Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Influenza Other Respir Viruses ; 18(6): e13340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890805

RESUMO

BACKGROUND: Viral recombination that occurs by exchanging genetic materials between two viral genomes coinfecting the same host cells is associated with the emergence of new viruses with different virulence. Herein, we detected a patient coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants and identified various recombinants in the SARS-CoV-2 full-length spike gene using long-read and Sanger sequencing. METHODS: Samples from five patients in Japan with household transmission of coronavirus disease 2019 (COVID-19) were analyzed using molecular assays for detection and identification of SARS-CoV-2. Whole-genome sequencing was conducted using multiplex PCR with short-read sequencing. RESULTS: Among the five SARS-CoV-2-positive patients, the mutation-specific assay identified the Delta variant in three, the Omicron variant in one, and an undetermined in one. The undermined patient was identified as Delta using whole-genome sequencing, but samples showed a mixed population of Delta and Omicron variants. This patient was analyzed for viral quasispecies by long-read and Sanger sequencing using a full-length spike gene amplicon. In addition to the Delta and Omicron sequences, the viral quasispecies analysis identified nine different genetic recombinant sequences with various breakpoints between Delta and Omicron sequences. The nine detected recombinant sequences in the spike gene showed over 99% identity with viruses that were detected during the Delta and Omicron cocirculation period from the United States and Europe. CONCLUSIONS: This study demonstrates that patients coinfected with different SARS-CoV-2 variants can generate various viral recombinants and that various recombinant viruses may be produced during the cocirculation of different variants.


Assuntos
COVID-19 , Coinfecção , Genoma Viral , Recombinação Genética , SARS-CoV-2 , Sequenciamento Completo do Genoma , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , COVID-19/complicações , Coinfecção/virologia , Genoma Viral/genética , Glicoproteína da Espícula de Coronavírus/genética , Masculino , Japão , Feminino , Filogenia , Mutação , Pessoa de Meia-Idade
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767624

RESUMO

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Assuntos
Bombyx , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Nucleopoliedrovírus , Polimorfismo de Nucleotídeo Único , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Sequenciamento por Nanoporos/métodos , Bombyx/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Viral
3.
Front Microbiol ; 15: 1358258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559344

RESUMO

Introduction: SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods: Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results: In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion: We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.

4.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512312

RESUMO

A total of 14 973 alleles in 29 661 sequenced samples collected between March 2021 and January 2023 by the Mexican Consortium for Genomic Surveillance (CoViGen-Mex) and collaborators were used to construct a thorough map of mutations of the Mexican SARS-CoV-2 genomic landscape containing Intra-Patient Minor Allelic Variants (IPMAVs), which are low-frequency alleles not ordinarily present in a genomic consensus sequence. This additional information proved critical in identifying putative coinfecting variants included alongside the most common variants, B.1.1.222, B.1.1.519, and variants of concern (VOCs) Alpha, Gamma, Delta, and Omicron. A total of 379 coinfection events were recorded in the dataset (a rate of 1.28 %), resulting in the first such catalogue in Mexico. The most common putative coinfections occurred during the spread of Delta or after the introduction of Omicron BA.2 and its descendants. Coinfections occurred constantly during periods of variant turnover when more than one variant shared the same niche and high infection rate was observed, which was dependent on the local variants and time. Coinfections might occur at a higher frequency than customarily reported, but they are often ignored as only the consensus sequence is reported for lineage identification.


Assuntos
COVID-19 , Coinfecção , Humanos , México/epidemiologia , Coinfecção/epidemiologia , Alelos , SARS-CoV-2/genética , COVID-19/epidemiologia
5.
Viruses ; 16(3)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543811

RESUMO

During the COVID-19 pandemic, immunosuppressed patients showed prolonged SARS-CoV-2 infections, with several studies reporting the accumulation of mutations in the viral genome. The weakened immune system present in these individuals, along with the effect of antiviral therapies, are thought to create a favourable environment for intra-host viral evolution and have been linked to the emergence of new viral variants which strongly challenged containment measures and some therapeutic treatments. To assess whether impaired immunity could lead to the increased instability of viral genomes, longitudinal nasopharyngeal swabs were collected from eight immunocompromised patients and fourteen non-immunocompromised subjects, all undergoing SARS-CoV-2 infection. Intra-host viral evolution was compared between the two groups through deep sequencing, exploiting a probe-based enrichment method to minimise the possibility of artefactual mutations commonly generated in amplicon-based methods, which heavily rely on PCR amplification. Although, as expected, immunocompromised patients experienced significantly longer infections, the acquisition of novel intra-host viral mutations was similar between the two groups. Moreover, a thorough analysis of viral quasispecies showed that the variability of viral populations in the two groups is comparable not only at the consensus level, but also when considering low-frequency mutations. This study suggests that a compromised immune system alone does not affect SARS-CoV-2 within-host genomic variability.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Mutação , Quase-Espécies
6.
Proc Natl Acad Sci U S A ; 121(10): e2317851121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416684

RESUMO

Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Haplótipos , Proteínas não Estruturais Virais , RNA Viral
7.
J Physiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983617

RESUMO

Information concepts from physics, mathematics and computer science support many areas of research in biology. Their focus is on objective information, which provides correlations and patterns related to objects, processes, marks and signals. In these approaches only the quantitative aspects of the meaning of the information is relevant. In other areas of biology, 'meaningful information', which is subjective in nature, relies on the physiology of the organism's sensory organs and on the interpretation of the perceived signals, which is then translated into action, even if this is only mental (in brained animals). Information is involved, in terms of both amount and quality. Here we contextualize and review the main theories that deal with 'meaningful-information' at a molecular level from different areas of natural language research, namely biosemiotics, code-biology, biocommunication and biohermeneutics. As this information mediates between the organism and its environment, we emphasize how such theories compare with the neo-Darwinian treatment of genetic information, and how they project onto the rapid evolution of RNA viruses.

9.
J Physiol ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818797

RESUMO

Studies with RNA enzymes (ribozymes) and protein enzymes have identified certain structural elements that are present in some cellular mRNAs and viral RNAs. These elements do not share a primary structure and, thus, are not phylogenetically related. However, they have common (secondary/tertiary) structural folds that, according to some lines of evidence, may have an ancient and common origin. The term 'mRNA archaeology' has been coined to refer to the search for such structural/functional relics that may be informative of early evolutionary developments in the cellular and viral worlds and have lasted to the present day. Such identified RNA elements may have developed as biological signals with structural and functional relevance (as if they were buried objects with archaeological value), and coexist with the standard linear information of nucleic acid molecules that is translated into proteins. However, there is a key difference between the methods that extract information from either the primary structure of mRNA or the signals provided by secondary and tertiary structures. The former (sequence comparison and phylogenetic analysis) requires strict continuity of the material vehicle of information during evolution, whereas the archaeological method does not require such continuity. The tools of RNA archaeology (including the use of ribozymes and enzymes to investigate the reactivity of the RNA elements) establish links between the concepts of communication and language theories that have not been incorporated into knowledge of virology, as well as experimental studies on the search for functionally relevant RNA structures.

10.
Ann N Y Acad Sci ; 1529(1): 3-13, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801367

RESUMO

The entry of a virus into the host cell always implies the alteration of certain intracellular molecular relationships, some of which may involve the recovery of ancient cellular activities. In this sense, viruses are archaeological tools for identifying unexpressed activities in noninfected cells. Among these, activities that hinder virus propagation may represent cellular defense mechanisms, for example, activities that mutagenize the viral genome such as ADAR-1 or APOBEC activities. Instead, those that facilitate virus propagation can be interpreted as the result of viral adaptation to-or mimicking-cellular structures, enabling the virus to perform anthropomorphic activities, including hijacking, manipulating, and reorganizing cellular factors for their own benefit. The alternative we consider here is that some of these second set of cellular activities were already in the uninfected cell but silenced, under the negative control of the cell or lineage, and that they represent a necessary precondition for viral infection. For example, specifically loading an amino acid at the 3'-end of the mRNA of some plant viruses by aminoacyl-tRNA synthetases has proved essential for virus infection despite this reaction not occurring with cellular mRNAs. Other activities of this type are discussed here, together with the biological context in which they acquire a coherent meaning, that is, genetic latency and molecular conflict.


Assuntos
Vírus , Humanos
11.
Antimicrob Agents Chemother ; 67(7): e0039423, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367486

RESUMO

The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Hepacivirus/genética , Mutagênicos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Genótipo , Ribavirina/uso terapêutico , Resultado do Tratamento , Quimioterapia Combinada
12.
Virus Evol ; 9(1): veac103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205166

RESUMO

Analyses of viral inter- and intra-host mutations could better guide the prevention and control of infectious diseases. For a long time, studies on viral evolution have focused on viral inter-host variations. Next-generation sequencing has accelerated the investigations of viral intra-host diversity. However, the theoretical basis and dynamic characteristics of viral intra-host mutations remain unknown. Here, using serial passages of the SA14-14-2 vaccine strain of Japanese encephalitis virus (JEV) as the in vitro model, the distribution characteristics of 1,788 detected intra-host single-nucleotide variations (iSNVs) and their mutated frequencies from 477 deep-sequenced samples were analyzed. Our results revealed that in adaptive (baby hamster kidney (BHK)) cells, JEV is under a nearly neutral selection pressure, and both non-synonymous and synonymous mutations represent an S-shaped growth trend over time. A higher positive selection pressure was observed in the nonadaptive (C6/36) cells, and logarithmic growth in non-synonymous iSNVs and linear growth in synonymous iSNVs were observed over time. Moreover, the mutation rates of the NS4B protein and the untranslated region (UTR) of the JEV are significantly different between BHK and C6/36 cells, suggesting that viral selection pressure is regulated by different cellular environments. In addition, no significant difference was detected in the distribution of mutated frequencies of iSNVs between BHK and C6/36 cells.

13.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174006

RESUMO

The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.

14.
Front Cell Infect Microbiol ; 13: 1057082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992689

RESUMO

Introduction: Cellular epigenetic modifications occur in the course of viral infections. We previously documented that hepatitis C virus (HCV) infection of human hepatoma Huh-7.5 cells results in a core protein-mediated decrease of Aurora kinase B (AURKB) activity and phosphorylation of Serine 10 in histone H3 (H3Ser10ph) levels, with an affectation of inflammatory pathways. The possible role of HCV fitness in infection-derived cellular epigenetic modifications is not known. Methods: Here we approach this question using HCV populations that display a 2.3-fold increase in general fitness (infectious progeny production), and up to 45-fold increase of the exponential phase of intracellular viral growth rate, relative to the parental HCV population. Results: We show that infection resulted in a HCV fitness-dependent, average decrease of the levels of H3Ser10ph, AURKB, and histone H4 tri-methylated at Lysine 20 (H4K20m3) in the infected cell population. Remarkably, the decrease of H4K20m3, which is a hallmark of cellular transformation, was significant upon infection with high fitness HCV but not upon infection with basal fitness virus. Discussion: Here we propose two mechanisms ─which are not mutually exclusive─ to explain the effect of high viral fitness: an early advance in the number of infected cells, or larger number of replicating RNA molecules per cell. The implications of introducing HCV fitness as an influence in virus-host interactions, and for the course of liver disease, are warranted. Emphasis is made in the possibility that HCV-mediated hepatocellular carcinoma may be favoured by prolonged HCV infection of a human liver, a situation in which viral fitness is likely to increase.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Humanos , Hepacivirus/genética , Replicação Viral , Carcinoma Hepatocelular/genética , Epigênese Genética
15.
Expert Rev Mol Diagn ; 23(2): 143-157, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36786077

RESUMO

INTRODUCTION: JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification. AREAS COVERED: The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease. EXPERT OPINION: The implementation of molecular biology techniques improved our understanding of JCPyV biology. Deep sequencing analysis of viral genomes revealed the presence of viral quasispecies in the cerebrospinal fluid of PML patients characterized by noncoding control region rearrangements and VP1 mutations. These neurotropic JCPyV variants present enhanced replication and an altered cell tropism that contribute to PML development. Monitoring these variants may be relevant for the identification of patients at risk of PML. Multiplex realtime PCR targeting both the LTAg and the archetype NCCR could be used to identify them. Failure to amplify NCCR should indicate the presence of a JCPyV prototype speeding up the diagnostic process.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , MicroRNAs , Humanos , Biologia , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/etiologia , Leucoencefalopatia Multifocal Progressiva/genética , Mutação
16.
Antimicrob Agents Chemother ; 67(1): e0131522, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602354

RESUMO

We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.


Assuntos
COVID-19 , Ribavirina , Animais , Chlorocebus aethiops , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/genética , Células Vero , Mutação , Mutagênicos/farmacologia
17.
Curr Top Microbiol Immunol ; 439: 95-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592243

RESUMO

The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.


Assuntos
HIV-1 , Hepatite C , Humanos , HIV-1/genética , Mutação
18.
Viruses ; 15(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36680257

RESUMO

Parvovirus B19 (B19V) is a ssDNA human virus, responsible for an ample range of clinical manifestations. Sequencing of B19V DNA from clinical samples is frequently reported in the literature to assign genotype (genotypes 1-3) and for finer molecular epidemiological tracing. The increasing availability of Next Generation Sequencing (NGS) with its depth of coverage potentially yields information on intrinsic sequence heterogeneity; however, integration of this information in analysis of sequence variation is not routinely obtained. The present work investigated genomic sequence heterogeneity within and between B19V isolates by application of NGS techniques, and by the development of a novel dedicated bioinformatic tool and analysis pipeline, yielding information on two newly defined parameters. The first, α-diversity, is a measure of the amount and distribution of position-specific, normalised Shannon Entropy, as a measure of intra-sample sequence heterogeneity. The second, σ-diversity, is a measure of the amount of inter-sample sequence heterogeneity, also incorporating information on α-diversity. Based on these indexes, further cluster analysis can be performed. A set of 24 high-titre viraemic samples was investigated. Of these, 23 samples were genotype 1 and one sample was genotype 2. Genotype 1 isolates showed low α-diversity values, with only a few samples showing distinct position-specific polymorphisms; a few genetically related clusters emerged when analysing inter-sample distances, correlated to the year of isolation; the single genotype 2 isolate showed the highest α-diversity, even if not presenting polymorphisms, and was an evident outlier when analysing inter-sample distance. In conclusion, NGS analysis and the bioinformatic tool and pipeline developed and used in the present work can be considered effective tools for investigating sequence diversity, an observable parameter that can be incorporated into the quasispecies theory framework to yield a better insight into viral evolution dynamics.


Assuntos
Parvovirus B19 Humano , DNA Viral/genética , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Parvovirus B19 Humano/genética
19.
Microbiol Mol Biol Rev ; 86(3): e0008621, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35658541

RESUMO

Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.


Assuntos
Vírus de RNA de Sentido Negativo , Vírus de RNA , Antivirais , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , Montagem de Vírus/genética
20.
Pathogens ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745516

RESUMO

Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA