Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.604
Filtrar
1.
J Environ Sci (China) ; 147: 83-92, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003086

RESUMO

The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δ18OH2O value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined. The sulfur isotope fractionation factor (Δ34SSO4-stibnite) values decreased from 0.8‰ to -2.1‰ during the first 90 days, and increased to 2.6‰ at the 180 days, indicating the dominated intermediate sulfur species such as S2O32-, S0, and H2S (g) involved in Sb2S3 oxidation processes. The incorporation of O into sulfate derived from O2 (∼100%) indicated that the dissociated O2 was only directly adsorbed on the stibnite-S sites in the initial stage (0-90 days). The proportion of O incorporation into sulfate from water (27%-52%) increased in the late stage (90-300 days), which suggested the oxidation mechanism changed to hydroxyl attack on stibnite-S sites promoted by nearby adsorbed O2 on stibnite-Sb sites. The exchange of oxygen between sulfite and water may also contributed to the increase of water derived O into SO42-. The new insight of stibnite oxidation pathway contributes to the understanding of sulfide oxidation mechanism and helps to interpret field data.


Assuntos
Oxirredução , Isótopos de Oxigênio , Sulfatos , Isótopos de Enxofre , Isótopos de Enxofre/análise , Sulfatos/química , Isótopos de Oxigênio/análise , Antimônio/química , Modelos Químicos , Aerobiose , Oxigênio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Óxidos
2.
Front Microbiol ; 15: 1376844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015741

RESUMO

In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown. To address this gap, aerobic γ-Proteobacteria strains Raoultella terrigena TGRB3 (B3) and Pseudomonas putida TGRB4 (B4), as well as an obligate anaerobic δ-Proteobacteria strain of the SRB Desulfomicrobium escambiense CGMCC 1.3481 (DE), were used as experimental strains. The growth and methylation ability of each strain were analyzed under conditions of 500 ng·L-1 Hg(II), 0 and 21% of oxygen, and 0, 0.25, 0.50, and 1 mM of MoO4 2-. In addition, in order to explore the metabolic specificity of aerobic strains, transcriptomic data of the facultative mercury-methylated strain B3 were further analyzed in an aerobic mercuric environment. The results indicated that: (a) molybdate significantly inhibited the growth of DE, while B3 and B4 exhibited normal growth. (b) Under anaerobic conditions, in DE, the MeHg content decreased significantly with increasing molybdate concentration, while in B3, MeHg production was unaffected. Furthermore, under aerobic conditions, the MeHg productions of B3 and B4 were not influenced by the molybdate concentration. (c) The transcriptomic analysis showed several genes that were annotated as members of the molybdenum oxidoreductase family of B3 and that exhibited significant differential expression. These findings suggest that the differential expression of molybdenum-binding proteins might be related to their involvement in energy metabolism pathways that utilize nitrate and dimethyl sulfoxide as electron acceptors. Aerobic bacteria, such as B3 and B4, might possess distinct Hg(II) biotransformation pathways from anaerobic SRB, rendering their growth and biomethylation abilities unaffected by molybdate.

3.
J Colloid Interface Sci ; 675: 275-292, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38970913

RESUMO

Azo compounds, particularly azo dyes, are widely used but pose significant environmental risks due to their persistence and potential to form carcinogenic by-products. Advanced oxidation processes (AOPs) are effective in degrading these stubborn compounds, with Oxone activation being a particularly promising method. In this study, a unique nanohybrid material, raspberry-like CuCo alloy embedded carbon (RCCC), is facilely fabricated using CuCo-glycerate (Gly) as a template. With the incorporation of Cu into Co, RCCC is essentially different from its analogue derived from Co-Gly in the absence of Cu, affording a popcorn-like Co embedded on carbon (PCoC). RCCC exhibits a unique morphology, featuring a hollow spherical layer covered by nanoscale beads composed of CuCo alloy distributed over carbon. Therefore, RCCC significantly outperforms PCoC and Co3O4 for activating Oxone to degrade the toxic azo contaminant, Azorubin S (AS), in terms of efficiency and kinetics. Furthermore, RCCC remains highly effective in environments with high NaCl concentrations and can be efficiently reused across multiple cycles. Besides, RCCC also leads to the considerably lower Ea of AS degradation than the reported Ea values by other catalysts. More importantly, the contribution of incorporating Cu with Co as CuCo alloy in RCCC is also elucidated using the Density-Function-Theory (DFT) calculation and synergetic effect of Cu and Co in CuCo contributes to enhance Oxone activation, and boosts generation of SO4•-and •OH. The decomposition pathway of AS by RCCC + Oxone is also comprehensively investigated by studying the Fukui indices of AS and a series of its degradation by-products using the DFT calculation. In accordance to the toxicity assessment, RCCC + Oxone also considerably reduces acute and chronic toxicities to lower potential environmental impact. These results ensure that RCCC would be an advantageous catalyst for Oxone activation to degrade AS in water.

4.
J Hazard Mater ; 476: 135049, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38970973

RESUMO

Sulfate-reducing bacteria (SRB) are known to alter methylmercury (MeHg) production in paddy soil, but the effect of SRB on MeHg dynamics in rhizosphere and rice plants remains to be fully elucidated. The present study investigated the impact of SRB on MeHg levels in unsterilized and γ-sterilized mercury-polluted paddy soils, with the aim to close this knowledge gap. Results showed that the presence of SRB reduced MeHg production by ∼22 % and ∼17 % in the two soils, but elevated MeHg contents by approximately 55 % and 99 % in rice grains, respectively. Similar trend at smaller scales were seen in roots and shoots. SRB inoculation exerted the most profound impact on amino acid metabolism in roots, with the relative response of L-arginine positively linking to MeHg concentrations in rhizosphere. The SRB-induced enrichment of MeHg in rice plants may be interpreted by the stronger presence of endophytic nitrogen-related microbes (e.g. Methylocaldum, Hyphomicrobium and Methylocystis) and TGA transcription factors interacting with glutathione metabolism and calmodulin. Our study provides valuable insights into the complex effects of SRB inoculation on MeHg dynamics in rice ecosystems, and may help to develop strategies to effectively control MeHg accumulation in rice grains.

5.
Water Res ; 261: 122018, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38971077

RESUMO

The continuous increase in sulfate (SO42-) concentrations discharged by anthropogenic activities lacks insights into their dynamics and potential impact on CH4 budgets in freshwater lakes. Here we conducted a field investigation in the lakes along the highly developed Yangtze River basin, China, additionally, we analyzed long-term data (1950-2020) from Lake Taihu, a typical eutrophic lake worldwide. We observed a gradual increase in SO42- concentrations up to 100 mg/L, which showed a positive correlation with the trophic state of the lakes. The annual variations indicated that eutrophication intensified the fluctuation of SO42- concentrations. A random forest model was applied to assess the impact of SO42- concentrations on CH4 emissions, revealing a significant negative effect. Synchronously, a series of microcosms with added SO42- were established to simulate cyanobacteria decomposition processes and explore the coupling mechanism between sulfate reduction and CH4 production. The results showed a strong negative correlation between CH4 concentrations and initial SO42- levels (R2 = 0.83), indicating that higher initial SO42- concentrations led to lower final CH4 concentrations. This was attributed to the competition for cyanobacteria-supplied substrates between sulfate reduction bacteria (SRB) and methane production archaea (MPA). Our study highlights the importance of considering the unexpectedly increasing SO42- concentrations in eutrophic lakes when estimating global CH4 emission budgets.

6.
Environ Pollut ; 358: 124514, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986762

RESUMO

Pesticides has transformed the agricultural industry, primarily by enhancing productivity. However, the indiscriminate use of such compounds can adversely affect human health and disrupt ecosystem balance. Limited knowledge exists regarding the removal of these compounds from water, particularly for organophosphate pesticides when employing conventional treatment technologies. Therefore, this study aimed to assess the removal of acephate (ACE) and methamidophos (MET) - considered priority pesticides in Brazil - from waters with high and low turbidity during the clarification process carried out with aluminum sulfate (AS) and ferric chloride (FC), either alone or combined with powdered activated carbon (PAC) adsorption. All water samples were submitted to solid phase extraction (SPE C18 cartridges) prior to acephate and methamidophos analysis by HPLC MS/MS. The clarification process with either AS or FC coagulant did not efficiently remove acephate or methamidophos and maximum average removal (27 %) was observed with waters of high turbidity when using ferric chloride as coagulant. Addition of mineral PAC was also ineffective for removing both pesticides. However, the use of vegetable PAC (10 mg/L) resulted in better removal percentages, up to 80%, but only for methamidophos. The limited removal rates were attributed to the high hydrophilicity of acephate and methamidophos, along with their neutral charge at coagulation pH. These factors hinder the interaction of such organophosphorus pesticides with the flocs formed during coagulation as well as with PAC surface.

7.
J Environ Manage ; 366: 121748, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991352

RESUMO

This study was based on an industrial sludge landfill with a scale of 1 million cubic meters, which had been filled for more than 10 years. It focused on the secondary dewatering of industrial textile landfill sludge (LS) with a total organic carbon (TOC) content greater than 50% and a volatile suspended solids to suspended solids (VSS/SS) ratio of 0.59. A response surface methodology (RSM) model was established using the coagulant ferrous sulfate (FeSO4) and conditioning agents such as hydrated magnesium oxide (MgO), blast furnace slag (BFS), and calcium oxide (CaO). By solving the RSM equations for the respective indicators, the optimal dosages of FeSO4, MgO, and BFS were determined to be 90 mg/g of dry sludge (DS), and for CaO 174.85 mg/g DS. Further examinations of the dewatering performance, apparent properties, extracellular polymeric substances (EPS) components, rheological characteristics, moisture distribution, and pollutant content variation led to the development of a green waste-based dewatering agent composed of FeSO4 and BFS. In small-scale diaphragm plate and frame filter press tests, the optimal water content (WC) was 69.11%. In the final production-scale experiments, it was 65.72%, with the actual application cost being only 13.07 $/ton DS. Additionally, when FeSO4 and BFS were used together, the combined action of Fe and Si could significantly reduce the biotoxicity of heavy metals (HMs), cut down 75.2% of the LS's TOC, and effectively reduced the leaching of organic substances from the leachate, which was beneficial for subsequent disposal. In conclusion, the combined use of FeSO4 and BFS for the secondary dewatering of industrial textile LS was economically efficient, effective in dewatering, and had significant harm reduction effects, making it a worthwhile for waste treatment.

8.
Mar Pollut Bull ; 206: 116681, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991605

RESUMO

To elucidate the spatial-temporal impact of invasive saltmarsh plant Spartina anglica on the biogeochemical processes in coastal wetlands, we investigated the rates and partitioning of organic carbon (Corg) mineralization in three representative benthic habitats: (1) vegetated sediments inhabited by invasive S. anglica (SA); vegetated sediments by indigenous Suaeda japonica; and (3) unvegetated mud flats. Microbial metabolic rates were greatly stimulated at the SA site during the active growing seasons of Spartina, indicating that a substantial amount of organic substrates was supplied from the high below-ground biomass of Spartina. At the SA site, sulfate reduction dominated the Corg mineralization pathways during the plant growing season, whereas iron reduction dominated during the non-growing season. Overall, due to its greater biomass and longer growing season than native Suaeda, the expansion of invasive Spartina is likely to greatly alter the Corg-Fe-S cycles and carbon storage capacity in the coastal wetlands.

9.
Elife ; 122024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980302

RESUMO

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Assuntos
Indicã , Falência Renal Crônica , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Falência Renal Crônica/imunologia , Falência Renal Crônica/metabolismo , Humanos , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Ácido Araquidônico/metabolismo , Masculino , Imunidade Inata/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Araquidonato 5-Lipoxigenase/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunidade Treinada
10.
Mater Today Bio ; 27: 101127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979128

RESUMO

Osteoarthritis (OA) is a degenerative disease potentially exacerbated due to inflammation, cartilage degeneration, and increased friction. Both mesenchymal stem cells (MSCs) and pro-inflammatory macrophages play important roles in OA. A promising approach to treating OA is to modify multi-functional hydrogel microspheres to target the OA microenvironment and structure. Arginyl-glycyl-aspartic acid (RGD) is a peptide widely used in bioengineering owing to its cell adhesion properties, which can recruit BMSCs and macrophages. We developed TLC-R, a microsphere loaded with TGF-ß1-containing liposomes. The recruitment effect of TLC-R on macrophages and BMSCs was verified by in vitro experiments, along with its function of promoting chondrogenic differentiation of BMSCs. And we evaluated the effect of TLC-R in balancing OA metabolism in vitro and in vivo. When TLC-R was co-cultured with BMSCs and lipopolysaccharide (LPS)-treated macrophages, it showed the ability to recruit both cells in substantial numbers. As the microspheres degraded, TGF-ß1 and chondroitin sulfate (ChS) were released to promote chondrogenic differentiation of the recruited BMSCs, modulate chondrocyte metabolism and inhibit inflammation induced by the macrophages. Furthermore, in vivo analysis showed that TLC-R restored the narrowed space, reduced osteophyte volume, and improved cartilage metabolic homeostasis in OA rats. Altogether, TLC-R provides a comprehensive and novel solution for OA treatment by dual-modulating inflammatory and chondrocyte metabolism.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38993681

RESUMO

The biological chemistry of hydrogen sulfide (H2S) with physiologically important heme proteins is in the focus of redox biology research. In this study, we investigated the interactions of lactoperoxidase (LPO) with H2S in the presence and absence of molecular dioxygen (O2) or hydrogen peroxide (H2O2). Under anaerobic conditions, native LPO forms no heme-H2S complex upon sulfide exposure. However, under aerobic conditions or in the presence of H2O2 the formation of both ferrous and ferric sulfheme (sulfLPO) derivatives was observed based on the appearances of their characteristic optical absorptions at 638 nm and 727 nm, respectively. Interestingly, we demonstrate that LPO can catalytically oxidize H2S by H2O2 via intermediate formation of relatively short-lived ferrous and ferric sulfLPO derivatives. Pilot product analyses suggested that the turnover process generates oxidized sulfide species, which include sulfate S O 4 2 - and inorganic polysulfides ( H S x - ; x = 2-5). These results indicated that H2S can serve as a non-classical LPO substrate by inducing a reversible sulfheme-like modification of the heme porphyrin ring during turnover. Furthermore, electron paramagnetic resonance data suggest that H2S can act as a scavenger of H2O2 in the presence of LPO without detectable formation of any carbon-centered protein radical species, suggesting that H2S might be capable of protecting the enzyme from radical-mediated damage. We propose possible mechanisms, which explain our results as well as contrasting observations with other heme proteins, where either no sulfheme formation was observed or the generation of sulfheme derivatives provided a dead end for enzyme functions.

12.
World J Clin Cases ; 12(19): 3854-3865, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994299

RESUMO

BACKGROUND: Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease, but its pathogenesis is not fully understood, and its clinical treatment has limitations. Glucosamine sulfate capsules are commonly used for treating arthritis, and San Bi Tang is a classic formula of traditional Chinese medicine (TCM) that has the effects of warming yang, dispelling dampness, relaxing muscles, and activating collaterals. This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects. AIM: To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis. METHODS: A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each. The control group received only treatment with glucosamine sulfate capsules, while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk. The patients' knee joint functions, liver and kidney function indicators, adverse reactions, and vital signs were evaluated and analyzed using SPSS 26.0 software. RESULTS: Before treatment, the two groups' genders, ages, and scores were not significantly different, indicating comparability. Both groups' scores improved after treatment, which could indicate pain and knee joint function improvement, but the test group had better scores. The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher. Before and after treatment, there were no abnormalities in the patients' liver and kidney function indicators. CONCLUSION: The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety.

13.
J Colloid Interface Sci ; 675: 935-946, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39002243

RESUMO

Generally, sulfur poisoning is considered to be one of the main factors contributing to the deactivation of selective catalytic reduction of NOx by CO (CO-SCR) catalysts, while the promotional effect of SO2 on NO reduction over Ir/SiO2 is observed which is an interesting scientific phenomenon. After the introduction of 20 ppm SO2, NOx conversion increased from âˆ¼ 40 % to âˆ¼ 90 % at 275 °C, and N2 selectivity increased from âˆ¼ 80 % to 100 % at 200 âˆ¼ 300 °C. Furthermore, the promoting effect could remain unchanged after 24 h of continuous reaction. However, the temperature point for achieving complete conversion of CO increased from 225 °C to 275 °C after the introduction of SO2. Experimental characterization and theoretical calculation jointly proved that the inhibition of CO oxidation by the generation of sulfate was the main reason for promoting NO reduction. Under the coexistence of O2 and SO2, SO2 was firstly oxidized to SO3 on the iridium surface and generated sulfate species on surface hydroxyl groups of SiO2. Some active sites for O2 adsorption were covered by the generated surface sulfate, and adsorbed CO was hard to react with adsorbed O2, resulting in Langmuir-Hinshelwood (L-H) reaction pathways for CO oxidation being inhibited. Therefore, unoxidized CO reacted with NO adsorbed species and generated N2O to generate N2 and CO2, improving NO reduction. This new insight has implications for understanding the promotional effect of SO2 on NO reduction with CO in the presence of O2.

14.
Int J Antimicrob Agents ; : 107273, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002699

RESUMO

OBJECT: Colistin sulfate for injection (CSI) became clinically available in China in July 2019. To date, there is no published data regarding its usage in children. Our research group has been following data on the efficacy and safety of CSI in Chinese pediatric patients with carbapenem-resistant organism (CRO) infections. The purpose of this short communication is to provide a brief overview of the findings to date. METHODS: We reviewed the electronic medical records of pediatric patients (aged 9-17 years) who were administered CSI during their hospital stay at Tongji Hospital in Wuhan, China, between June 2021 and November 2023. Drug efficacy was evaluated based on clinical and microbiological outcomes, while drug safety was assessed using surveillance markers that reflect adverse reactions. RESULTS: A total of 20 patients met the inclusion criteria. The predominant pathogens were Klebsiella pneumoniae (8 strains), followed by Acinetobacter baumannii (5 strains) and Pseudomonas aeruginosa (2 strains). The clinical response rate of CSI was 85%, with a bacterial clearance rate of 79%. None of the patients experienced colistin-related nephrotoxicity or neurotoxicity during the treatment. CONCLUSION: In this real-world setting, CSI demonstrated a high level of clinical response and was well tolerated for the treatment of CRO infections in Chinese children.

15.
Colloids Surf B Biointerfaces ; 242: 114080, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39003847

RESUMO

Engineering new biomedical materials with tailored physicochemical, mechanical and biological virtues in order to differentiate stem cells into chondrocytes for cartilage regeneration has garnered much scientific interest. In this study, core/shell nanofibrous scaffold based on poly(ɛ-caprolactone) (PCL) as a core material and alginate sulfate (AlgS)-poly(vinyl alcohol) (PVA) blend as shell materials (AlgS-PVA/PCL) was fabricated by emulsion electrospinning. In this vein, the influence of AlgS to PVA ratio (30:70, 50:50), organic to aqueous phase ratio (1:2, 1:3 and 1:5) and acid concentration (0, 10, 20, 30, 40 and 50 %) on nanofibers morphology were investigated. SEM images depicted that AlgS to PVA ratio of 30:70 and 50:50, organic to aqueous phase ratio of 1:3 and 1:5 and acid concentration of 30 % led to uniform, bead-free fibrous mats. AlgS-PVA/PCL scaffolds with AlgS to PVA ratio of 30:70 and organic to aqueous phase ratio of 1:3, showed admirable mechanical features, high porosity (>90 %) with desirable swelling ratio in wet condition. In vitro assays indicated that the AlgS-PVA/PCL scaffold surface had desirable interaction with stem cells and promotes cells attachment, proliferation and differentiation. Thus, we envision that this salient structure could be an intriguing construction as a cartilage tissue-engineered scaffold.

16.
Acta Biomater ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969077

RESUMO

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1ß, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70 % in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1ß. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.

17.
Molecules ; 29(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999169

RESUMO

The progressive decline of the coal industry necessitates the development of effective treatment solutions for acid mine drainage (AMD), which is characterized by high acidity and elevated concentrations of heavy metals. This study proposes an innovative approach leveraging sulfate-reducing bacteria (SRB) acclimated to contaminated anaerobic environments. The research focused on elucidating the physiological characteristics and optimal growth conditions of SRB, particularly in relation to the pH level and temperature. The experimental findings reveal that the SRB exhibited a sulfate removal rate of 88.86% at an optimal temperature of 30 °C. Additionally, SRB gel particles were formulated using sodium alginate (SA) and carboxymethyl cellulose (CMC), and their performance was assessed under specific conditions (pH = 6, C/S = 1.5, T = 30 °C, CMC = 4.5%, BSNa = 0.4 mol/L, and cross-linking time = 9 h). Under these conditions, the SRB gel particles demonstrated an enhanced sulfate removal efficiency of 91.6%. Thermal analysis via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) provided further insights into the stability and properties of the SRB gel spheres. The findings underscore the potential of SRB-based bioremediation as a sustainable and efficient method for AMD treatment, offering a novel and environmentally friendly solution to mitigating the adverse effects of environmental contamination.


Assuntos
Biodegradação Ambiental , Mineração , Concentração de Íons de Hidrogênio , Alginatos/química , Sulfatos/química , Bactérias/metabolismo , Temperatura , Géis/química , Carboximetilcelulose Sódica/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
18.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000087

RESUMO

Sulfur metabolism plays a major role in plant growth and development, environmental adaptation, and material synthesis, and the sulfate transporters are the beginning of sulfur metabolism. We identified 37 potential VcSULTR genes in the blueberry genome, encoding peptides with 534 to 766 amino acids. The genes were grouped into four subfamilies in an evolutionary analysis. The 37 putative VcSULTR proteins ranged in size from 60.03 to 83.87 kDa. These proteins were predicted to be hydrophobic and mostly localize to the plasma membrane. The VcSULTR genes were distributed on 30 chromosomes; VcSULTR3;5b and VcSULTR3;5c were the only tandemly repeated genes. The VcSULTR promoters contained cis-acting elements related to the fungal symbiosis and stress responses. The transcript levels of the VcSULTRs differed among blueberry organs and changed in response to ericoid mycorrhizal fungi and sulfate treatments. A subcellular localization analysis showed that VcSULTR2;1c localized to, and functioned in, the plasma membrane and chloroplast. The virus-induced gene knock-down of VcSULTR2;1c resulted in a significantly decreased endogenous sulfate content, and an up-regulation of genes encoding key enzymes in sulfur metabolism (VcATPS2 and VcSiR1). These findings enhance our understanding of mycorrhizal-fungi-mediated sulfate transport in blueberry, and lay the foundation for further research on blueberry-mycorrhizal symbiosis.


Assuntos
Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Micorrizas , Filogenia , Proteínas de Plantas , Transportadores de Sulfato , Micorrizas/genética , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/microbiologia , Mirtilos Azuis (Planta)/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Sulfatos/metabolismo , Simbiose/genética , Genoma de Planta
19.
Turk J Phys Med Rehabil ; 70(2): 259-268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948650

RESUMO

Objectives: This study aimed to evaluate the effects of the combined hydrolyzed type 2 collagen, methylsulfonylmethane (MSM), glucosamine sulfate (GS), and chondroitin sulfate (CS) supplement on knee pain intensity in patients with knee osteoarthritis (OA). Patients and methods: This multicenter, observational, noninterventional study included 98 patients (78 females, 20 males; mean age: 52.8±6.5 years; range, 40 to 64 years) who had Grade 1-3 knee OA between May 2022 and November 2022. The patients were prescribed the combination of hydrolyzed type 2 collagen, MSM, GS, and CS as a supplement for knee OA. The sachet form of the combined supplement containing 1250 mg hydrolyzed type 2 collagen, 750 mg MSM, 750 mg GS, and 400 mg CS was used once daily for two consecutive months. Patients were evaluated according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS)-pain, and Health Assessment Questionnaire (HAQ). Patients were scheduled to visit for follow-up four weeks (Visit 2) and eight weeks (Visit 3) after Visit 1 (baseline; day 0 of the study). Results: For the VAS-pain, WOMAC, WOMAC-subscale, and HAQ scores, the differences in improvement between the three visits were significant (p<0.001 for all). The patient compliance with the supplement was a median of 96.77%, both for Visit 2 and Visit 3. Conclusion: The combination of hydrolyzed type 2 collagen, MSM, GS, and CS for eight weeks in knee OA was considered an effective and safe nutritional supplement.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38950418

RESUMO

Keratan sulfate (KS) is a proteoglycan secreted in the fetal brain astrocytes and radial glia into extracellular parenchyma as granulofilamentous deposits. KS surrounds neurons except dendritic spines, repelling glutamatergic and facilitating GABAergic axons. The same genes are expressed in both neuroblast migration and axonal growth. This study examines timing of KS during morphogenesis of some normally developing human fetal forebrain structures. Twenty normal human fetal brains from 9-41 weeks gestational age were studied at autopsy. KS was examined by immunoreactivity in formalin-fixed paraffin sections, plus other markers including synaptophysin, S-100ß protein, vimentin and nestin. Radial and tangential neuroblast migratory pathways from subventricular zone to cortical plate were marked by KS deposits as early as 9wk GA, shortly after neuroblast migration initiated. During later gestation this reactivity gradually diminished and disappeared by term. Long axonal fascicles of the internal capsule and short fascicles of intrinsic bundles of globus pallidus and corpus striatum also appeared as early as 9-12wk, as fascicular sleeves before axons even entered. Intense KS occurs in astrocytic cytoplasm and extracellular parenchyma at 9wk in globus pallidus, 15wk thalamus, 18wk corpus striatum, 22wk cortical plate, and hippocampus postnatally. Corpus callosum and anterior commissure do not exhibit KS at any age. Optic chiasm shows reactivity at the periphery but not around intrinsic subfasciculi. We postulate that KS forms a chemical template for many long and short axonal fascicles before axons enter and neuroblast migratory pathways at initiation of migration. Cross-immunoreactivity with aggrecan may render difficult molecular distinction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA