Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Environ Sci Technol ; 58(14): 6274-6283, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38531380

RESUMO

Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.


Assuntos
Água Subterrânea , Tricloroetileno , Tricloroetileno/metabolismo , Acetileno/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Biomassa
2.
Nat Prod Res ; 38(4): 589-593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36855235

RESUMO

Synergistic bioassay-guided isolation of the extracts of Artemisia rupestris L, which belongs to the family Asteraceae, afforded two acetylenic spiroketal enol ethers, namely rupesdiynes A (1) and B (2). Their structures were determined based on spectroscopic analysis and experimental and calculated ECD investigations. The two compounds exhibited synergistic activity and were able to reduce the minimum inhibitory concentration (MIC) of oxacillin four-fold, with a fractional inhibitory concentration index (FICI) of 0.5 in combination with oxacillin against the oxacillin-resistant EMRSA-16. Biofilm formation inhibitory and Ethidium bromide (EtBr) efflux assay were further employed to verify the possible mechanism of the synergistic antibacterial effect. Additionally, molecular docking studies were conducted to investigate the binding affinities of the two compounds with penicillin-binding protein 2a (PBP2a) of EMRSA-16. Taken together, rupesdiynes A (1) and rupesdiyne B (2) showed moderate synergistic activity against EMRSA-16 with oxacillin via inhibiting biofilm formation and efflux pump activity, respectively.


Assuntos
Artemisia , Furanos , Staphylococcus aureus Resistente à Meticilina , Compostos de Espiro , Simulação de Acoplamento Molecular , Acetileno/metabolismo , Acetileno/farmacologia , Alcinos/farmacologia , Éteres/metabolismo , Éteres/farmacologia , Extratos Vegetais/química , Antibacterianos , Oxacilina/farmacologia , Oxacilina/metabolismo , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
3.
Methods Enzymol ; 683: 253-264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087191

RESUMO

Nitrogenase, an enzyme present in a select group of prokaryotes reduces inert N2 into NH3 that can be utilized through biological pathways. This process, termed biological nitrogen fixation, plays a crucial role in the biogeochemical N cycle. The ability of nitrogenase to reduce acetylene to ethylene has been exploited to develop a reliable and accessible biochemical assay to measure this enzyme's activity. Biological nitrogen fixation by rhizobia bacteria that occupy root nodules of legume crops is a major source of sustainable nitrogen nutrition in agriculture. Environmental stresses exacerbated by climate change necessitate the need to evaluate nitrogen fixation in root nodules under various stress conditions. Here, we provide a detailed step-by-step protocol for nitrogenase activity measurements using acetylene reduction assay in field pea plants under saline stress. The protocol can be easily adapted for use with other biological systems.


Assuntos
Acetileno , Fixação de Nitrogênio , Acetileno/metabolismo , Nitrogenase/metabolismo , Bactérias/metabolismo , Estresse Salino
4.
Appl Environ Microbiol ; 88(22): e0121922, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286524

RESUMO

Acetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known diversity of acetylenotrophs by isolating the aerobic acetylenotroph, Bradyrhizobium sp. strain I71, from trichloroethylene (TCE)-contaminated soils. Strain I71 is a member of the class Alphaproteobacteria and exhibits acetylenotrophic and diazotrophic activities, the only two enzymatic reactions known to transform acetylene. This unique capability in the isolated strain may increase the genus' economic impact beyond agriculture as acetylenotrophy is closely linked to bioremediation of chlorinated contaminants. Computational analyses indicate that the Bradyrhizobium sp. strain I71 genome contains 522 unique genes compared to close relatives. Moreover, applying a novel hidden Markov model of known acetylene hydratase (AH) enzymes identified a putative AH enzyme. Protein annotation with I-TASSER software predicted the AH from the microbe Syntrophotalea acetylenica as the closest structural and functional analog. Furthermore, the putative AH was flanked by horizontal gene transfer (HGT) elements, like that of AH in anaerobic acetylenotrophs, suggesting an unknown source of acetylene or acetylenic substrate in the environment that is selecting for the presence of AH. IMPORTANCE The isolation of Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of Bradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. Additionally, acetylene-consuming microbes have been shown to work in tandem with other microbes to degrade soil contaminants. Based on genome, cultivation, and protein prediction analysis, the ability to consume acetylene is likely not widespread within the genus Bradyrhizobium. These findings suggest that the suite of phenotypic capabilities of strain I71 may be unique and make it a good candidate for further study in several research avenues.


Assuntos
Bradyrhizobium , Tricloroetileno , Tricloroetileno/metabolismo , Fixação de Nitrogênio/genética , Solo/química , Acetileno/metabolismo , Filogenia , Simbiose , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Análise de Sequência de DNA
5.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531396

RESUMO

In aquifers, acetylene (C2H2) is a product of abiotic degradation of trichloroethene (TCE) catalyzed by in situ minerals. C2H2 can, in turn, inhibit multiple microbial processes including TCE dechlorination and metabolisms that commonly support dechlorination, in addition to supporting the growth of acetylenotrophic microorganisms. Previously, C2H2 was shown to support TCE reductive dechlorination in synthetic, laboratory-constructed cocultures containing the acetylenotroph Pelobacter sp. strain SFB93 and Dehalococcoides mccartyi strain 195 or strain BAV1. In this study, we demonstrate TCE and perchloroethene (PCE) reductive dechlorination by a microbial community enriched from contaminated groundwater and amended with C2H2 as the sole electron donor and organic carbon source. The metagenome of the stable, enriched community was analyzed to elucidate putative community functions. A novel anaerobic acetylenotroph in the phylum Actinobacteria was identified using metagenomic analysis. These results demonstrate that the coupling of acetylenotrophy and reductive dechlorination can occur in the environment with native bacteria and broaden our understanding of biotransformation at contaminated sites containing both TCE and C2H2IMPORTANCE Understanding the complex metabolisms of microbial communities in contaminated groundwaters is a challenge. PCE and TCE are among the most common groundwater contaminants in the United States that, when exposed to certain minerals, exhibit a unique abiotic degradation pathway in which C2H2 is a product. C2H2 can act as both an inhibitor of TCE dechlorination and of supporting metabolisms and an energy source for acetylenotrophic bacteria. Here, we combine laboratory microcosm studies with computational approaches to enrich and characterize an environmental microbial community that couples two uncommon metabolisms, demonstrating unique metabolic interactions only yet reported in synthetic, laboratory-constructed settings. Using this comprehensive approach, we have identified the first reported anaerobic acetylenotroph in the phylum Actinobacteria, demonstrating the yet-undescribed diversity of this metabolism that is widely considered to be uncommon.


Assuntos
Acetileno/metabolismo , Actinobacteria/metabolismo , Água Subterrânea , Tricloroetileno/metabolismo , Biodegradação Ambiental , Etano/análogos & derivados , Etano/metabolismo , Água Subterrânea/análise , Halogenação , Hidrocarbonetos Clorados/metabolismo , Metagenômica , Microbiota
6.
Comb Chem High Throughput Screen ; 24(4): 598-604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32772907

RESUMO

BACKGROUND: Phytonutrients in peach fruits have health-promoting antioxidants against various chronic diseases. However, there is no extensive data to show the nutritional values of Local peach cultivars after post-harvest treatments. OBJECTIVE: Mainly this study was objective to determine the effect of calcium carbide on nutritional value and quality of fruits of Pakistani peach cultivars. METHODS: The peach fruits were collected from three different peach orchids of KPK and the fruits were divided into 4 groups while 5th group was collected from a local fruit shop. Each experimental group was treated with different concentrations of calcium carbide whereas control group was not treated. The peel and pulp samples were oven dried and ground to fine powder separately. The elemental compositions were determined using Particle Induced X-ray emission and Pelletron Tandem Accelerator. RESULTS: Sixteen elements were identified in peach fruits and the elements were Al, P, S, Cl, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se. In peel, the concentration of some elements increased or decreased after treatment with CaC2 while in pulp the conc. of nearly all detected elements was increased in treated samples. We found a significantly higher amount of heavy metals traces, including As, Se, Co, Si, and P in peach fruits treated with CaC2 Interestingly, the presence of trichomes in peach skin prevents the transfer of these heavy metals deep into the pulp which was also verified by the elemental profiling of nectarines. CONCLUSION: Conclusively, the artificial ripening with CaC2 changed the nutritional value of peach fruits that has higher health risks if consume with the peel. According to our best knowledge, this is the first report that highlights the effects of CaC2 which deteriorate the nutritional value of peach fruits in Pakistan.


Assuntos
Acetileno/análogos & derivados , Frutas/metabolismo , Metais Pesados/química , Minerais/química , Prunus persica/metabolismo , Tricomas/efeitos dos fármacos , Acetileno/química , Acetileno/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Contaminação de Alimentos , Inocuidade dos Alimentos , Humanos , Metaboloma/efeitos dos fármacos , Paquistão , Medição de Risco
7.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503911

RESUMO

Traditional fermentations have been widely studied from the microbiological point of view, but little is known from the functional perspective. In this work, nitrogen fixation by free-living nitrogen-fixing bacteria was conclusively demonstrated in pozol, a traditional Mayan beverage prepared with nixtamalized and fermented maize dough. Three aspects of nitrogen fixation were investigated to ensure that fixation actually happens in the dough: (i) the detection of acetylene reduction activity directly in the substrate, (ii) the presence of potential diazotrophs, and (iii) an in situ increase in acetylene reduction by inoculation with one of the microorganisms isolated from the dough. Three genera were identified by sequencing the 16S rRNA and nifH genes as Kosakonia, Klebsiella, and Enterobacter, and their ability to fix nitrogen was confirmed.IMPORTANCE Nitrogen-fixing bacteria are found in different niches, as symbionts in plants, in the intestinal microbiome of several insects, and as free-living microorganisms. Their use in agriculture for plant growth promotion via biological nitrogen fixation has been extensively reported. This work demonstrates the ecological and functional importance that these bacteria can have in food fermentations, reevaluating the presence of these genera as an element that enriches the nutritional value of the dough.


Assuntos
Acetileno/metabolismo , Bactérias/metabolismo , Enterobacteriaceae/metabolismo , Alimentos Fermentados/microbiologia , Fixação de Nitrogênio , Enterobacter/isolamento & purificação , Enterobacter/metabolismo , Enterobacteriaceae/isolamento & purificação , Klebsiella/isolamento & purificação , Klebsiella/metabolismo , México , Oxirredução , Oxirredutases/análise , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
8.
Chembiochem ; 21(12): 1710-1716, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32187824

RESUMO

Three different types of electron-transferring metallo-ATPases are able to couple ATP hydrolysis to the reduction of low-potential metal sites, thereby energizing an electron. Besides the Fe-protein known from nitrogenase and homologous enzymes, two other kinds of ATPase with different scaffolds and cofactors are used to achieve a unidirectional, energetic, uphill electron transfer to either reduce inactive Co-corrinoid-containing proteins (RACE-type activators) or a second iron-sulfur cluster-containing enzyme of a unique radical enzymes family (archerases). We have found a new cofactor in the latter enzyme family, that is, a double-cubane cluster with two [4Fe4S] subclusters bridged by a sulfido ligand. An enzyme containing this cofactor catalyzes the ATP-dependent reduction of small molecules, including acetylene. Thus, enzymes containing the double-cubane cofactor are analogous in function and share some structural features with nitrogenases.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Nitrogenase/química , Acetileno/química , Acetileno/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Biocatálise , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Nitrogenase/metabolismo , Oxirredução
9.
Curr Microbiol ; 77(1): 1-10, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31624868

RESUMO

Legumes interact with symbiotic rhizobia to produce nitrogen-fixation root nodules under nitrogen-limiting conditions. The contribution of glutathione (GSH) to this symbiosis and anti-oxidative damage was investigated using the M. huakuii gshB (encoding GSH synthetase) mutant. The gshB mutant grew poorly with different monosaccharides, including glucose, sucrose, fructose, maltose, or mannitol, as sole sources of carbon. The antioxidative capacity of gshB mutant was significantly decreased by these treatments with H2O2 under the lower concentrations and cumene hydroperoxide (CUOOH) under the higher concentrations, indicating that GSH plays different roles in response to organic peroxide and inorganic peroxide. The gshB mutant strain displayed no difference in catalase activity, but significantly lower levels of the peroxidase activity and the glutathione reductase activity than the wild type. The same level of catalase activity could be associated with upregulation of the transcriptional activity of the catalase genes under H2O2-induced conditions. The nodules infected by the gshB mutant were severely impaired in abnormal nodules, and showed a nodulation phenotype coupled to a 60% reduction in the nitrogen fixation capacity. A 20-fold decrease in the expression of two nitrogenase genes, nifH and nifD, is observed in the nodules induced by gshB mutant strain. The symbiotic deficiencies were linked to bacteroid early senescence.


Assuntos
Glutationa/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Acetileno/metabolismo , Derivados de Benzeno/farmacologia , Fabaceae/efeitos dos fármacos , Fabaceae/genética , Fabaceae/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/farmacologia , Mesorhizobium/metabolismo , Simbiose/fisiologia
10.
Chemistry ; 25(63): 14267-14272, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31603595

RESUMO

Bioinspired complexes employing the ligands 6-tert-butylpyridazine-3-thione (SPn) and pyridine-2-thione (SPy) were synthesized and fully characterized to mimic the tungstoenzyme acetylene hydratase (AH). The complexes [W(CO)(C2 H2 )(CHCH-SPy)(SPy)] (4) and [W(CO)(C2 H2 )(CHCH-SPn)(SPn)] (5) were formed by intramolecular nucleophilic attack of the nitrogen donors of the ligand on the coordinated C2 H2 molecule. Labelling experiments using C2 D2 with the SPy system revealed the insertion reaction proceeding via a bis-acetylene intermediate. The starting complex [W(CO)(C2 H2 )(SPy)2 ] (6) for these studies was accessed by the new acetylene precursor mixture [W(CO)(C2 H2 )n (MeCN)3-n Br2 ] (n=1 and 2; 7). All complexes represent rare examples in the field of W-C2 H2 chemistry with 4 and 5 being the first of their kind. In the ongoing debate on the enzymatic mechanism, the findings support activation of acetylene by the tungsten center.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Tungstênio/química , Acetileno/química , Acetileno/metabolismo , Materiais Biomiméticos/metabolismo , Complexos de Coordenação/síntese química , Medição da Troca de Deutério , Hidroliases/química , Hidroliases/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estereoisomerismo
11.
J Sep Sci ; 42(19): 3086-3094, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31329331

RESUMO

Mangifera indica L. (mango) is said to be the king of fruits due to its rich nutritional properties and mainly originates from the Indian sub-continent. The consumption pattern of the mangoes has increased drastically, due to which, many ripening practices/agents were used to make it ready-to-eat fruit or juice for the consumers. The fruit quality and metabolic composition are said to be altered due to different ripening agents/practices. The present communication mainly deals to understand the metabolic perturbations in mango fruits due to different ripening practices/agents (room temperature ripening, ethylene, and calcium carbide) using gas chromatography - mass spectrometry based metabolomics. The partial least square-discriminant analysis has found 16 differential metabolites for different ripening agents/practices which are belong to the classes of amino acids, fatty acids, sugars, and polyols. Four metabolic pathways were found to alter in the fruit metabolome due to different ripening agents/practices. Fructose, glucose, and galactose were found to be significantly up-regulated due to calcium carbide ripening in comparison to other ripening agents/practices. Overall findings from the present study advocates that mass spectrometry based metabolomics can be valuable tool to understand the fruit quality and safety with respect to consumer health.


Assuntos
Frutas/metabolismo , Mangifera/metabolismo , Metabolômica , Acetileno/análogos & derivados , Acetileno/análise , Acetileno/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Frutose/análise , Frutose/metabolismo , Frutas/química , Galactose/análise , Galactose/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/análise , Glucose/metabolismo , Mangifera/química , Polímeros/análise , Polímeros/metabolismo , Açúcares/análise , Açúcares/metabolismo
12.
Bioresour Technol ; 274: 557-560, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30578015

RESUMO

Microbial electrolysis cells (MECs) for hydrogen production exhibit great advantages over many other biohydrogen production techniques in terms of versatility of substrate and hydrogen yield. However, hydrogen and acetate scavenging by methanogens puts forward a great challenge to the application of single chamber MECs when using mixed culture. In this study, we investigated the feasibility of using acetylene, a low-cost fuel and chemical building block, to selectively inhibit methanogenesis in single chamber MECs. Results demonstrate that the periodical injection of low concentration acetylene (1% and 5%) can successfully inhibit methanogenesis in MECs using both acetate and glucose as substrates. Current generation by exoelectrogens and the syntrophy between fermentative bacteria and exoelectrogens, however, were not negatively affected. Compared with the classic methanogen inhibitor, 2-Bromoethanesulfonate (BES), the low concentration acetylene demonstrates superior effectiveness in MECs. These results demonstrate the great potential of using acetylene as a cost-effective inhibitor against methanogenesis in MECs.


Assuntos
Acetileno/metabolismo , Metano/biossíntese , Ácidos Alcanossulfônicos/farmacologia , Bactérias/efeitos dos fármacos , Eletrólise/métodos
13.
Org Biomol Chem ; 16(30): 5452-5456, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30022176

RESUMO

An (η5-cyclopentadienyl)cobalt(i) complex was covalently incorporated into an engineered variant of the transmembrane protein ferric hydroxamate uptake protein component: A, FhuA ΔCVFtev, using a thiol-ene reaction. A CD spectrum shows the structural integrity of the biohybrid catalyst. MALDI-TOF of the segment containing the anchoring site for the cobalt complex Cys545 confirmed successful conjugation. This biohybrid catalyst catalyzed the cyclotrimerization of phenylacetylene to give a mixture of regioisomeric 1,2,4- and 1,3,5-triphenylbenzene in aqueous medium.


Assuntos
Acetileno/análogos & derivados , Proteínas da Membrana Bacteriana Externa/química , Cobalto/química , Complexos de Coordenação/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Acetileno/química , Acetileno/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Catálise , Ciclização , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Modelos Moleculares , Engenharia de Proteínas
14.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29933435

RESUMO

Acetylene (IUPAC name: ethyne) is a colorless, gaseous hydrocarbon, composed of two triple bonded carbon atoms attached to hydrogens (C2H2). When microbiologists and biogeochemists think of acetylene, they immediately think of its use as an inhibitory compound of certain microbial processes and a tracer for nitrogen fixation. However, what is less widely known is that anaerobic and aerobic microorganisms can degrade acetylene, using it as a sole carbon and energy source and providing the basis of a microbial food web. Here, we review what is known about acetylene degrading organisms and introduce the term 'acetylenotrophs' to refer to the microorganisms that carry out this metabolic pathway. In addition, we review the known environmental sources of acetylene and postulate the presence of an hidden acetylene cycle. The abundance of bacteria capable of using acetylene and other alkynes as an energy and carbon source suggests that there are energy cycles present in the environment that are driven by acetylene and alkyne production and consumption that are isolated from atmospheric exchange. Acetylenotrophs may have developed to leverage the relatively high concentrations of acetylene in the pre-Cambrian atmosphere, evolving later to survive in specialized niches where acetylene and other alkynes were produced.


Assuntos
Acetileno/metabolismo , Bactérias/metabolismo , Metabolismo Energético/fisiologia , Atmosfera , Carbono/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(12): 2994-2999, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507223

RESUMO

Chemically demanding reductive conversions in biology, such as the reduction of dinitrogen to ammonia or the Birch-type reduction of aromatic compounds, depend on Fe/S-cluster-containing ATPases. These reductions are typically catalyzed by two-component systems, in which an Fe/S-cluster-containing ATPase energizes an electron to reduce a metal site on the acceptor protein that drives the reductive reaction. Here, we show a two-component system featuring a double-cubane [Fe8S9]-cluster [{Fe4S4(SCys)3}2(µ2-S)]. The double-cubane-cluster-containing enzyme is capable of reducing small molecules, such as acetylene (C2H2), azide (N3-), and hydrazine (N2H4). We thus present a class of metalloenzymes akin in fold, metal clusters, and reactivity to nitrogenases.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Acetileno/metabolismo , Clonagem Molecular , Firmicutes/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação Proteica
16.
Microbes Environ ; 32(4): 344-351, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29151446

RESUMO

Frankia is a representative genus of nitrogen-fixing (N2-fixing) actinobacteria; however, the molecular mechanisms underlying various phenomena such as the differentiation of a N2 fixation-specific structure (vesicle) and the regulation of N2 fixation (nif) genes, have yet to be elucidated in detail. In the present study, we screened hyphal fragments of Frankia casuarinae that were mutagenized by 1-methyl-3-nitro-1-nitrosoguanidine or gamma rays, and isolated 49 candidate N2 fixation mutants. Twelve of these mutants were selected for further study, and their abilities to grow in NH3-deficient (N-) liquid media and their rates of acetylene reduction activities were evaluated. Eleven mutant strains were confirmed to lack the ability to fix N2. Five mutant strains formed significantly reduced numbers of vesicles, while some failed to form large mature vesicles. These vesicle mutants also exhibited an aberrant hyphal morphology, suggesting a relationship between vesicle differentiation and hyphal branching. Ten mutants showed significant reductions in the expression of nifE, nifH, and nifV genes under N- conditions. The genome sequencing of eight mutants identified 20 to 400 mutations. Although mutant strains N3H4 and N6F4 shared a large number of mutations (108), most were unique to each strain. Mutant strain N7C9 had 3 mutations in the nifD and nifH genes that may result in the inability to fix N2. The other mutant strains did not have any mutations in any known N2 fixation-related genes, indicating that they are novel N2 fixation mutants.


Assuntos
Proteínas de Bactérias/genética , Vesículas Citoplasmáticas/metabolismo , Frankia/genética , Frankia/metabolismo , Fixação de Nitrogênio/genética , Acetileno/metabolismo , Vesículas Citoplasmáticas/genética , Expressão Gênica/genética , Mutação/genética , Oxirredução
17.
J Basic Microbiol ; 57(11): 922-932, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28787089

RESUMO

In the present study, we report the nitrogen fixing potential of heterotrophic diazotrophs isolated from a tropical estuary and adjacent coastal sea. Results of the study revealed that most of the species that are capable of fixing nitrogen in the study area belongs to the genus Bacillus. The isolates from the estuary showed maximum homology with Bacillus megaterium, B. cereus, B. safencis, B. licheniformis, B. aerophilus, B. oceanisediminis, B. flexus, B. aquimaris, B. vietnamensis, and B. subterraneaus, whereas the diazotrophic isolates from coastal samples were closely related to B. subtilis, B. megaterium, B. circulans, B. aerophilus, B. flexus, and B. oceanisediminis. Experimental studies to determine the nitrogen fixation potential of isolates revealed considerable variation among different strains and the highest nitrogen fixing potential was recorded in B. megaterium (210.05 ± 7.0 nmol C2 H4 /mg protein/day) followed by B. flexus (108.76 ± 3.66 nmol C2 H4 /mg protein/day) and B. circulans (98.28 ± 4.32 nmol C2 H4 /mg protein/day). Molecular basis of nitrogen fixation by these heterotrophic Bacillus strains has been explored in terms of the presence of nifH gene in them. We observed that heterotrophic Bacillus sp. have potential ability to fix nitrogen.


Assuntos
Bacillus/metabolismo , Estuários , Processos Heterotróficos , Fixação de Nitrogênio , Nitrogênio/metabolismo , Água do Mar/microbiologia , Acetileno/metabolismo , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Sequência de Bases , DNA Bacteriano , Genes Bacterianos , Concentração de Íons de Hidrogênio , Índia , Nitrogenase/metabolismo , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/química , Temperatura
18.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667109

RESUMO

Acetylene (C2H2) is a trace constituent of the present Earth's oxidizing atmosphere, reflecting a mixture of terrestrial and marine emissions from anthropogenic, biomass-burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2 block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low-redox-potential enzyme that, unlike nitrogenase (N2ase), is specific for acetylene. Acetylene fermentation is a rare metabolic process that is well characterized only in P. acetylenicus DSM3246 and DSM3247 and Pelobacter sp. strain SFB93. To better understand the genetic controls for AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for iron-molybdenum N2ase were also present in the three genomes, indicating the cooccurrence of two acetylene transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene and, in the absence of ammonium, produced ethylene, indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under argon. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways for these relic enzymes from early Earth to modern days.IMPORTANCE Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only two enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C and N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations (i.e., extent, occurrence, and rates) in modern environments is important for the use of acetylene as a potential biomarker for extraterrestrial life and for degradation of anthropogenic contaminants.


Assuntos
Acetileno/metabolismo , Deltaproteobacteria/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Fermentação , Genoma Bacteriano , Hidroliases/genética , Hidroliases/metabolismo , Molibdênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Filogenia
19.
Sci Total Environ ; 605-606: 99-105, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28662431

RESUMO

Compound specific isotope analysis (CSIA) is widely used to monitor contaminant remediation in groundwater. CSIA-based approaches that use enrichment (ε) values to assess degradative processes rely on the assumption that the contaminant being investigated will have an ε value that is constant and specific to a catalytic pathway of a microorganism. Distinct ε values have been reported for aerobic degradation of cis-dichloroethene (cDCE), which has led to a number of proposed degradation mechanisms; however, cytochrome P450 catalyzed oxidation is the only biochemical mechanism that has been established in Polaromonas sp. JS666. Using CSIA we measured the ε values for microbial oxidation of cDCE (-18.8‰±1.5‰) and 1,2-dichloroethane (1,2-DCA) (-16.6‰±0.9‰) in wild-type JS666 and the oxidation of cDCE (-13.5‰±2.3‰) from a recombinant E. coli strain expressing the cytochrome P450 enzyme from JS666. This study supports the hypothesis that cytochrome P450 catalyzes the initial step in the degradation pathway of both cDCE and 1,2-DCA and provides evidence that a single enzyme can catalyze multiple pathways with different products and distinct ε values for a single substrate. Therefore, in cases where the products of the reaction cannot, or have not been characterized, caution must be used when employing ε values to interpret mechanisms, pathways, and their applications to environmental contaminant remediation.


Assuntos
Acetileno/análogos & derivados , Comamonadaceae/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Químicos da Água/metabolismo , Acetileno/metabolismo , Biodegradação Ambiental , Isótopos de Carbono , Escherichia coli , Água Subterrânea/química , Oxirredução
20.
Environ Sci Technol ; 51(4): 2366-2372, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28075122

RESUMO

Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.


Assuntos
Acetileno/metabolismo , Tricloroetileno/metabolismo , Biodegradação Ambiental , Chloroflexi/metabolismo , Halogenação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA