Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Neuromolecular Med ; 25(4): 644-649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684514

RESUMO

Transcriptional and proteomics analyses in human fragile X syndrome (FXS) neurons identified markedly reduced expression of COMT, a key enzyme involved in the metabolism of catecholamines, including dopamine, epinephrine and norepinephrine. FXS is the most common genetic cause of intellectual disability and autism spectrum disorders. COMT encodes for catechol-o-methyltransferase and its association with neuropsychiatric disorders and cognitive function has been extensively studied. We observed a significantly reduced level of COMT in in FXS human neural progenitors and neurons, as well as hippocampal neurons from Fmr1 null mice. We show that deficits in COMT were associated with an altered response in an assay of dopaminergic activity in Fmr1 null mice. These findings demonstrate that loss of FMRP downregulates COMT expression and affects dopamine signaling in FXS, and supports the notion that targeting catecholamine metabolism may be useful in regulating certain neuropsychiatric aspects of FXS.


Assuntos
Catecol O-Metiltransferase , Síndrome do Cromossomo X Frágil , Animais , Humanos , Camundongos , Catecol O-Metiltransferase/genética , Dopamina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Neurônios/metabolismo
2.
Bioengineering (Basel) ; 10(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829686

RESUMO

Currently, all the existing treatments for Alzheimer's disease (AD) fail to stall progression due to longer duration of time between onset of the symptoms and diagnosis of the disease, raising the necessity of effective diagnostics and novel treatment. Specific molecular regulation of the onset and progression of disease is not yet elucidated. This warranted investigation of the role of Wnt signaling regulators which are thought to be involved in neurogenesis. The AD model was established using amyloid beta (Aß) in human mesenchymal stem cells derived from amniotic membranes which were differentiated into neuronal cell types. In vivo studies were carried out with Aß or a Wnt antagonist, AD201, belonging to the sFRP family. We further created an AD201-knockdown in vitro model to determine the role of Wnt antagonism. BACE1 upregulation, ChAT and α7nAChR downregulation with synapse and functionality loss with increases in ROS confirmed the neurodegeneration. Reduced ß-catenin and increased AD201 expression indicated Wnt/canonical pathway inhibition. Similar results were exhibited in the in vivo study along with AD-associated behavioural and molecular changes. AD201-knockdown rescued neurons from Aß-induced toxicity. We demonstrated for the first time a role of AD201 in Alzheimer's disease manifestation, which indicates a promising disease target and biomarker.

3.
Cell ; 186(3): 513-527.e19, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657441

RESUMO

Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.


Assuntos
Desenvolvimento Embrionário , Mesoderma , Somitos , Animais , Humanos , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Mesoderma/fisiologia , Morfogênese , Via de Sinalização Wnt , Organoides/metabolismo
4.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890127

RESUMO

Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.

5.
Expert Rev Hematol ; 14(11): 1005-1011, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34657533

RESUMO

INTRODUCTION: Drug repositioning (DR) is defined as determining new therapeutic applications for existing drugs. This approach is advantageous over de novo drug discovery in accelerating clinical development, in terms of lower costs, a shortened development period, a well-known action mechanism, a feasible dosage, and an acceptable safety profile. AREAS COVERED: This work was aimed at reviewing agents with successful DR in hematology. EXPERT OPINION: Thalidomide and plerixafor have been successfully repositioned for treating multiple myeloma and harvesting peripheral blood stem cells, respectively. The former was originally developed as a sedative and the latter as an anti-HIV drug. Currently, the feasibility of repositioning various agents is being explored (e.g. an anti-influenza virus drug oseltamivir for primary immune thrombocytopenia, an anti-HIV drug abacavir for adult T-cell leukemia, and a macrolide antibiotic clarithromycin for multiple myeloma). Furthermore, bosutinib for chronic myeloid leukemia or the antiplatelet drug cilostazol have been suggested to have clinical benefits for the management of amyotrophic lateral sclerosis and ischemic stroke, respectively. To promote DR, effective application of artificial intelligence or stem cell models, comprehensive database construction shared between academia and pharmaceutical companies, suitable handling of drug patents, and wide cooperation in the area of specialty are warranted.


Assuntos
Hematologia , Compostos Heterocíclicos , Inteligência Artificial , Reposicionamento de Medicamentos , Mobilização de Células-Tronco Hematopoéticas , Humanos
6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502539

RESUMO

Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.


Assuntos
Diferenciação Celular/fisiologia , Descoberta de Drogas/métodos , Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Musculares/fisiologia , Distrofias Musculares/terapia , Animais , Distrofina/genética , Distrofina/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células Musculares/citologia , Distrofias Musculares/genética , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia
7.
Brain ; 144(7): 1985-1993, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693641

RESUMO

We recently described aberrantly increased cytoplasmic SFPQ intron-retaining transcripts (IRTs) and concurrent SFPQ protein mislocalization as new hallmarks of amyotrophic lateral sclerosis (ALS). However, the generalizability and potential roles of cytoplasmic IRTs in health and disease remain unclear. Here, using time-resolved deep sequencing of nuclear and cytoplasmic fractions of human induced pluripotent stem cells undergoing motor neurogenesis, we reveal that ALS-causing VCP gene mutations lead to compartment-specific aberrant accumulation of IRTs. Specifically, we identify >100 IRTs with increased cytoplasmic abundance in ALS samples. Furthermore, these aberrant cytoplasmic IRTs possess sequence-specific attributes and differential predicted binding affinity to RNA binding proteins. Remarkably, TDP-43, SFPQ and FUS-RNA binding proteins known for nuclear-to-cytoplasmic mislocalization in ALS-abundantly and specifically bind to this aberrant cytoplasmic pool of IRTs. Our data are therefore consistent with a novel role for cytoplasmic IRTs in regulating compartment-specific protein abundance. This study provides new molecular insight into potential pathomechanisms underlying ALS and highlights aberrant cytoplasmic IRTs as potential therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica , Citoplasma/metabolismo , Íntrons , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Mutação , Proteína com Valosina/genética
8.
Genome Biol ; 22(1): 73, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663567

RESUMO

BACKGROUND: Many neurodegenerative diseases develop only later in life, when cells in the nervous system lose their structure or function. In many forms of neurodegenerative diseases, this late-onset phenomenon remains largely unexplained. RESULTS: Analyzing single-cell RNA sequencing from Alzheimer's disease (AD) and Huntington's disease (HD) patients, we find increased transcriptional heterogeneity in disease-state neurons. We hypothesize that transcriptional heterogeneity precedes neurodegenerative disease pathologies. To test this idea experimentally, we use juvenile forms (72Q; 180Q) of HD iPSCs, differentiate them into committed neuronal progenitors, and obtain single-cell expression profiles. We show a global increase in gene expression variability in HD. Autophagy genes become more stable, while energy and actin-related genes become more variable in the mutant cells. Knocking down several differentially variable genes results in increased aggregate formation, a pathology associated with HD. We further validate the increased transcriptional heterogeneity in CHD8+/- cells, a model for autism spectrum disorder. CONCLUSIONS: Overall, our results suggest that although neurodegenerative diseases develop over time, transcriptional regulation imbalance is present already at very early developmental stages. Therefore, an intervention aimed at this early phenotype may be of high diagnostic value.


Assuntos
Regulação da Expressão Gênica , Heterogeneidade Genética , Predisposição Genética para Doença , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Células-Tronco Pluripotentes/metabolismo , Adulto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Patrimônio Genético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , RNA-Seq , Análise de Célula Única/métodos
9.
Dev Neurobiol ; 81(5): 696-709, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33619909

RESUMO

Genetic diseases involving overactivation of the mechanistic target of rapamycin (mTOR) pathway, so-called "mTORopathies," often manifest with malformations of cortical development (MCDs), epilepsy, and cognitive impairment. How mTOR pathway hyperactivation results in abnormal human cortical development is poorly understood. To study the effect of mTOR hyperactivity on early stages of cortical development, we focused on Pretzel Syndrome (polyhydramnios, megalencephaly, symptomatic epilepsy; PMSE syndrome), a rare mTORopathy caused by homozygous germline mutations in the STRADA gene. We developed a human cortical organoid (hCO) model of PMSE and examined morphology and size for the first 2 weeks of organoid growth, and cell type composition at weeks 2, 8, and 12 of differentiation. In the second week, PMSE hCOs enlarged more rapidly than controls and displayed an abnormal Wnt pathway-dependent increase in neural rosette structures. PMSE hCOs also exhibited delayed neurogenesis, decreased subventricular zone progenitors, increased proliferation and cell death, and an abnormal architecture of primary cilia. At week 8, PMSE hCOs had fewer deep layer neurons. By week 12, neurogenesis recovered in PMSE organoids, but they displayed increased outer radial glia, a cell type thought to contribute to the expansion of the human cerebral cortex. Together, these findings suggest that megalencephaly in PMSE arises from the expansion of neural stem cells in early corticogenesis and potentially also from increased outer radial glial at later gestational stages. The delayed neuronal differentiation in PMSE organoids demonstrates the important role the mTOR pathway plays in the maintenance and expansion of the stem cell pool.


Assuntos
Epilepsia , Megalencefalia , Córtex Cerebral , Epilepsia/genética , Feminino , Humanos , Megalencefalia/genética , Neurogênese , Organoides/metabolismo , Gravidez
10.
Mol Cell Neurosci ; 107: 103529, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32629111

RESUMO

L-type voltage-gated calcium channels play an essential role in various physiological systems including neuronal excitation and any mutation or dysfunction in the channel has significant impact on human brain function resulting in psychiatric diseases. Particular gain-of-function mutations in CACNA1C encoding CaV1.2 have been associated with Timothy Syndrome, a devastating disease with a multi-organ phenotype. Efforts to understand the underlying pathophysiology and find therapeutic strategy have been spurred recently with the advances in stem cell technology, in particular those arising from patient-derived sources. In this review, we report on the recent advances in Timothy Syndrome research and on the methods used to study this disease.


Assuntos
Transtorno Autístico/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/metabolismo , Sindactilia/metabolismo , Animais , Transtorno Autístico/genética , Canais de Cálcio Tipo L/genética , Humanos , Síndrome do QT Longo/genética , Mutação/genética , Fenótipo , Sindactilia/genética
11.
J Chem Neuroanat ; 104: 101752, 2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31996329

RESUMO

Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.

12.
Med Hypotheses ; 136: 109530, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31862686

RESUMO

BACKGROUND: The hierarchical model of stem cell genesis is based on the idea that the number of cell divisions between the zygote and fully differentiated epithelial cells is kept close to the minimum, which is log to the base 2 of the total number of cells produced in a human lifetime. The model assumes the orderly progression of stem cell divisions requires precise control at every stage in development. If the orderly progression is maintained then cancer will be rare. A prediction of the model is that if the orderly progression of the stem cell hierarchy is disturbed by trauma, ulceration or inflammation then cancer will occur. HYPOTHESIS: Bacterial induced inflammation in breast ducts disturbs the stem cell hierarchy and is a cause of breast cancer. EVIDENCE: Mammalian milk is not sterile. It contains a range of bacteria, derived endogenously by the entero-mammary circulation. The dominant flora consists of lactose fermenting bacteria. Pregnancy and breast feeding reduce the risk of subsequent breast cancer. The implication is that a lactose fermenting bacterial flora in breast ducts is protective. Malignant and benign breast tissue contains bacteria derived endogenously, but studies so far have not revealed a specific flora associated with malignancy. Periodontitis is associated with oral, oesophageal, colonic, pancreatic, prostatic and breast cancer. The pathogenic bacteria which cause periodontitis spread endogenously to cause inflammation at other epithelial sites. Meta-analysis of epidemiological studies shows that the consumption of yoghurt is associated with a reduction in the risk of breast cancer. CONCLUSION: The hypothesis, although not proven, is supported by the available evidence. Lactose fermenting bacteria protect but pathogenic bacteria which induce inflammation raise the risk of breast cancer. The consumption of yoghurt also appears to be protective.


Assuntos
Infecções Bacterianas/diagnóstico , Neoplasias da Mama/microbiologia , Neoplasias da Mama/fisiopatologia , Inflamação/microbiologia , Células-Tronco/citologia , Mama/microbiologia , Divisão Celular , Progressão da Doença , Feminino , Humanos , Lactação , Leite Humano/microbiologia , Gravidez
13.
Heart Rhythm ; 15(1): 137-144, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28823602

RESUMO

Inherited arrhythmia syndromes, including familial long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, and Brugada syndrome, can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden deaths in the young. Identification of genetic mutations and pathophysiological changes that underlie disease development can inform clinical practice and guide novel drug development. However, disease mechanisms in a large number of patients remain elusive and pharmacologic treatment is suboptimal, so many patients rely on implantable cardioverter-defibrillator therapy. Induced pluripotent stem cell models of disease facilitate analysis of disease mechanisms in patient-specific cardiomyocytes, overcoming limitations of animal models and human tissue restrictions. This review outlines how studies using induced pluripotent stem cell-derived cardiomyocytes are contributing to our understanding of the mechanisms that underpin disease pathogenesis and their potential to facilitate new pharmacologic therapies and personalized medicine.


Assuntos
Arritmias Cardíacas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos/citologia , Animais , Humanos
14.
Stem Cell Res ; 19: 12-16, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28412999

RESUMO

A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Turner/patologia , Aborto Espontâneo , Biomarcadores/metabolismo , Linhagem Celular , Reprogramação Celular , Vilosidades Coriônicas/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Síndrome de Turner/metabolismo
16.
Anticancer Res ; 36(9): 4629-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27630305

RESUMO

BACKGROUND: Cancer stem cells are tumor cells that present self-renewal, clonal tumor initiation capacity and clonal long-term repopulation potential. We have previously demonstrated that the co-expression of the breast cancer stem cell (BCSC) markers hyaluronan receptor (CD44) and aldehyde dehydrogenase-1 (ALDH1) in ductal carcinomas in situ could be determinant for disease progression. Combining these established BCSC markers with Ki-67 to evaluate quiescence we sought to identify, evaluate the distribution and estimate the mean percentages of CD44(+)ALDH1(+)Ki-67(-) breast cells. MATERIALS AND METHODS: Triple-immunohistochemistry for CD44, ALDH1 and Ki-67 was applied in a series of 16 normal, 54 non-malignant and 155 malignant breast tissues. Clinical relevance was inferred by associations with markers of breast cancer behavior, progression and survival. RESULTS: The mean percentages of cells with this phenotype increased significantly from non-malignant lesions to high-grade ductal carcinomas in situ, decreasing in invasive ductal carcinomas, as also evidenced by an inverse correlation with histological grade and tumor size. The mean percentage of CD44(+)ALDH1(+)Ki-67(-) cells was also significantly higher in women who developed distant metastasis and died due to breast cancer, and a significant association with human epidermal growth factor type 2 (HER2) negativity was observed. CONCLUSION: Our novel findings indicate that CD44(+)ALDH1(+)Ki-67(-) tumor cells may favor distant metastasis and can predict overall survival in patients with ductal carcinomas of the breast. More importantly, quiescence may have a crucial role for tumor progression, treatment resistance and metastatic ability of BCSCs.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Isoenzimas/metabolismo , Antígeno Ki-67/metabolismo , Retinal Desidrogenase/metabolismo , Adulto , Família Aldeído Desidrogenase 1 , Mama/metabolismo , Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Metástase Neoplásica , Fenótipo , Receptor ErbB-2/metabolismo , Resultado do Tratamento
17.
Stem Cell Res Ther ; 7(1): 139, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27649756

RESUMO

Laminopathy is a disease closely related to deficiency of the nuclear matrix protein lamin A/C or failure in prelamin A processing, and leads to accumulation of the misfold protein causing progeria. The resultant disrupted lamin function is highly associated with abnormal nuclear architecture, cell senescence, apoptosis, and unstable genome integrity. To date, the effects of loss in nuclear integrity on the susceptible organ, striated muscle, have been commonly associated with muscular dystrophy, dilated cardiac myopathy (DCM), and conduction defeats, but have not been studied intensively. In this review, we aim to summarize recent breakthroughs in an in vivo laminopathy model and in vitro study using patient-specific human induced pluripotent stem cells (iPSCs) that reproduce the pathophysiological phenotype for further drug screening. We describe several in-vivo transgenic mouse models to elucidate the effects of Lmna H222P, N195K mutations, and LMNA knockout on cardiac function, in terms of hemodynamic and electrical signal propagation; certain strategies targeted on stress-related MAPK are mentioned. We will also discuss human iPSC cardiomyocytes serving as a platform to reveal the underlying mechanisms, such as the altered mechanical sensation in electrical coupling of the heart conduction system and ion channel alternation in relation to altered nuclear architecture, and furthermore to enable screening of drugs that can attenuate this cardiac premature aging phenotype by inhibition of prelamin misfolding and oxidative stress, and also enhancement of autophagy protein clearance and cardiac-protective microRNA.


Assuntos
Cardiomiopatia Dilatada/genética , Lamina Tipo A/genética , Modelos Cardiovasculares , Mutação , Progéria/genética , Deficiências na Proteostase/genética , Animais , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiotônicos/farmacologia , Expressão Gênica , Instabilidade Genômica , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/deficiência , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Progéria/tratamento farmacológico , Progéria/metabolismo , Progéria/patologia , Dobramento de Proteína , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
18.
Hepatobiliary Surg Nutr ; 5(2): 183-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27115013

RESUMO

In the classical view, the formation of a primary tumor is the consequence of a mutational event that first affects a single cell that subsequently passes through a multitude of consecutive hyperplastic and dysplastic stages. At the end of this pathogenetic sequence a cell arises that is potentially able to expanse infinitely having capacity to form a homogenous tumor mass. In contrary to this clonal expansion concept, the majority of primary human tumors display already a startling heterogeneity that can be reflected in different morphological features, physiological activities, and genetic diversity. In the past it was speculated that this cancer cell plasticity within a tumor is the result of an adaptive process that is induced by specific inhibiting therapies. In regard to the formation of hepatocellular carcinoma (HCC) this dogma was once challenged in a recent study that analysed tumor areas that were taken from HCC patients without medical pretreatment. Most of the analyzed samples showed highly significant intratumor heterogeneity. This affected morphological attributes, immunohistochemical stainability of five tumor-associated markers [α-fetoprotein (AFP), EpCAM, CK7, CD44 and glutamine synthetase], and integrity of genes (ß-catenin and p53) that are critically involved in the pathogenesis of HCC. Altogether, this study showed that intratumor heterogeneity is a frequent finding in HCC that may contribute to treatment failure and drug resistance in HCC patients.

19.
J Theor Biol ; 390: 40-9, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26626088

RESUMO

The paradigm of phenotypic plasticity indicates reversible relations of different cancer cell phenotypes, which extends the cellular hierarchy proposed by the classical cancer stem cell (CSC) theory. Since it is still questionable if the phenotypic plasticity is a crucial improvement to the hierarchical model or just a minor extension to it, it is worthwhile to explore the dynamic behavior characterizing the reversible phenotypic plasticity. In this study we compare the hierarchical model and the reversible model in predicting the cell-state dynamics observed in biological experiments. Our results show that the hierarchical model shows significant disadvantages over the reversible model in describing both long-term stability (phenotypic equilibrium) and short-term transient dynamics (overshoot) in cancer cell populations. In a very specific case in which the total growth of population due to each cell type is identical, the hierarchical model predicts neither phenotypic equilibrium nor overshoot, whereas the reversible model succeeds in predicting both of them. Even though the performance of the hierarchical model can be improved by relaxing the specific assumption, its prediction to the phenotypic equilibrium strongly depends on a precondition that may be unrealistic in biological experiments. Moreover, it still does not show as rich dynamics as the reversible model in capturing the overshoots of both CSCs and non-CSCs. By comparison, it is more likely for the reversible model to correctly predict the stability of the phenotypic mixture and various types of overshoot behavior.


Assuntos
Algoritmos , Modelos Biológicos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Desdiferenciação Celular , Diferenciação Celular , Proliferação de Células , Retroalimentação Fisiológica , Humanos , Mutação , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo
20.
Oncotarget ; 6(42): 44191-206, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26496035

RESUMO

Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas/métodos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Processos Estocásticos , Resultado do Tratamento , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA