulting from charge-to-spin conversion in twin-free epitaxial layers of Bi0.9 Sb0.1 (0001) coupled to FeCo are investigated, and compared with those of amorphous Bi0.9 Sb0.1 . A large charge-to-spin conversion efficiency of 1 in the first case and less than 0.1 in the second is found, confirming crystalline Bi0.9 Sb0.1 as a strong spin-injector material. The SOTs and spin Hall magnetoresistance are independent of the direction of the electric current, indicating that charge-to-spin conversion in single-crystal Bi0.9 Sb0.1 (0001) is isotropic despite the strong anisotropy of the topological surface states. Further, it is found that the damping-like SOT has a non-monotonic temperature dependence with a minimum at 20 K. By correlating the SOT with resistivity and weak antilocalization measurements, charge-spin conversion is concluded to occur via thermally excited holes from the bulk states above 20 K, and conduction through the isotropic surface states with increasing spin polarization due to decreasing electron-electron scattering below 20 K.

5.
Adv Mater ; 35(39): e2301608, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37272785

RESUMO

Spin-orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy-efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in-plane magnetic switching. Unconventional spin-orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic-based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin-orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2 ), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin-orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2 thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy-efficient magnetic switching in spintronic devices.

6.
Natl Sci Rev ; 10(2): nwac154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36872930

RESUMO

Non-collinear antiferromagnetic Weyl semimetals, combining the advantages of a zero stray field and ultrafast spin dynamics, as well as a large anomalous Hall effect and the chiral anomaly of Weyl fermions, have attracted extensive interest. However, the all-electrical control of such systems at room temperature, a crucial step toward practical application, has not been reported. Here, using a small writing current density of around 5 × 106 A·cm-2, we realize the all-electrical current-induced deterministic switching of the non-collinear antiferromagnet Mn3Sn, with a strong readout signal at room temperature in the Si/SiO2/Mn3Sn/AlOx structure, and without external magnetic field or injected spin current. Our simulations reveal that the switching originates from the current-induced intrinsic non-collinear spin-orbit torques in Mn3Sn itself. Our findings pave the way for the development of topological antiferromagnetic spintronics.

7.
Proc Jpn Acad Ser B Phys Biol Sci ; 97(9): 499-519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759072

RESUMO

An emerging field of spintronics, spin-orbitronics, aims to discover novel phenomena and functionalities originating from spin-orbit coupling in solid-state devices. The development of spin-orbitronics promises a fundamental understanding of spin physics in condensed matter, as well as smaller, faster, and far-more energy-efficient spin-based devices. Of particular importance in this field is current-induced spin-orbit torques, which trigger magnetic dynamics by the transfer of angular momentum from an atomic lattice to local magnetization through the spin-orbit coupling. The spin-orbit torque has attracted extensive attention for its fascinating relativistic and quantum mechanical nature, as well as prospective nanoelectronic applications. In this article, we review our studies on the generation and manipulation of current-induced spin-orbit torques.


Assuntos
Física , Torque , Movimento (Física) , Estudos Prospectivos
8.
Adv Sci (Weinh) ; 8(18): e2100847, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323390

RESUMO

Spin-orbit torque (SOT) opens an efficient and versatile avenue for the electrical manipulation of magnetization in spintronic devices. The enhancement of SOT efficiency and reduction of power consumption are key points for the implementation of high-performance SOT devices, which strongly rely on the spin-orbit coupling (SOC) strength and magnetic properties of ferromagnetic/non-magnetic heterostructures. Recently, van der Waals-layered materials have shown appealing properties for use in efficient SOT applications. On the one hand, transition-metal dichalcogenides, topological insulators, and graphene-based heterostructures possess appreciable SOC strength. This feature can efficiently converse the charge current into spin current and result in large SOT. On the other hand, the newly discovered layered magnetic materials provide ultra-thin and gate-tunable ferromagnetic candidates for high-performance SOT devices. In this review, the latest advancements of SOT research in various layered materials are summarized. First, a brief introduction of SOT is given. Second, SOT studies of various layered materials and heterostructures are summarized. Subsequently, progresses on SOT-induced magnetization switching are presented. Finally, current challenges and prospects for future development are suggested.

9.
Adv Mater ; 33(36): e2103672, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302404

RESUMO

Neuromorphic computing has become an increasingly popular approach for artificial intelligence because it can perform cognitive tasks more efficiently than conventional computers. However, it remains challenging to develop dedicated hardware for artificial neural networks. Here, a simple bilayer spintronic device for hardware implementation of neuromorphic computing is demonstrated. In L11 -CuPt/CoPt bilayer, current-inducted field-free magnetization switching by symmetry-dependent spin-orbit torques shows a unique domain nucleation-dominated magnetization reversal, which is not accessible in conventional bilayers. Gradual domain nucleation creates multiple intermediate magnetization states which form the basis of a sigmoidal neuron. Using the L11 -CuPt/CoPt bilayer as a sigmoidal neuron, the training of a deep learning network to recognize written digits, with a high recognition rate (87.5%) comparable to simulation (87.8%) is further demonstrated. This work offers a new scheme of implementing artificial neural networks by magnetic domain nucleation.


Assuntos
Cobalto/química , Cobre/química , Aprendizado Profundo , Platina/química , Algoritmos , Simulação por Computador , Sistemas Computacionais , Redes Neurais de Computação , Neurônios , Torque
10.
Adv Mater ; 32(31): e2002607, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32596934

RESUMO

Due to its inherent superior perpendicular magnetocrystalline anisotropy, the FePt in L10 phase enables magnetic storage and memory devices with ultrahigh capacity. However, reversing the FePt magnetic state, and therefore encoding information, has proven to be extremely difficult. Here, it is demonstrated that an electric current can exert a large spin torque on an L10 FePt magnet, ultimately leading to reversible magnetization switching. The spin torque monotonically increases with increasing FePt thickness, exhibiting a bulk characteristic. Meanwhile, the spin torque effective fields and switching efficiency increase as the FePt approaches higher chemical ordering with stronger spin-orbit coupling. The symmetry breaking that generates spin torque within L10 FePt is shown to arise from an inherent structural gradient along the film normal direction. By artificially reversing the structural gradient, an opposite spin torque effect in L10 FePt is demonstrated. At last, the role of the disorder gradient in generating a substantial torque in a single ferromagnet is supported by theoretical calculations. These results will push forward the frontier of material systems for generating spin torques and will have a transformative impact on magnetic storage and spin memory devices with simple architecture, ultrahigh density, and readily application.

11.
Adv Mater ; 32(35): e1907148, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32141681

RESUMO

Control of magnetization in magnetic nanostructures is essential for development of spintronic devices because it governs fundamental device characteristics such as energy consumption, areal density, and operation speed. In this respect, spin-orbit torque (SOT), which originates from the spin-orbit interaction, has been widely investigated due to its efficient manipulation of the magnetization using in-plane current. SOT spearheads novel spintronic applications including high-speed magnetic memories, reconfigurable logics, and neuromorphic computing. Herein, recent advances in SOT research, highlighting the considerable benefits and challenges of SOT-based spintronic devices, are reviewed. First, the materials and structural engineering that enhances SOT efficiency are discussed. Then major experimental results for field-free SOT switching of perpendicular magnetization are summarized, which includes the introduction of an internal effective magnetic field and the generation of a distinct spin current with out-of-plane spin polarization. Finally, advanced SOT functionalities are presented, focusing on the demonstration of reconfigurable and complementary operation in spin logic devices.

12.
Adv Mater ; 32(7): e1906021, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31930776

RESUMO

Being able to electrically manipulate the magnetic properties in recently discovered van der Waals ferromagnets is essential for their integration in future spintronics devices. Here, the magnetization of a semiconducting 2D ferromagnet, i.e., Cr2 Ge2 Te6 , is studied using the anomalous Hall effect in Cr2 Ge2 Te6 /tantalum heterostructures. The thinner the flakes, hysteresis and remanence in the magnetization loop with out-of-plane magnetic fields become more prominent. In order to manipulate the magnetization in such thin flakes, a combination of an in-plane magnetic field and a charge current flowing through Ta-a heavy metal exhibiting giant spin Hall effect-is used. In the presence of in-plane fields of 20 mT, charge current densities as low as 5 × 105 A cm-2 are sufficient to switch the out-of-plane magnetization of Cr2 Ge2 Te6 . This finding highlights that current densities required for spin-orbit torque switching of Cr2 Ge2 Te6 are about two orders of magnitude lower than those required for switching nonlayered metallic ferromagnets such as CoFeB. The results presented here show the potential of 2D ferromagnets for low-power memory and logic applications.

13.
Adv Mater ; : e1802837, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29962099

RESUMO

The emerging field of nanomagnonics utilizes high-frequency waves of magnetization-spin waves-for the transmission and processing of information on the nanoscale. The advent of spin-transfer torque has spurred significant advances in nanomagnonics, by enabling highly efficient local spin wave generation in magnonic nanodevices. Furthermore, the recent emergence of spin-orbitronics, which utilizes spin-orbit interaction as the source of spin torque, has provided a unique ability to exert spin torque over spatially extended areas of magnonic structures, enabling enhanced spin wave transmission. Here, it is experimentally demonstrated that these advances can be efficiently combined. The same spin-orbit torque mechanism is utilized for the generation of propagating spin waves, and for the long-range enhancement of their propagation, in a single integrated nanomagnonic device. The demonstrated system exhibits a controllable directional asymmetry of spin wave emission, which is highly beneficial for applications in nonreciprocal magnonic logic and neuromorphic computing.

14.
Adv Mater ; 30(31): e1801318, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931713

RESUMO

Spin-orbit torque (SOT)-induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin-logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in-plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange-coupled with the in-plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin-logic devices.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33060887

RESUMO

We report on the static and dynamic magnetic properties of W/CoFeB/Ta/CoFeB/MgO stacks, where the CoFeB layer is split in two by a 0.3 nm-thick Ta "dusting" layer. A total CoFeB thickness between 1.2 and 2.4 nm is studied. Perpendicular magnetic anisotropy is obtained for thickness below 1.8 nm even at the as-deposited stacks, and it is enhanced after annealing. Saturation magnetization is 1520 (1440) kA/m before (after) annealing, increased compared to non-split CoFeB layers. Ferromagnetic resonance measurements show that high magnetic anisotropy energy may be achieved (effective anisotropy field 0.571 ± 0.003 T), combined to a moderate Gilbert damping (0.030 ± 0.001). We argue that the above characteristics make the split-CoFeB system advantageous for spintronics applications.

16.
Nano Lett ; 17(12): 7234-7241, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148808

RESUMO

The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA