Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291123

RESUMO

HIV-1 mediated neurotoxicity is thought to be associated with HIV-1 viral proteins activating astrocytes and microglia by inducing inflammatory cytokines leading to the development of HIV-associated neurocognitive disorder (HAND). In the current study, we observe how HIV-1 Nef upregulates the levels of IL-6, IP-10, and TNF-α around 6.0fold in normal human astrocytes (NHAs) compared to cell and empty vector controls. Moderate downregulation in the expression profile of inflammatory cytokines was observed due to RNA interference. Furthermore, we determine the impact of inflammatory cytokines in the upregulation of kynurenine pathway metabolites, such as indoleamine 2,3-dioxygenase (IDO), and 3-hydroxyanthranilic acid oxygenase (HAAO) in NHA, and found the same to be 3.0- and 3.2-fold, respectively. Additionally, the variation in the level of nitric oxide before and after RNA interference was significant. The upregulated cytokines and pathway-specific metabolites could be linked with the neurotoxic potential of HIV-1 Nef. Thus, the downregulation in cytokines and kynurenine metabolites observed after siRNA-Nef interference indicates the possibility of combining the RNA interference approach with current antiretroviral therapy to prevent neurotoxicity development.


Assuntos
Astrócitos , Infecções por HIV , HIV-1 , Doenças Neuroinflamatórias , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Humanos , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Astrócitos/metabolismo , Astrócitos/virologia , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/metabolismo , Cinurenina/metabolismo , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/virologia , Perfilação da Expressão Gênica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
2.
J Pharm Biomed Anal ; 219: 114948, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35907317

RESUMO

Herein it is reported the development and application of two chromatographic assays for the measurement of the activity of 3-Hydroxyanthranilate-3,4-dioxygenase (3HAO). Such an enzyme converts 3-Hydroxyanthranilic acid (3HAA) to 2-amino-3-carboxymuconic semialdehyde (ACMS), which undergo a spontaneous, non-enzymatic cyclization to produce quinolinic acid (QUIN). The enzyme activity was measured by quantitation of the substrate consumption over time either with spectrophotometric (UV) or mass spectrometric (MS) detection upon reversed-phase chromatographic separation. MS detection resulted more selective and sensitive, but less accurate and precise. However, both methods have sufficient sensitivity to allow the measurement of enzyme activity with consistent results compared to literature data. Since MS detection allowed less sample consumption it was used to calculate the kinetics parameters (i.e., Vmax and Kd) of recombinant 3HAO. Another MS-based method was then developed to measure the amount of QUIN produced, revealing an incomplete conversion of 3HAA to QUIN. As suggested by previous studies, the enzyme activity was apparently sensitive to the redox state of the enzyme thiols. In fact, thiol reducing agents such as dithiothreitol (DTT) and glutathione (GSH), can alter the enzyme activity although the investigation on the exact mechanism involved in such effect was beyond the scope of the research. Interestingly, edaravone (EDA) induced an in vitro suppression of QUIN production through direct, competitive 3HAO inhibition. EDA is a molecule approved for the treatment of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with an increase of QUIN concentrations in both serum and cerebrospinal fluid. Although EDA was reported to mitigate ALS progression its mode of action is still largely unknown. Some studies reported antioxidant and radical scavenger properties of EDA, but none confirm a direct activity as 3HAO enzyme inhibitor. Since QUIN is reported to be a neurotoxic metabolite, 3HAO inhibition can contribute to the beneficial effect of EDA in ALS, although such a mechanism must be then confirmed in vivo. However, EDA might be a convenient scaffold for the design of selective 3HAO inhibitors with potential applications in ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , 3-Hidroxiantranilato 3,4-Dioxigenase/química , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Edaravone/farmacologia , Humanos , Ácido Quinolínico/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(33): 19720-19730, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732435

RESUMO

The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolved in crystallo reactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site. Among them, a monooxygenated, seven-membered lactone intermediate as a monodentate ligand of the iron center at 1.59-Å resolution was captured, which presumably corresponds to a substrate-based radical species observed by EPR using a slurry of small-sized single crystals. Other structural snapshots determined at around 2.0-Å resolution include monodentate and subsequently bidentate coordinated substrate, superoxo, alkylperoxo, and two metal-bound enol tautomers of the unstable dioxygenase product. These results reveal a detailed stepwise O-atom transfer dioxygenase mechanism along with potential isomerization activity that fine-tunes product profiling and affects the production of quinolinic acid at a junction of the metabolic pathway.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/química , Proteínas de Bactérias/química , Cupriavidus/enzimologia , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Cupriavidus/química , Cupriavidus/genética , Cinética , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Especificidade por Substrato
4.
Cardiovasc Res ; 116(12): 1948-1957, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589306

RESUMO

AIMS: Atherosclerosis is a chronic inflammatory disease involving immunological and metabolic processes. Metabolism of tryptophan (Trp) via the kynurenine pathway has shown immunomodulatory properties and the ability to modulate atherosclerosis. We identified 3-hydroxyanthranilic acid (3-HAA) as a key metabolite of Trp modulating vascular inflammation and lipid metabolism. The molecular mechanisms driven by 3-HAA in atherosclerosis have not been completely elucidated. In this study, we investigated whether two major signalling pathways, activation of SREBPs and inflammasome, are associated with the 3-HAA-dependent regulation of lipoprotein synthesis and inflammation in the atherogenesis process. Moreover, we examined whether inhibition of endogenous 3-HAA degradation affects hyperlipidaemia and plaque formation. METHODS AND RESULTS: In vitro, we showed that 3-HAA reduces SREBP-2 expression and nuclear translocation and apolipoprotein B secretion in HepG2 cell cultures, and inhibits inflammasome activation and IL-1ß production by macrophages. Using Ldlr-/- mice, we showed that inhibition of 3-HAA 3,4-dioxygenase (HAAO), which increases the endogenous levels of 3-HAA, decreases plasma lipids and atherosclerosis. Notably, HAAO inhibition led to decreased hepatic SREBP-2 mRNA levels and lipid accumulation, and improved liver pathology scores. CONCLUSIONS: We show that the activity of SREBP-2 and the inflammasome can be regulated by 3-HAA metabolism. Moreover, our study highlights that targeting HAAO is a promising strategy to prevent and treat hypercholesterolaemia and atherosclerosis.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Aterosclerose/metabolismo , Inflamassomos/metabolismo , Lipoproteínas/sangue , Fígado/metabolismo , Macrófagos/metabolismo , Receptores de LDL/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenase/antagonistas & inibidores , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/análogos & derivados , Ácido 3-Hidroxiantranílico/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Interleucina-1beta/metabolismo , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
5.
J Urol ; 201(2): 386-392, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30063927

RESUMO

PURPOSE: We evaluated the association of hypospadias and 17 susceptibility loci previously identified by a European genome-wide association study in a cohort of Japanese patients. We also examined the expression of candidate genes in male mouse embryos to determine the possible underlying mechanisms of this disease. MATERIALS AND METHODS: We enrolled 169 Japanese patients (mean age at surgery 3.7 years) who underwent repair of hypospadias. Genotyping of 17 single nucleotide polymorphisms was performed using a multiplex polymerase chain reaction invader assay. We also performed in situ hybridization to determine whether candidate genes were expressed in the male genital tubercle during embryonic development of the external genitalia in mice. RESULTS: Single nucleotide polymorphism rs3816183 of HAAO was significantly associated with susceptibility to hypospadias in general (p = 0.0019) and to anterior/middle hypospadias (p = 0.0283) and posterior hypospadias (p = 0.0226), while single nucleotide polymorphism rs6499755 of IRX6 showed an association with susceptibility to anterior/middle hypospadias (p = 0.0472). In mouse embryos there was no significant upregulation of Haao expression in the developing male external genitalia. Irx3 and Irx5, which are linked to Irx6 within the IrxB cluster, were expressed in the mesenchyme remote from the urethral plate epithelium during the critical embryonic period for masculinization. Irx6 was expressed in the ectodermal epithelium, demonstrating prominent dorsal ectodermal expression without expression in the ventral ectoderm adjacent to the urethral plate during the same period. CONCLUSIONS: Genetic variations of HAAO and IRX6 influence susceptibility to hypospadias in the Japanese population. Further research is needed to clarify the mechanism by which variations in these genes contribute to the pathogenesis of hypospadias.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipospadia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Adolescente , Animais , Povo Asiático/genética , Criança , Pré-Escolar , Ectoderma/metabolismo , Embrião de Mamíferos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Camundongos , Camundongos Endogâmicos ICR , Organogênese/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Uretra/crescimento & desenvolvimento
6.
J Nutr Sci Vitaminol (Tokyo) ; 64(2): 90-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710037

RESUMO

The pathway of tryptophan (Trp)-nicotinamide is very important nutritionally because a vitamin nicotinamide is biosynthesized from an amino acid Trp. Until we started studying the factors that affect the Trp-nicotinamide conversion rate, little data existed. Data obtained from TDO (Trp 2,3-dioxygenase)-KO (knock-out) mice have revealed that mice can biosynthesize a necessary amount of nicotinamide from Trp by indoleamine 2,3-dioxygenase (IDO) even when TDO is lacking. It has also been shown that 3-hydroxyanthranilic acid is a key intermediate. Urine upper metabolites such as kynurenic acid and xanthurenic acid originate from non-hepatic tissues but not from the liver. Data obtained from quinolinic acid phosphoribosyltransferase (QPRT)-KO mice indicated that the Trp→quinolinic acid conversion ratio was 6%. Urine quinolinic acid levels and the conversion ratio of Trp to nicotinamide were the same between hetero and wild mice. These findings indicate that QPRT is not the rate-limiting enzyme in the conversion. Thus, the limiting factors in the conversion of Trp to nicotinamide are the amounts of 3-hydroxyanthranilic acid and quinolinic acid in the liver and the activity of liver 3-hydroxyanthranilic acid 3,4-dioxygenase. Studies on factors have shown that conversion of Trp to nicotinamide is increased by adequate intake of good quality protein, and adequate intake of unsaturated fatty acids and starch. However, conversion was decreased by deficient niacin, vitamin B2, or vitamin B6, excessive intake of protein, saturated fatty acids, or glucose and fructose, or intake of protein with low Trp content, and insufficient mineral intake.


Assuntos
Fígado/metabolismo , Niacinamida/biossíntese , Triptofano/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Animais , Dieta , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ácido Cinurênico/metabolismo , Estado Nutricional , Pentosiltransferases/metabolismo , Ácido Quinolínico/metabolismo , Deficiência de Vitaminas do Complexo B/complicações , Xanturenatos/metabolismo
7.
Mutat Res Rev Mutat Res ; 776: 32-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29807576

RESUMO

Tryptophan is metabolized primarily via the kynurenine pathway (KP), which involves several enzymes, including indoleamine 2,3-dioxygenase, tryptophan 2,3 dioxygenase (TDO), kynurenine aminotransferases (KATs), kynurenine monooxygenase (KMO) etc. The majority of metabolites are neuroactive: some of them, such as kynurenic acid, show neuroprotective effects, while others contribute to free radical production, leading to neurodegeneration. Imbalance of the pathway is assumed to contribute to the development of several neurodegenerative diseases, psychiatric disorders, migraine and multiple sclerosis. Our aim was to summarize published data on genetic alterations of enzymes involved in the KP leading to disturbances of the pathway that can be related to different diseases. To achieve this, a PubMed literature search was performed for publications on genetic alterations of the KP enzymes upto April 2017. Several genetic alterations of the KP have been identified and have been proposed to be associated with diseases. Here we must emphasize that despite the large number of recognized genetic alterations, the number of firmly established causal relations with specific diseases is still small. The realization of this by those interested in the field is very important and finding such connections should be a major focus of related research. Polymorphisms of the genes encoding the enzymes of the KP have been associated with autism, multiple sclerosis and schizophrenia, and were shown to affect the immune response of patients with bacterial meningitis, just to mention a few. To our knowledge, this is the first comprehensive review of the genetic alterations of the KP enzymes. We believe that the identification of genetic alterations underlying diseases has great value regarding both treatment and diagnostics in precision medicine, as this work can promote the understanding of pathological mechanisms, and might facilitate medicinal chemistry approaches to substitute missing components or correct the disturbed metabolite balance of KP.


Assuntos
Cinurenina/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Arilformamidase/genética , Arilformamidase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Redes e Vias Metabólicas/genética , Transaminases/genética , Transaminases/metabolismo , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
8.
Oxid Med Cell Longev ; 2018: 2413841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693061

RESUMO

AIM: Poststroke depression (PSD), which occurs in approximately one-third of stroke survivors, is clinically important because of its association with slow functional recovery and increased mortality. In addition, the underlying pathophysiological mechanisms are still poorly understood. METHODS: We used a mouse model of PSD to examine the neurobiological mechanisms of PSD and the beneficial effects of aripiprazole, an atypical antipsychotic drug. PSD was induced in mice by combining middle cerebral artery occlusion (MCAO) with spatial restraint stress. The body weight, sucrose preference, and forced swim tests were performed at 5, 7, and 9 weeks and the Morris water maze test at 10 weeks after completing MCAO and spatial restraint stress. RESULTS: Mice subjected to MCAO and spatial restraint stress showed significant depressive-like behavior in the sucrose preference test and forced swim test as well as cognitive impairment in the Morris water maze test. The PSD-like phenotype was accompanied by an indoleamine 2,3-dioxygenase 1 (IDO1) expression increase in the nucleus accumbens, hippocampus, and hypothalamus, but not in the striatum. Furthermore, the increased IDO1 levels were localized in Iba-1(+) cells but not in NeuN(+) or GFAP(+) cells, indicating that microglia-induced IDO1 expression was prominent in the PSD mouse brain. Moreover, 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), quinolinic acid (QUIN), and reactive oxygen species (ROS) were significantly increased in the nucleus accumbens, hippocampus, and hypothalamus of PSD mice. Importantly, a 2-week aripiprazole (1 mg/kg, per os) regimen, which was initiated 1 day after MCAO, ameliorated depressive-like behavior and impairment of cognitive functions in PSD mice that was accompanied by downregulation of IDO1, HAAO, QUIN, and ROS. CONCLUSIONS: Our results suggest that the IDO1-dependent neurotoxic kynurenine metabolism induced by microglia functions in PSD pathogenesis. The beneficial effect of aripiprazole on depressive-like behavior and cognitive impairment may be mediated by inhibition of IDO1, HAAO, QUIN, and ROS.


Assuntos
Isquemia Encefálica/complicações , Transtorno Depressivo/etiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Síndromes Neurotóxicas/etiologia , Estresse Psicológico/complicações , Acidente Vascular Cerebral/complicações , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Animais , Isquemia Encefálica/fisiopatologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Ácido Quinolínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Restrição Física , Aprendizagem Espacial , Acidente Vascular Cerebral/fisiopatologia
9.
N Engl J Med ; 377(6): 544-552, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28792876

RESUMO

BACKGROUND: Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. METHODS: We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. RESULTS: Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. CONCLUSIONS: Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/genética , Anormalidades Congênitas/genética , Suplementos Nutricionais , Hidrolases/genética , NAD/deficiência , Niacina/uso terapêutico , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Canal Anal/anormalidades , Animais , Anormalidades Congênitas/prevenção & controle , Modelos Animais de Doenças , Esôfago/anormalidades , Feminino , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/prevenção & controle , Humanos , Hidrolases/metabolismo , Rim/anormalidades , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Mutação , NAD/biossíntese , NAD/genética , Análise de Sequência de DNA , Coluna Vertebral/anormalidades , Traqueia/anormalidades
10.
Acta Crystallogr D Struct Biol ; 73(Pt 4): 340-348, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375145

RESUMO

3-Hydroxyanthranilate 3,4-dioxygenase (3HAO) is an enzyme in the microglial branch of the kynurenine pathway of tryptophan degradation. 3HAO is a non-heme iron-containing, ring-cleaving extradiol dioxygenase that catalyzes the addition of both atoms of O2 to the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3-HANA) to form quinolinic acid (QUIN). QUIN is a highly potent excitotoxin that has been implicated in a number of neurodegenerative conditions, making 3HAO a target for pharmacological downregulation. Here, the first crystal structure of human 3HAO with the native iron bound in its active site is presented, together with an additional structure with zinc (a known inhibitor of human 3HAO) bound in the active site. The metal-binding environment is examined both structurally and via inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy (XRF) and electron paramagnetic resonance spectroscopy (EPR). The studies identified Met35 as the source of potential new interactions with substrates and inhibitors, which may prove useful in future therapeutic efforts.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/química , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Níquel/química , Níquel/metabolismo , Ligação Proteica , Conformação Proteica , Zinco/química , Zinco/metabolismo
11.
Mol Biosyst ; 11(3): 898-907, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25588817

RESUMO

3-Hydroxyanthranilate 3,4-dioxygenase () is a non-heme iron dependent enzyme. It catalyses the cleavage of the benzene ring of 3-hydroxyanthranilic acid (3-Ohaa), an intermediate in the kynurenine pathway, and therefore represents a potential target in treating numerous disorders related to the concentration of quinolinic acid (QUIN), the kynurenine pathway product, in tissues. The stability and behaviour of the enzyme in nearly physiological conditions, studied by the empirical molecular modelling methods enabled us to determine the influence of several, for the enzyme activity relevant, point mutations (Arg43Ala, Arg95Ala and Glu105Ala) on the protein structure, particularly on the active site architecture and the metal ion environment, as well as on the substrate, 3-Ohaa, binding. Besides, the water population of the active site, and the protein flexibility as well as the amino acid residues interaction networks relevant for the enzyme activity were determined for the 3-Ohaa complexes with the native and mutated enzyme variants. Finally, using the hybrid quantum-mechanics/molecular-mechanics (QM/MM) calculations the catalysed 3-Ohaa oxidation into 2-amino-3-carboxymuconic acid semialdehyde was elucidated.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/química , Biologia Computacional , Modelos Moleculares , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Sítios de Ligação , Catálise , Biologia Computacional/métodos , Humanos , Ferro/química , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
13.
PLoS One ; 8(4): e59749, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630570

RESUMO

To assess the role of the kynurenine pathway in the pathology of Alzheimer's disease (AD), the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO), and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile ß amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD.


Assuntos
Doença de Alzheimer/enzimologia , Região CA1 Hipocampal/enzimologia , Expressão Gênica , Cinurenina/metabolismo , Triptofano Oxigenase/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Região CA3 Hipocampal/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Estudos de Casos e Controles , Cerebelo/enzimologia , Córtex Cerebral/enzimologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Especificidade de Órgãos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triptofano/metabolismo , Triptofano Oxigenase/genética
14.
Electrophoresis ; 34(12): 1828-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23576119

RESUMO

This article describes the development of a reliable CZE-ESI-MS method to simultaneously separate and quantitate three specific metabolites (3-hydroxyanthranilic acid (3-HAA), quinolinic acid (QA), and picolinic acid (PA)) of the kynurenine pathway (KP) of tryptophan catabolism. Using a covalently bonded sulfonated capillary, the parameters such as pH, type of background electrolyte, type of organic solvent, nebulizer pressure as well as both negative and positive ESI-MS modes were optimized to achieve the best Rs and S/N of three KP metabolites. The developed CZE-ESI-MS assay provided high resolution of PA/QA, high specificity, a total analysis time of 10 min with satisfactory intraday and interday repeatability of migration time and peak areas. Under optimized CZE-ESI-MS conditions, the calibration curves over a concentration range of 19-300 µM for 3-HAA and QA, and 75-300 µM for PA were simultaneously generated. The method was successfully applied for the first time to profile the concentrations of initial substrate, 3-HAA, and its eventual products, PA and QA, formed in the complex multienzyme system. As the ratio of two enzymes, 3-hydroxyanthranilate 3,4-dioxygenase (HAO) and α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) decreases, the concentration of QA approaches essentially zero indicating that all ACMS formed by the action of HAO is consumed by ACMSD rather than its spontaneous decay to QA.


Assuntos
Ácido 3-Hidroxiantranílico/análise , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Complexos Multienzimáticos/química , Ácidos Picolínicos/análise , Ácido Quinolínico/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Soluções Tampão , Carboxiliases/metabolismo , Concentração de Íons de Hidrogênio , Complexos Multienzimáticos/metabolismo , Ácidos Picolínicos/metabolismo , Pressão , Ácido Quinolínico/metabolismo , Reprodutibilidade dos Testes
15.
IUBMB Life ; 64(12): 983-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23124849

RESUMO

Tryptophan is an essential amino acid which influences a wide range of physiological processes, including mood, cognition, and immunity. In the autoimmune diseases, such as rheumatoid arthritis (RA), the induction of tryptophan catabolism may help to diminish exacerbated immune responses. In this study, using collagen-induced arthritis (CIA) in DBA/1 mice which is an animal model of RA, the endogenous activity of the kynurenine pathway in the immune system was monitored before and after onset of the disease. An increased rate of the initiation of tryptophan catabolism via the kynurenine pathway throughout CIA has been observed. However, decreased tryptophan concentration in the lymph nodes from pre-arthritic mice was not enough to prevent development of CIA. In contrast, resolution of inflammation coincided with the decreased concentration of tryptophan and accumulation of its catabolites: kynurenine, anthranilic acid, and 3-hydroxyanthranilic acid in lymph nodes but not in the spleen. In addition, the lack of the accumulation of kynurenine and its downstream metabolites in the pre-arthritic lymph nodes coincided with increased mRNA expression for genes involved in the catabolism of kynurenine (Kynureninase, kynurenine 3-monooxygenase, and 3-hydroxyanthranilate 3,4 dioxygenase). However, in the lymph nodes from mice with established CIA, mRNA expression for these genes was normalized. Hence, keeping in mind an exploratory character of the results, it can be postulated that an anti-inflammatory role of the kynurenine pathway reaches its full potential only when decreased concentration of tryptophan coincides with accumulation of kynurenines driven by metabolic regulation of gene expression on the kynurenine pathway.


Assuntos
Artrite Experimental/metabolismo , Cinurenina/metabolismo , Linfonodos/metabolismo , RNA Mensageiro/biossíntese , Baço/metabolismo , Triptofano/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Regulação da Expressão Gênica , Hidrolases/genética , Hidrolases/metabolismo , Inflamação , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos DBA , Especificidade de Órgãos , Transdução de Sinais , Baço/patologia , ortoaminobenzoatos/metabolismo
16.
Biopolymers ; 91(12): 1189-95, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19226621

RESUMO

3-Hydroxyanthranilate 3,4-dioxygenase, the enzyme that catalyzes the conversion of 3-hydroxyanthranilate to quinolinic acid, has been extracted and purified from bovine kidney, crystallized and its structure determined at 2.5 A resolution. The enzyme, which crystallizes in the triclinic P1 space group, is a monomer, characterized by the so-called cupin fold. The monomer of the bovine enzyme mimics the dimer present in lower species, such as bacteria and yeast, since it is composed of two domains: one of them is equivalent to one monomer, whilst the second domain corresponds to only a portion of it. The active site consists of an iron ion coordinated by two histidine residues, one glutamate and an external ligand, which has been interpreted as a solvent molecule. It is contained in the N-terminal domain, whilst the function of the C-terminal domain is possibly structural. The catalytic mechanism very likely has been conserved through all species, since the positions of all residues considered relevant for the reaction are present from bacteria to humans.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/química , Estrutura Terciária de Proteína , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/química , Ácido 3-Hidroxiantranílico/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Bovinos , Cristalização , Cristalografia por Raios X , Ácido Glutâmico/química , Histidina/química , Ferro/química , Rim/enzimologia , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Ácido Quinolínico/química , Ácido Quinolínico/metabolismo , Homologia de Sequência de Aminoácidos
17.
Mol Cell Biol ; 27(21): 7641-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17724083

RESUMO

Histone N-terminal domains play critical roles in regulating chromatin structure and gene transcription. Relatively little is known, however, about the role of the histone H2A N-terminal domain in transcription regulation. We have used DNA microarrays to characterize the changes in genome-wide expression caused by mutations in the N-terminal domain of histone H2A. Our results indicate that the N-terminal domain of histone H2A functions primarily to repress the transcription of a large subset of the Saccharomyces cerevisiae genome and that most of the H2A-repressed genes are also repressed by the histone H2B N-terminal domain. Using the histone H2A microarray data, we selected three reporter genes (BNA1, BNA2, and GCY1), which we subsequently used to map regions in the H2A N-terminal domain responsible for this transcriptional repression. These studies revealed that a small subdomain in the H2A N-terminal tail, comprised of residues 16 to 20, is required for the transcriptional repression of these reporter genes. Deletion of either the entire histone H2A N-terminal domain or just this small subdomain imparts sensitivity to UV irradiation. Finally, we show that two residues in this H2A subdomain, serine-17 and arginine-18, are specifically required for the transcriptional repression of the BNA2 reporter gene.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/química , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos , Lisina/metabolismo , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Deleção de Sequência , Relação Estrutura-Atividade , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
18.
Life Sci ; 80(10): 918-25, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17174341

RESUMO

The concentration of the endogenous neurotoxin quinolinic acid (QA) is increased in the central nervous system of mice with herpes simplex encephalitis. We have previously shown that the antiherpetic agent acyclovir (AC) has the ability to reduce QA-induced neuronal damage in rat brain, by attenuating lipid peroxidation. The mechanism by which QA induces lipid peroxidation includes the enhancement of the iron (Fe)-mediated Fenton reaction and the generation of free radicals, such as the superoxide anion (O(2)(-)). Thus, the present study determined whether AC has the ability to reduce Fe(2+)-induced lipid peroxidation, O(2)(-) generation and QA-induced superoxide anion generation, and to bind free Fe. O(2)(-) and Fe(2+) are also cofactors of the enzymes, indoleamine-2,3-dioxygenase (IDO) and 3-hydroxyanthranilate-3,4-dioxygenase (3-HAO) respectively. These enzymes catalyse steps in the biosynthesis of QA; thus, the effect of AC on their activity was also investigated. AC significantly attenuates Fe(2+)-induced lipid peroxidation and O(2)(-) generation. AC reduces O(2)(-) generation in the presence of QA and strongly binds Fe(2+) and Fe(3+). It also reduces the activity of both IDO and 3-HAO, which could be attributed to the superoxide anion scavenging and iron binding properties, respectively, of this drug.


Assuntos
Aciclovir/farmacologia , Antimetabólitos/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Ácido Quinolínico/antagonistas & inibidores , Ácido Quinolínico/toxicidade , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Animais , Eletroquímica , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/enzimologia , Ferro/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Oxirredução , Ratos , Ratos Wistar , Superóxidos/metabolismo
19.
Metab Brain Dis ; 21(2-3): 189-99, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16855872

RESUMO

Due to the implication of oxidative stress in neurodegenerative disorders we decided to investigate the antioxidant properties of acetylsalicylic acid and acetaminophen either alone or in combination. The thiobarbituric acid assay (TBA) and the nitroblue tetrazolium (NBT) assay were used to investigate quinolinic acid (QA)-induced: lipid peroxidation and superoxide anion generation in the rat hippocampus, in vivo. The study also shows, using cresyl violet staining, the preservation of structural integrity of neuronal cells following treatment with acetylsalicylic acid and acetaminophen in QA-lesioned rat hippocampus. Furthermore the study sought to determine whether these agents have any effect on endogenous (QA) formation. This study shows that acetylsalicylic acid and acetaminophen inhibit QA-induced superoxide anion generation, lipid peroxidation and cell damage, in vivo, in the rat hippocampus. In addition these agents inhibit the enzyme, 3-hydroxyanthranilic acid oxygenase (3-HAO), responsible for the synthesis of endogenous QA.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Síndromes Neurotóxicas/prevenção & controle , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Nitroazul de Tetrazólio , Oxidantes/toxicidade , Oxirredução , Ácido Quinolínico/toxicidade , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Protein Sci ; 15(4): 761-73, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16522801

RESUMO

3-Hydroxyanthranilic acid 3,4-dioxygenase (3HAO) is a non-heme ferrous extradiol dioxygenase in the kynurenine pathway from tryptophan. It catalyzes the conversion of 3-hydroxyanthranilate (HAA) to quinolinic acid (QUIN), an endogenous neurotoxin, via the activation of N-methyl-D-aspartate (NMDA) receptors and the precursor of NAD(+) biosynthesis. The crystal structure of 3HAO from S. cerevisiae at 2.4 A resolution shows it to be a member of the functionally diverse cupin superfamily. The structure represents the first eukaryotic 3HAO to be resolved. The enzyme forms homodimers, with two nickel binding sites per molecule. One of the bound nickel atoms occupies the proposed ferrous-coordinated active site, which is located in a conserved double-strand beta-helix domain. Examination of the structure reveals the participation of a series of residues in catalysis different from other extradiol dioxygenases. Together with two iron-binding residues (His49 and Glu55), Asp120, Asn51, Glu111, and Arg114 form a hydrogen-bonding network; this hydrogen-bond network is key to the catalysis of 3HAO. Residues Arg101, Gln59, and the substrate-binding hydrophobic pocket are crucial for substrate specificity. Structure comparison with 3HAO from Ralstonia metallidurans reveals similarities at the active site and suggests the same catalytic mechanism in prokaryotic and eukaryotic 3HAO. Based on sequence comparison, we suggest that bicupin of human 3HAO is the first example of evolution from a monocupin dimer to bicupin monomer in the diverse cupin superfamilies. Based on the model of the substrate HAA at the active site of Y3HAO, we propose a mechanism of catalysis for 3HAO.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/química , Saccharomyces cerevisiae/enzimologia , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxigenases/química , Oxigenases/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA