Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Med Genet A ; : e63823, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091162

RESUMO

GREB1-like retinoic acid receptor coactivator (GREB1L) gene is associated with autosomal dominant renal hypodysplasia/aplasia 3 (RHDA3) and deafness, autosomal dominant 80 (DFNA80). Among the GREB1L variants reported, most of them are missense or frameshift, while no pathogenic synonymous variants have been recorded. Classical theory paid little attention to synonymous variants and classified it as nonpathogenic; however, recent studies suggest that the variants might be equally important. Here, we report a 7-year-old girl with new symptoms of clitoromegaly, uterovaginal, and ovarian agenesis as well as right kidney missing. A novel de novo GREB1L synonymous variant (NM_001142966: c.4731C>T, p.G1577=) was identified via whole exome sequencing. The variant was predicted to be disease-causing through in silico analysis and was classified as likely pathogenic. Minigene splicing assays confirmed a 6 bp deletion in mutant cDNA comparing with the wild type, leading to two amino acids lost in GREB1L protein. Secondary and tertiary structure modeling showed alterations in protein structure. Our finding reveals a novel GREB1L variant with a new phenotype of urogenital system and is the first to report a pathogenic synonymous variant in GREB1L which affects mRNA splicing, suggesting synonymous variants cannot be ignored in prenatal diagnosis and genetic counseling.

2.
Mol Genet Genomic Med ; 12(7): e2492, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007454

RESUMO

BACKGROUND: Synonymous variants are non-pathogenic due to non-substitution of amino acids. However, synonymous exonic terminal nucleotide substitutions may affect splicing. Splicing variants are easily analyzed at RNA level for genes expressed in blood cells. Minigene analysis provides another method for splicing variant analysis of genes that are poorly or not expressed in peripheral blood. METHODS: Whole exome sequencing was performed to screen for potential pathogenic mutations in the proband, which were validated within the family by Sanger sequencing. The pathogenicity of the synonymous mutation was analyzed using the minigene technology. RESULTS: The proband harbored the compound heterogeneous variants c. [291G >A; 572-50C >T] and c.681 + 1G >T in F7, of which the synonymous variant c.291G >A was located at the terminal position of exon 3. Minigene analysis revealed exon3 skipping due to this mutation, which may have subsequently affected protein sequence, structure, and function. CONCLUSION: Our finding confirmed the pathogenicity of c.291G >A, thus extending the pathogenic mutation spectrum of F7, and providing insights for effective reproductive counseling.


Assuntos
Éxons , Fator VII , Splicing de RNA , Mutação Silenciosa , Adulto , Feminino , Humanos , Masculino , Linhagem , Fator VII/genética
3.
HGG Adv ; 5(2): 100262, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38192100

RESUMO

Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their "silent" mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.


Assuntos
Mutação Silenciosa , Humanos , Sequência de Bases , Códon/genética , Sequência de Aminoácidos , Análise de Sequência de DNA
4.
Biomolecules ; 13(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892203

RESUMO

One of the most common forms of genetic deafness has been predominantly associated with pathogenic variants in the GJB2 gene, encoding transmembrane protein connexin 26 (Cx26). The Cx26 molecule consists of an N-terminal domain (NT), four transmembrane domains (TM1-TM4), two extracellular loops (EL1 and EL2), a cytoplasmic loop, and a C-terminus (CT). Pathogenic variants in the GJB2 gene, resulting in amino acid substitutions scattered across the Cx26 domains, lead to a variety of clinical outcomes, including the most common non-syndromic autosomal recessive deafness (DFNB1A), autosomal dominant deafness (DFNA3A), as well as syndromic forms combining hearing loss and skin disorders. However, for rare and poorly documented variants, information on the mode of inheritance is often lacking. Numerous in vitro studies have been conducted to elucidate the functional consequences of pathogenic GJB2 variants leading to amino acid substitutions in different domains of Cx26 protein. In this work, we summarized all available data on a mode of inheritance of pathogenic GJB2 variants leading to amino acid substitutions and reviewed published information on their functional effects, with an emphasis on their localization in certain Cx26 domains.


Assuntos
Conexina 26 , Perda Auditiva , Humanos , Conexina 26/genética , Conexinas/genética , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação
5.
Trends Pharmacol Sci ; 44(2): 73-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36307252

RESUMO

Synonymous gene recoding, the substitution of synonymous variants into the genetic sequence, has been used to overcome many production limitations in therapeutic development. However, the safety and efficacy of recoded therapeutics can be difficult to evaluate because synonymous codon substitutions can result in subtle, yet impactful changes in protein features and require sensitive methods for detection. Given that computational approaches have made significant leaps in recent years, we propose that machine-learning (ML) tools may be leveraged to assess gene-recoded therapeutics and foresee an opportunity to adapt codon contexts to enhance some powerful existing tools. Here, we examine how synonymous gene recoding has been used to address challenges in therapeutic development, explain the biological mechanisms underlying its effects, and explore the application of computational platforms to improve the surveillance of functional variants in therapeutic design.


Assuntos
Códon , Desenho de Fármacos , Terapêutica , Humanos , Códon/genética , Aprendizado de Máquina
6.
Front Neurol ; 14: 1320514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274877

RESUMO

Objective: To the literature, variants in the ATP6AP2 gene may cause abnormal nervous system development and associated neurological symptoms. Methods: We report a patient with developmental and epileptic encephalopathy (DEE) carrying an ATP6AP2 c.858G > A (p.Ala286=) synonymous variant. In addition, an overview of reported patients with the same variant were collected and summarized to compare our findings. Results: The patient started experiencing tonic seizures at 3.5 months of age, and magnetic resonance imaging (MRI) indicated impaired brain white matter development and reduced left hippocampal volume. Furthermore, electroencephalography showed multifocal interictal epileptiform discharges. Treatment with various anti-seizure medications yielded unsatisfactory results, and the disorder eventually developed into epileptic spasms. An in vitro splicing assay for the ATP6AP2 gene mRNA revealed that the variant caused a deletion in exon 8 and a corresponding protein truncation. A review of previously reported ATP6AP2-related DEE patients found that synonymous variants in the ATP6AP2 gene can cause early DEE onset, progressive changes in early-life MRI, and exon skipping in all ATP6AP2-related DEE patients. Significance: We found that synonymous variants in ATP6AP2 may have significant pathogenicity and are highly correlated with DEE. Due to increased isoform production, ATP6AP2 synonymous variants may cause nervous system developmental disorders by competitively reducing the generation of full-length transcripts, resulting in defects in ATP6AP2-related physiological processes.

7.
Genes (Basel) ; 13(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35627162

RESUMO

Synonymous single nucleotide variants (sSNVs) are often considered functionally silent, but a few cases of cancer-causing sSNVs have been reported. From available databases, we collected four categories of sSNVs: germline, somatic in normal tissues, somatic in cancerous tissues, and putative cancer drivers. We found that screening sSNVs for recurrence among patients, conservation of the affected genomic position, and synVep prediction (synVep is a machine learning-based sSNV effect predictor) recovers cancer driver variants (termed proposed drivers) and previously unknown putative cancer genes. Of the 2.9 million somatic sSNVs found in the COSMIC database, we identified 2111 proposed cancer driver sSNVs. Of these, 326 sSNVs could be further tagged for possible RNA splicing effects, RNA structural changes, and affected RBP motifs. This list of proposed cancer driver sSNVs provides computational guidance in prioritizing the experimental evaluation of synonymous mutations found in cancers. Furthermore, our list of novel potential cancer genes, galvanized by synonymous mutations, may highlight yet unexplored cancer mechanisms.


Assuntos
Neoplasias , Mutação Silenciosa , Genômica , Humanos , Neoplasias/genética , Oncogenes , Splicing de RNA
8.
Mol Syndromol ; 12(4): 219-233, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34421500

RESUMO

Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.

9.
Am J Hum Genet ; 108(8): 1502-1511, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34256028

RESUMO

Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.


Assuntos
Biologia Computacional/métodos , Doença/genética , Genoma Humano , Mutação , Polimorfismo de Nucleotídeo Único , Proteoma/análise , Humanos , Proteoma/metabolismo
10.
Front Oncol ; 11: 812656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087763

RESUMO

Breast cancer gene 1 (BRCA1) and BRCA2 are tumor suppressors involved in DNA damage response and repair. Carriers of germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2 have significantly increased lifetime risks of breast cancer, ovarian cancer, and other cancer types; this phenomenon is known as hereditary breast and ovarian cancer (HBOC) syndrome. Accurate interpretation of BRCA1 and BRCA2 variants is important not only for disease management in patients, but also for determining preventative measures for their families. BRCA1:c.132C>T (p.Cys44=) is a synonymous variant recorded in the ClinVar database with "conflicting interpretations of its pathogenicity". Here, we report our clinical tests in which we identified this variant in two unrelated patients, both of whom developed breast cancer at an early age with ovarian presentation a few years later and had a family history of relevant cancers. Minigene assay showed that this change caused a four-nucleotide loss at the end of exon 3, resulting in a truncated p.Cys44Tyrfs*5 protein. Reverse transcription-polymerase chain reaction identified two fragments (123 and 119 bp) using RNA isolated from patient blood samples, in consistency with the results of the minigene assay. Collectively, we classified BRCA1:c.132C>T (p.Cys44=) as a pathogenic variant, as evidenced by functional studies, RNA analysis, and the patients' family histories. By analyzing variants recorded in the BRCA Exchange database, we found synonymous changes at the ends of exons could potentially influence splicing; meanwhile, current in silico tools could not predict splicing changes efficiently if the variants were in the middle of an exon, or in the deep intron region. Future studies should attempt to identify variants that influence gene expression and post-transcription modifications to improve our understanding of BRCA1 and BRCA2, as well as their related cancers.

11.
Genes (Basel) ; 11(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967157

RESUMO

Single-nucleotide variants (SNVs) are a major form of genetic variation in the human genome that contribute to various disorders. There are two types of SNVs, namely non-synonymous (missense) variants (nsSNVs) and synonymous variants (sSNVs), predominantly involved in RNA processing or gene regulation. sSNVs, unlike missense or nsSNVs, do not alter the amino acid sequences, thereby making challenging candidates for downstream functional studies. Numerous computational methods have been developed to evaluate the clinical impact of nsSNVs, but very few methods are available for understanding the effects of sSNVs. For this analysis, we have downloaded sSNVs from the ClinVar database with various features such as conservation, DNA-RNA, and splicing properties. We performed feature selection and implemented an ensemble random forest (RF) classification algorithm to build a classifier to predict the pathogenicity of the sSNVs. We demonstrate that the ensemble predictor with selected features (20 features) enhances the classification of sSNVs into two categories, pathogenic and benign, with high accuracy (87%), precision (79%), and recall (91%). Furthermore, we used this prediction model to reclassify sSNVs with unknown clinical significance. Finally, the method is very robust and can be used to predict the effect of other unknown sSNVs.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética , Virulência/genética , Algoritmos , Genoma Humano/genética , Humanos
12.
Brain ; 143(7): 2027-2038, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32542401

RESUMO

Synonymous single nucleotide variants (sSNVs) have been implicated in various genetic disorders through alterations of pre-mRNA splicing, mRNA structure and miRNA regulation. However, their impact on synonymous codon usage and protein translation remains to be elucidated in clinical context. Here, we explore the functional impact of sSNVs in the Sonic Hedgehog (SHH) gene, identified in patients affected by holoprosencephaly, a congenital brain defect resulting from incomplete forebrain cleavage. We identified eight sSNVs in SHH, selectively enriched in holoprosencephaly patients as compared to healthy individuals, and systematically assessed their effect at both transcriptional and translational levels using a series of in silico and in vitro approaches. Although no evidence of impact of these sSNVs on splicing, mRNA structure or miRNA regulation was found, five sSNVs introduced significant changes in codon usage and were predicted to impact protein translation. Cell assays demonstrated that these five sSNVs are associated with a significantly reduced amount of the resulting protein, ranging from 5% to 23%. Inhibition of the proteasome rescued the protein levels for four out of five sSNVs, confirming their impact on protein stability and folding. Remarkably, we found a significant correlation between experimental values of protein reduction and computational measures of codon usage, indicating the relevance of in silico models in predicting the impact of sSNVs on translation. Considering the critical role of SHH in brain development, our findings highlight the clinical relevance of sSNVs in holoprosencephaly and underline the importance of investigating their impact on translation in human pathologies.


Assuntos
Uso do Códon/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Biossíntese de Proteínas/genética , Humanos , Polimorfismo de Nucleotídeo Único
13.
Front Genet ; 10: 914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649718

RESUMO

Recent advances in high-throughput experimentation have put the exploration of genome sequences at the forefront of precision medicine. In an effort to interpret the sequencing data, numerous computational methods have been developed for evaluating the effects of genome variants. Interestingly, despite the fact that every person has as many synonymous (sSNV) as non-synonymous single nucleotide variants, our ability to predict their effects is limited. The paucity of experimentally tested sSNV effects appears to be the limiting factor in development of such methods. Here, we summarize the details and evaluate the performance of nine existing computational methods capable of predicting sSNV effects. We used a set of observed and artificially generated variants to approximate large scale performance expectations of these tools. We note that the distribution of these variants across amino acid and codon types suggests purifying evolutionary selection retaining generated variants out of the observed set; i.e., we expect the generated set to be enriched for deleterious variants. Closer inspection of the relationship between the observed variant frequencies and the associated prediction scores identifies predictor-specific scoring thresholds of reliable effect predictions. Notably, across all predictors, the variants scoring above these thresholds were significantly more often generated than observed. which confirms our assumption that the generated set is enriched for deleterious variants. Finally, we find that while the methods differ in their ability to identify severe sSNV effects, no predictor appears capable of definitively recognizing subtle effects of such variants on a large scale.

14.
J Biol Chem ; 294(48): 18109-18121, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31628190

RESUMO

The pace of deorphanization of G protein-coupled receptors (GPCRs) has slowed, and new approaches are required. Small molecule targeting of orphan GPCRs can potentially be of clinical benefit even if the endogenous receptor ligand has not been identified. Many GPCRs lack common variants that lead to reproducible genome-wide disease associations, and rare-variant approaches have emerged as a viable alternative to identify disease associations for such genes. Therefore, our goal was to prioritize orphan GPCRs by determining their associations with human diseases in a large clinical population. We used sequence kernel association tests to assess the disease associations of 85 orphan or understudied GPCRs in an unselected cohort of 51,289 individuals. Using rare loss-of-function variants, missense variants predicted to be pathogenic or likely pathogenic, and a subset of rare synonymous variants that cause large changes in local codon bias as independent data sets, we found strong, phenome-wide disease associations shared by two or more variant categories for 39% of the GPCRs. To validate the bioinformatics and sequence kernel association test analyses, we functionally characterized rare missense and synonymous variants of GPR39, a family A GPCR, revealing altered expression or Zn2+-mediated signaling for members of both variant classes. These results support the utility of rare variant analyses for identifying disease associations for GPCRs that lack impactful common variants. We highlight the importance of rare synonymous variants in human physiology and argue for their routine inclusion in any comprehensive analysis of genomic variants as potential causes of disease.


Assuntos
Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Mutação Silenciosa , Estudo de Associação Genômica Ampla , Humanos
15.
Mol Genet Genomic Med ; 7(8): e840, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31257730

RESUMO

BACKGROUND: Pre-mRNA splicing is a complex process requiring the identification of donor site, acceptor site, and branch point site with an adjacent polypyrimidine tract sequence. Splicing is regulated by splicing regulatory elements (SREs) with both enhancer and suppressor functions. Variants located in exonic regions can impact splicing through dysregulation of native splice sites, SREs, and cryptic splice site activation. While splicing dysregulation is considered primary disease-inducing mechanism of synonymous variants, its contribution toward disease phenotype of non-synonymous variants is underappreciated. METHODS: In this study, we analyzed 415 disease-causing and 120 neutral F9 exonic point variants including both synonymous and non-synonymous for their effect on splicing using a series of in silico splice site prediction tools, SRE prediction tools, and in vitro minigene assays. RESULTS: The use of splice site and SRE prediction tools in tandem provided better prediction but were not always in agreement with the minigene assays. The net effect of splicing dysregulation caused by variants was context dependent. Minigene assays revealed that perturbed splicing can be found. CONCLUSION: Synonymous variants primarily cause disease phenotype via splicing dysregulation while additional mechanisms such as translation rate also play an important role. Splicing dysregulation is likely to contribute to the disease phenotype of several non-synonymous variants.


Assuntos
Fator IX/genética , Hemofilia B/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Biologia Computacional/métodos , Éxons/genética , Estudos de Viabilidade , Humanos , Mutação Puntual
16.
Hum Mutat ; 40(6): 765-787, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825406

RESUMO

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Assuntos
Canais de Cálcio Tipo L/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Miopia/genética , Cegueira Noturna/genética , Análise de Sequência de DNA/métodos , Predisposição Genética para Doença , Hemizigoto , Humanos , Íntrons , Masculino , Linhagem , Splicing de RNA , Mutação Silenciosa
17.
Br J Haematol ; 184(5): 817-825, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30488424

RESUMO

We previously reported that von Willebrand Factor gene (VWF) conversions are a relatively frequent cause of von Willebrand disease (VWD), however, their molecular pathomechanisms resulting in variant phenotypes is largely unknown. Here, we characterized VWF conversions harbouring missense and synonymous mutations, through generating a series of mutant constructs followed by transient expression in 293 cells, and qualitative and quantitative analysis of recombinant VWF (rVWF). The characterization of mutant rVWF showed the critical roles of synonymous variants in the pathogenicity of VWF conversions. The gene conversion variants p.Val1229Gly, p.Asn1231Thr, p.Asn1231Ser and p.Ala1464Pro in the absence of synonymous p.Ser1263= and p.Gln1449= showed minimal effect on rVWF synthesis and activity. Interestingly, a construct including the synonymous variants displayed significantly low rVWF expression and activity. The variant p.Pro1266Leu showed gain of rVWF function toward glycoprotein Ibα; surprisingly, this function was significantly abolished in the presence of gene conversion variants p.Val1229Gly-p.Asn1231Thr. Taken together, our expression studies suggest that synonymous variants in the combination of other gene conversion variants suppress the protein expression, possibly due to defective primary mRNA structure or processing. The variants p.Val1229Gly-p.Asn1231Thr affected the VWF gain of function caused by variant p.Pro1266Leu, probably due to conformational changes in VWF.


Assuntos
Mutação de Sentido Incorreto , Doenças de von Willebrand , Fator de von Willebrand , Substituição de Aminoácidos , Linhagem Celular , Humanos , Doenças de von Willebrand/genética , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
18.
BMC Res Notes ; 11(1): 230, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615104

RESUMO

OBJECTIVE: To determine the association of non-synonymous variants rs2280205 and rs2276961 of the SLC2A9 gene to gout in Cameroonians. RESULTS: In a case-control study including 30 patients with acute gout matched to 30 healthy volunteers. We searched for polymorphism of the targeted variants using Restriction Fragment Length Polymorphism following polymerize chain reaction. Fisher exact test and Student t-test were used to compare variables, with a threshold of significance set at 0.05. The mean age of participants was 58 ± 8 years with 28 (93%) males. The family history of gout was found in one-third of the cases (p > 0.05). Uricemia was higher in cases than controls (p < 0.001) but 24 h urate excretion was similar in both groups (p > 0.05). Ancestral alleles (G and C) and their homozygous genotypes (GG and CC) of the targeted variants were predominant in both groups (p < 0.001). The polymorphisms of targeted variants were not associated with gout, and do not influence uric acid concentration in blood and urine. Non-synonymous variants rs2280205 and rs2276961 are not associated with gout in Cameroonians. However, the hereditary component of the disease suggests the influence of other genetic and/or environmental factors.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Gota/genética , Idoso , Camarões , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Gota/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
19.
Interdiscip Sci ; 9(2): 304-308, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26885647

RESUMO

In rice, ferric-chelate reductase-1 (FRO1) (LOC_Os04g36720) gene was present on chromosome number 4 and its beginning and ending coordinates where coding sequence lies are 22182599 and 22186943, respectively. It plays a vital role in metal homeostasis and iron transportation in plants. Based on the alignment results, location of single-nucleotide variants is located in open reading frame and their effects of variants were predicted using SIFT sequence tool. The non-synonymous variants at position 342 and 436 lies in helical and coil parts of the protein, respectively, as predicted by Psi-pred server. PSI-Blast which resulted in significant hits and the most similar protein sequence (Accession ID: NP_001052896) with available sequence features displayed 100 % identity with query cover of 99 %. Results suggest the non-synonymous variant at position 436 (Accession ID: TBGI204002) lies in FAD-binding domain and nsSNV at position 342 (Accession ID: TBGI203998) lies in periphery of NADP. The SNPs were also analyzed for the deleterious effect by PANTHER subPSEC scores and I-mutant score, and it was postulated that SNPs would be hampering on biological as well as molecular function of FRO 1 gene of rice. A cutoff of -3 corresponds to a 50 % probability that a score is deleterious. From this, the probability that a given variant will cause a deleterious effect on protein function is estimated by P deleterious, such that a subPSEC score of -4 corresponds to a P deleterious of 0.79. Hence, to study the phenotypic consequences of variant TBGI204002, we performed comparative molecular docking studies of native modeled protein and protein with induced mutation as receptors and FAD as ligand to be utilized for binding. The docking process was performed by AutoDock 4.2 software with Lamarckian Genetic algorithm as computational algorithm. Results suggest binding energies are higher in case of mutation-induced protein which suggests presence of variant TBGI204002 enhances binding of FAD ligand at FAD-binding domain site. In case of TBGI203998, similar comparative docking procedure was performed with FAD as binding ligand, which suggests presence of variant does not impact FAD binding at the domain site. We revealed impact of SNPs on the protein structure and its function using sequence-based tools.


Assuntos
Oryza/metabolismo , Algoritmos , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Software
20.
Hum Mutat ; 38(4): 339-342, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28026089

RESUMO

Single-nucleotide variants (SNVs) are the most frequent genetic changes found in human cancer. Most driver alterations are missense and nonsense variants localized in the coding region of cancer genes. Unbiased cancer genome sequencing shows that synonymous SNVs (sSNVs) can be found clustered in the coding regions of several cancer oncogenes or tumor suppressor genes suggesting purifying selection. sSNVs are currently underestimated, as they are usually discarded during analysis. Furthermore, several public databases do not display sSNVs, which can lead to analytical bias and the false assumption that this mutational event is uncommon. Recent progress in our understanding of the deleterious consequences of these sSNVs for RNA stability and protein translation shows that they can act as strong drivers of cancer, as demonstrated for several cancer genes such as TP53 or BCL2L12. It is therefore essential that sSNVs be properly reported and analyzed in order to provide an accurate picture of the genetic landscape of the cancer genome.


Assuntos
Genoma Humano/genética , Neoplasias/genética , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único , Genes Supressores de Tumor , Humanos , Mutação , Oncogenes/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA