Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943486

RESUMO

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Assuntos
Espinhas Dendríticas , Giro Denteado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Espinhas Dendríticas/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Giro Denteado/metabolismo , Giro Denteado/citologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Neurônios/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência
2.
Sci Rep ; 14(1): 11591, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773220

RESUMO

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Assuntos
Diferenciação Celular , Podócitos , Animais , Podócitos/metabolismo , Podócitos/citologia , Camundongos , Proteínas WT1/metabolismo , Proteínas WT1/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Linhagem Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular Transformada , Proliferação de Células
3.
Mol Brain ; 17(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566234

RESUMO

Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.


Assuntos
Depressão , Colaterais de Schaffer , Animais , Camundongos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
4.
PNAS Nexus ; 3(2): pgae062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384385

RESUMO

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.

5.
Cells ; 13(2)2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247806

RESUMO

Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.


Assuntos
Fibras Musgosas Hipocampais , Plasticidade Neuronal , Sinapses , Animais , Feminino , Masculino , Camundongos , Morte Celular , Denervação , Hipocampo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/genética
6.
Acta Diabetol ; 61(4): 451-460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072843

RESUMO

AIMS: Diabetic nephropathy (DN), a destructive complication of diabetes mellitus (DM), is one of the leading causes of end-stage renal disease (ESRD). This study aimed to investigate the role of long non-coding RNA (lncRNA) MIAT in high-glucose (HG)-induced podocyte injury associated with DN. METHODS: Three human kidney podocyte (HKP) cultures were treated with HG to mimic DN. Expression of lncRNA MIAT, podocyte-specific and injury-related proteins, and apoptosis were assessed before and after MIAT knockdown using MIAT shRNAs. RESULTS: MIAT expression was upregulated in HKPs in response to glucose stress. HG treatment resulted in a significant increase in the apoptotic rate, Bax level, and levels of injury-related proteins desmin, fibroblast-specific protein 1 (FSP-1), and smooth muscle α-actin (α-SMA), and a significant reduction in Bcl-2 levels and the levels of podocyte-specific proteins synaptopodin and podocin. Transfection of HKPs with shRNAs significantly reduced MIAT levels (p < 0.05) and attenuated apoptosis in HG-medium. Correspondingly, the levels of synaptopodin and podocin were upregulated, and desmin, FSP-1, and α-SMA were reduced (p < 0.05). Western blot analysis also showed that anti-apoptotic active caspase-3 and Bax and proapoptotic Bcl-2 were elevated and decreased, respectively, after MIAT knockdown, suggesting that apoptosis pathways are deactivated after MIAT downregulation. CONCLUSIONS: High glucose upregulates MIAT level in HKPs and induces cellular injury. Knockdown of MIAT alleviates the injury likely via deactivating apoptosis pathways.


Assuntos
Nefropatias Diabéticas , Podócitos , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Desmina/genética , Desmina/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Apoptose/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glucose/farmacologia , Glucose/metabolismo
7.
Oncol Rep ; 51(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038167

RESUMO

Synaptopodin 2 (SYNPO2) plays a pivotal role in regulating tumor growth, development and progression in bladder urothelial Carcinoma (BLCA). However, the precise biological functions and mechanisms of SYNPO2 in BLCA remain unclear. Based on TCGA database­derived BLCA RNA sequencing data, survival analysis and prognosis analysis indicate that elevated SYNPO2 expression was associated with poor survival outcomes. Notably, exogenous SYNPO2 expression significantly promoted tumor invasion and migration by upregulating vimentin expression in BLCA cell lines. Enrichment analysis revealed the involvement of SYNPO2 in humoral immune responses and the PI3K/AKT signaling pathway. Moreover, increased SYNPO2 levels increased the sensitivity of BLCA to PI3K/AKT pathway­targeted drugs while being resistant to conventional chemotherapy. In in vivo BLCA mouse models, SYNPO2 overexpression increased pulmonary metastasis of 5637 cells. High SYNPO2 expression led to increased infiltration of innate immune cells, particularly mast cells, in both nude mouse model and clinical BLCA samples. Furthermore, tumor immune dysfunction and exclusion score showed that patients with BLCA patients and high SYNPO2 expression exhibited worse clinical outcomes when treated with immune checkpoint inhibitors. Notably, in the IMvigor 210 cohort, SYNPO2 expression was significantly associated with the population of resting mast cells in BLCA tissue following PD1/PDL1 targeted therapy. In conclusion, SYNPO2 may be a promising prognostic factor in BLCA by modulating mast cell infiltration and exacerbating resistance to immune therapy and conventional chemotherapy.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Mastócitos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Imunoterapia , Prognóstico , Proteínas dos Microfilamentos
8.
Biochem Soc Trans ; 51(6): 2005-2016, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38095060

RESUMO

The PDZ and LIM domain (PDLIM) proteins are associated with the actin cytoskeleton and have conserved in roles in metazoan actin organisation and function. They primarily function as scaffolds linking various proteins to actin and its binding partner α-actinin via two conserved domains; an N-terminal postsynaptic density 95, discs large and zonula occludens-1 (PDZ) domain, and either single or multiple C-terminal LIN-11, Isl-1 and MEC-3 (LIM) domains in the actinin-associated LIM protein (ALP)- and Enigma-related proteins, respectively. While their role in actin organisation, such as in stress fibres or in the Z-disc of muscle fibres is well known, emerging evidence also suggests a role in actin-dependent membrane trafficking in the endosomal system. This is mediated by a recently identified interaction with the sorting nexin 17 (SNX17) protein, an adaptor for the trafficking complex Commander which is itself intimately linked to actin-directed formation of endosomal recycling domains. In this review we focus on the currently understood structural basis for PDLIM function. The PDZ domains mediate direct binding to distinct classes of PDZ-binding motifs (PDZbms), including α-actinin and other actin-associated proteins, and a highly specific interaction with the type III PDZbm such as the one found in the C-terminus of SNX17. The structures of the LIM domains are less well characterised and how they engage with their ligands is completely unknown. Despite the lack of experimental structural data, we find that recently developed machine learning-based structure prediction methods provide insights into their potential interactions and provide a template for further studies of their molecular functions.


Assuntos
Actinina , Actinas , Animais , Actinas/metabolismo , Actinina/química , Actinina/metabolismo , Domínios PDZ , Citoesqueleto de Actina/metabolismo , Proteínas com Domínio LIM/metabolismo , Ligação Proteica
9.
Cancer Cell Int ; 23(1): 158, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37544991

RESUMO

Initially identified as an actin-binding protein containing a PSD95-DLG-ZO1 Domain (PZD domain), Synaptopodin 2 (SYNPO2) has long been considered a structural protein ubiquitously expressed in muscular tissues. However, emerging evidence suggests that SYNPO2 performs diverse functions in cancers in addition to its role in microfilament assembly. In most cancers, high SYNPO2 expression is positively correlated with a good prognosis, suggesting its role as a novel tumor suppressor. Abnormal SYNPO2 expression affects autophagy generation, particularly mitophagy induced by low oxidation or viral infection, as well as chaperone-mediated autophagy triggered by microfilament damage. Mechanically, SYNPO2 regulates tumor growth, metastasis, and invasion via activating the PI3K/AKT/mTOR signal and Hippo signaling pathways. Moreover, the subcellular localization, promoter methylation and single nucleotide polymorphism (SNP) of SYNPO2 have been associated with cancer progression and clinical outcomes, highlighting its potential as a prognostic or diagnostic target for this patient population. This review focuses on the role of SYNPO2 in cancer, including its generation, epigenetic modification, subcellular localization, and biological function.

10.
Cells ; 12(13)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37443792

RESUMO

Circadian rhythms in behavior and physiology such as rest/activity and hormones are driven by an internal clock and persist in the absence of rhythmic environmental cues. However, the period and phase of the internal clock are entrained by the environmental light/dark cycle. Consequently, aberrant lighting conditions, which are increasing in modern society, have a strong impact on rhythmic body and brain functions. Mice were exposed to three different lighting conditions, 12 h light/12 h dark cycle (LD), constant darkness (DD), and constant light (LL), to study the effects of the light/dark cycle and aberrant lighting on the hippocampus, a critical structure for temporal and spatial memory formation and navigation. Locomotor activity and plasma corticosterone levels were analyzed as readouts for circadian rhythms. Spatial working memory via Y-maze, spine morphology of Golgi-Cox-stained hippocampi, and plasticity of excitatory synapses, measured by number and size of synaptopodin and GluR1-immunreactive clusters, were analyzed. Our results indicate that the light/dark cycle drives diurnal differences in synaptic plasticity in hippocampus. Moreover, spatial working memory, spine density, and size and number of synaptopodin and GluR1 clusters were reduced in LL, while corticosterone levels were increased. This indicates that acute constant light affects hippocampal function and synaptic plasticity.


Assuntos
Luz , Memória Espacial , Camundongos , Animais , Memória de Curto Prazo , Corticosterona , Hipocampo
11.
Front Neuroanat ; 17: 1125623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090138

RESUMO

The axon initial segment (AIS) is the site of action potential initiation and important for the integration of synaptic input. Length and localization of the AIS are dynamic, modulated by afferent activity and contribute to the homeostatic control of neuronal excitability. Synaptopodin is a plasticity-related protein expressed by the majority of telencephalic neurons. It is required for the formation of cisternal organelles within the AIS and an excellent marker to identify these enigmatic organelles at the light microscopic level. Here we applied 2 h of high frequency stimulation of the medial perforant path in rats in vivo to induce a strong long-term potentiation of dentate gyrus granule cells. Immunolabeling for ßIV-spectrin and synaptopodin were performed to study structural changes of the AIS and its cisternal organelles. Three-dimensional analysis of the AIS revealed a shortening of the AIS and a corresponding reduction of the number of synaptopodin clusters. These data demonstrate a rapid structural plasticity of the AIS and its cisternal organelles to strong stimulation, indicating a homeostatic response of the entire AIS compartment.

12.
Lab Invest ; 103(8): 100156, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119854

RESUMO

Paraneoplastic nephrotic syndrome (PNS) is a complication seen in cancer patients. Ultrastructural examination shows the accumulation of proteins and the presence of foot process (FP) effacement in the glomeruli of PNS patients. Previously, we reported that orthotopic xenografts of Lewis lung carcinoma 1 in C57BL/6 mice caused them to develop lung cancer with albuminuria. This implies that these mice can be used as a model of human disease and suggests that Lewis lung carcinoma 1 cell-secreted proteins (LCSePs) contain nephrotoxic molecules and cause inflammation in renal cells. As podocyte effacement was present in glomeruli in this model, such podocyte injury may be attributable to either soluble LCSeP or LCSeP deposits triggering pathological progression. LCSePs in conditioned media was concentrated for nephrotoxicity testing. Integrin-focal adhesion kinase (FAK) signaling and inflammatory responses were evaluated in podocytes either exposed to soluble LCSePs or seeded onto substrates with immobilized LCSePs. FAK phosphorylation and interleukin-6 expression were higher in podocytes attached to LCSePs substrates than in those exposed to soluble LCSePs. Notably, LCSeP-based haptotaxis gave rise to altered signaling in podocytes. When podocytes were stimulated by immobilized LCSePs, FAK accumulated at focal adhesions, synaptopodin dissociated from F-actin, and disrupting the interactions between synaptopodin and α-actinin was observed. When FAK was inhibited by PF-573228 in immobilized LCSePs, the association between synaptopodin and α-actinin was observed in the podocytes. The association of synaptopodin and α-actinin with F-actin allowed FP stretching, establishing a functional glomerular filtration barrier. Therefore, in this mouse model of lung cancer, FAK signaling prompts podocyte FP effacement and proteinuria, indicative of PNS.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Podócitos , Camundongos , Humanos , Animais , Actinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Actinina/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Camundongos Endogâmicos C57BL , Proteinúria/metabolismo , Podócitos/metabolismo , Neoplasias Pulmonares/metabolismo
13.
Trends Neurosci ; 46(1): 32-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428191

RESUMO

The heterogeneity of the endoplasmic reticulum (ER) makes it a versatile platform for a broad range of homeostatic processes, ranging from calcium regulation to synthesis and trafficking of proteins and lipids. It is not surprising that neurons use this organelle to fine-tune synaptic properties and thereby provide specificity to synaptic inputs. In this review, we discuss the mechanisms that enable activity-dependent ER recruitment into dendritic spines, with a focus on molecular mechanisms that mediate transport and retention of the ER in spines. The role of calcium signaling in spine ER, synaptopodin 'tagging' of active synapses, and the formation of the spine apparatus (SA) are highlighted. Finally, we discuss the role of liquid-liquid phase separation as a possible driving force in these processes.


Assuntos
Retículo Endoplasmático , Hipocampo , Humanos , Hipocampo/fisiologia , Neurônios/metabolismo , Espinhas Dendríticas/metabolismo , Sinapses/fisiologia , Cálcio/metabolismo
14.
J Comp Neurol ; 531(2): 281-293, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36221961

RESUMO

The cytokine tumor necrosis factor (TNF) is involved in the regulation of physiological and pathophysiological processes in the central nervous system. In previous work, we showed that mice lacking constitutive levels of TNF exhibit a reduction in spine density and changes in spine head size distribution of dentate granule cells. Here, we investigated which TNF-receptor pathway is responsible for this phenotype and analyzed granule cell spine morphology in TNF-R1-, TNF-R2-, and TNF-R1/R2-deficient mice. Single granule cells were filled with Alexa568 in fixed hippocampal brain slices and immunostained for the actin-modulating protein synaptopodin (SP), a marker for strong and stable spines. An investigator blind to genotype investigated dendritic spines using deconvolved confocal image stacks. Similar to TNF-deficient mice, TNF-R1 and TNF-R2 mutants showed a decrease in the size of small spines (SP-negative) with TNF-R1/R2-KO mice exhibiting an additive effect. TNF-R1 mutants also showed an increase in the size of large spines (SP-positive), mirroring the situation in TNF-deficient mice. Unlike the TNF-deficient mouse, none of the TNF-R mutants exhibited a reduction in their granule cell spine densities. Since TNF tunes the excitability of networks, lack of constitutive TNF reduces network excitation. This may explain why we observed alterations in spine head size distributions in TNF- and TNF-R-deficient granule cells. The changes in spine density observed in the TNF-deficient mouse could not be linked to canonical TNF-R-signaling. Instead, noncanonical pathways or unknown developmental functions of TNF may cause this phenomenon.


Assuntos
Espinhas Dendríticas , Giro Denteado , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Espinhas Dendríticas/patologia , Giro Denteado/metabolismo , Hipocampo/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo
15.
Cells ; 13(1)2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38201288

RESUMO

Synaptopodin-2 (SYNPO2) is a protein associated with the Z-disc in striated muscle cells. It interacts with α-actinin and filamin C, playing a role in Z-disc maintenance under stress by chaperone-assisted selective autophagy (CASA). In smooth muscle cells, SYNPO2 is a component of dense bodies. Furthermore, it has been proposed to play a role in tumor cell proliferation and metastasis in many different kinds of cancers. Alternative transcription start sites and alternative splicing predict the expression of six putative SYNPO2 isoforms differing by extended amino- and/or carboxy-termini. Our analyses at mRNA and protein levels revealed differential expression of SYNPO2 isoforms in cardiac, skeletal and smooth muscle cells. We identified synemin, an intermediate filament protein, as a novel binding partner of the PDZ-domain in the amino-terminal extension of the isoforms mainly expressed in cardiac and smooth muscle cells, and demonstrated colocalization of SYNPO2 and synemin in both cell types. A carboxy-terminal extension, mainly expressed in smooth muscle cells, is sufficient for association with dense bodies and interacts with α-actinin. SYNPO2 therefore represents an additional and novel link between intermediate filaments and the Z-discs in cardiomyocytes and dense bodies in smooth muscle cells, respectively. In pathological skeletal muscle samples, we identified SYNPO2 in the central and intermediate zones of target fibers of patients with neurogenic muscular atrophy, and in nemaline bodies. Our findings help to understand distinct functions of individual SYNPO2 isoforms in different muscle tissues, but also in tumor pathology.


Assuntos
Actinina , Miócitos de Músculo Liso , Humanos , Miócitos Cardíacos , Isoformas de Proteínas , Sarcômeros
16.
Biomedicines ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359212

RESUMO

Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.

17.
EMBO J ; 41(20): e112383, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36097740

RESUMO

Distinct plasticity mechanisms enable neurons to effectively process information also when facing global perturbations in network activity. In this issue of The EMBO Journal, Dubes et al (2022) provide a molecular mechanism whereby individual synapses during periods of chronic inactivity are "tagged" for future strengthening. These results lend further support to the idea that local, nonmultiplicative mechanisms play an important role in homeostatic synaptic plasticity as has been demonstrated for Hebbian-like synaptic plasticity.


Assuntos
Plasticidade Neuronal , Sinapses , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
18.
EMBO J ; 41(20): e109012, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35875872

RESUMO

Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse-specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine-apparatus protein synaptopodin under the regulation of miR-124. Using genetic manipulations to alter synaptopodin expression or regulation by miR-124, we show that synaptopodin behaves as a "postsynaptic tag" whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input-specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.


Assuntos
MicroRNAs , Receptores de AMPA , Homeostase/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Plasticidade Neuronal/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
19.
J Diabetes ; 14(4): 236-246, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35229458

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on the glomerulus through the evaluation of podocyturia in patients with diabetic kidney disease (DKD). METHODS: The study population was composed of 40 male patients with type 2 diabetes mellitus; 22 of them received SGLT2i (SGLT2i group), and the others who did not were the control. The DKD-related parameters of patients were monitored before SGLT2i initiation, and then in the third and sixth month of the follow-up period. Patients' demographic, clinical, laboratory, and follow-up data were obtained from medical charts. Microalbuminuria was measured in 24-h urine. The number of podocytes in the urine was determined by immunocytochemical staining of two different markers, namely podocalyxin (podx) and synaptopodin (synpo). Concentrations of urine stromal cell-derived factor 1a and vascular endothelial growth factor cytokines were quantified with an enzyme-linked immunosorbent assay kit. RESULTS: At the end of the follow-up period, decreases in glycosylated hemoglobin, glucose, systolic and diastolic blood pressure, uric acid level, and microalbuminuria, and improvement in body mass index level and weight loss were significant for the SGLT2i group. On the other hand, there was no significant difference in terms of these parameters in the control group. The excretion of synaptopodin-positive (synpo+ ) and podocalyxin-positive (podx+ ) cells was significantly reduced at the end of the follow-up period for the SGLT2i group, while there was no significant change for the control. CONCLUSIONS: At the end of the follow-up period, male patients receiving SGLT2i had better DKD-related parameters and podocyturia levels compared to baseline and the control group. Our data support the notion that SGLT2i might have structural benefits for glomerular health.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Albuminúria , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Feminino , Hemoglobinas Glicadas , Humanos , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Fator A de Crescimento do Endotélio Vascular
20.
J Neurosci ; 42(9): 1666-1678, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046120

RESUMO

Dendritic spines, actin-rich protrusions forming the postsynaptic sites of excitatory synapses, undergo activity-dependent molecular and structural remodeling. Activation of Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) by synaptic or pharmacological stimulation, induces LTD, but whether this is accompanied with spine elimination remains unresolved. A subset of telencephalic mushroom spines contains the spine apparatus (SA), an enigmatic organelle composed of stacks of smooth endoplasmic reticulum, whose formation depends on the expression of the actin-bundling protein Synaptopodin. Allocation of Synaptopodin to spines appears governed by cell-intrinsic mechanisms as the relative frequency of spines harboring Synaptopodin is conserved in vivo and in vitro Here we show that expression of Synaptopodin/SA in spines is required for induction of mGluR-LTD at Schaffer collateral-CA1 synapses of male mice. Post-mGluR-LTD, mushroom spines lacking Synaptopodin/SA are selectively lost, whereas spines harboring it are preserved. This process, dependent on activation of mGluR1 but not mGluR5, is conserved in mature mouse neurons and rat neurons of both sexes. Mechanistically, we find that mGluR1 supports physical retention of Synaptopodin within excitatory spine synapses during LTD while triggering lysosome-dependent degradation of the protein residing in dendritic shafts. Together, these results reveal a cellular mechanism, dependent on mGluR1, which enables selective preservation of stronger spines containing Synaptopodin/SA while eliminating weaker ones and potentially countering spurious strengthening by de novo recruitment of Synaptopodin. Overall, our results identify spines with Synaptopodin/SA as the locus of mGluR-LTD and underscore the importance of the molecular microanatomy of spines in synaptic plasticity.SIGNIFICANCE STATEMENT Long-term changes in functional synaptic strength are associated with modification of synaptic connectivity through stabilization or elimination of dendritic spines, the postsynaptic locus of excitatory synapses. How heterogeneous spine microanatomy instructs spine remodeling after long-term synaptic depression (LTD) remains unclear. Metabotropic glutamate receptors mGluR1 and mGluR5 induce a form of LTD critical to circuit function in physiological and disease conditions. Our results identify spines containing the protein Synaptopodin, which enables local assembly of a spine apparatus, as the locus of expression of mGluR-LTD and demonstrate a specific role of mGluR1 in promoting selective loss after mGluR-LTD of mature dendritic spines lacking Synaptopodin/spine apparatus. These findings highlight the fundamental contribution of spine microanatomy in selectively enabling functional and structural plasticity.


Assuntos
Actinas , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico , Sinapses , Actinas/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA