Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Mol Cell Proteomics ; 21(8): 100264, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35788065

RESUMO

Ribosome profiling has revealed translation outside canonical coding sequences, including translation of short upstream ORFs, long noncoding RNAs, overlapping ORFs, ORFs in UTRs, or ORFs in alternative reading frames. Studies combining mass spectrometry, ribosome profiling, and CRISPR-based screens showed that hundreds of ORFs derived from noncoding transcripts produce (micro)proteins, whereas other studies failed to find evidence for such types of noncanonical translation products. Here, we attempted to discover translation products from noncoding regions by strongly reducing the complexity of the sample prior to mass spectrometric analysis. We used an extended database as the search space and applied stringent filtering of the identified peptides to find evidence for novel translation events. We show that, theoretically our strategy facilitates the detection of translation events of transcripts from noncoding regions but experimentally only find 19 peptides that might originate from such translation events. Finally, Virotrap-based interactome analysis of two N-terminal proteoforms originating from noncoding regions showed the functional potential of these novel proteins.


Assuntos
Peptídeos , RNA não Traduzido , Ribossomos , Citosol , Células HEK293/química , Células HEK293/metabolismo , Humanos , Fases de Leitura Aberta , Peptídeos/metabolismo , Biossíntese de Proteínas , RNA não Traduzido/metabolismo
2.
Cell Rep ; 39(11): 110936, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705050

RESUMO

Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.


Assuntos
Estresse do Retículo Endoplasmático , Eritropoetina , Animais , Estresse do Retículo Endoplasmático/fisiologia , Eritropoetina/genética , Eritropoetina/metabolismo , Células HEK293/metabolismo , Humanos , Mamíferos/metabolismo , Transporte Proteico , Proteínas Recombinantes/metabolismo
3.
Heart Rhythm ; 19(2): 281-292, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34634443

RESUMO

BACKGROUND: Long QT syndrome (LQTS) is a hereditary disease that predisposes patients to life-threatening cardiac arrhythmias and sudden cardiac death. Our previous study of the human ether-à-go-go related gene (hERG)-encoded K+ channel (Kv11.1) supports an association between hERG and RING finger protein 207 (RNF207) variants in aggravating the onset and severity of LQTS, specifically T613M hERG (hERGT613M) and RNF207 frameshift (RNF207G603fs) mutations. However, the underlying mechanistic underpinning remains unknown. OBJECTIVE: The purpose of the present study was to test the role of RNF207 in the function of hERG-encoded K+ channel subunits. METHODS: Whole-cell patch-clamp experiments were performed in human embryonic kidney (HEK 293) cells and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) together with immunofluorescent confocal and high resolution microscopy, auto-ubiquitinylation assays, and co-immunoprecipitation experiments to test the functional interactions between hERG and RNF207. RESULTS: Here, we demonstrated that RNF207 serves as an E3 ubiquitin ligase and targets misfolded hERGT613M proteins for degradation. RNF207G603fs exhibits decreased activity and hinders the normal degradation pathway; this increases the levels of hERGT613M subunits and their dominant-negative effect on the wild-type subunits, ultimately resulting in decreased current density. Similar findings are shown for hERGA614V, a known dominant-negative mutant subunit. Finally, the presence of RNF207G603fs with hERGT613M results in significantly prolonged action potential durations and reduced hERG current in human-induced pluripotent stem cell-derived cardiomyocytes. CONCLUSION: Our study establishes RNF207 as an interacting protein serving as a ubiquitin ligase for hERG-encoded K+ channel subunits. Normal function of RNF207 is critical for the quality control of hERG subunits and consequently cardiac repolarization. Moreover, our study provides evidence for protein quality control as a new paradigm in life-threatening cardiac arrhythmias in patients with LQTS.


Assuntos
Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Ubiquitina-Proteína Ligases/genética , Células HEK293/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
4.
Sci Rep ; 11(1): 21808, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750434

RESUMO

Although the key factor affecting the biocompatibility of IONPs is the core size, there is a lack of regular investigation concerning the impact of the parameter on the toxicity of these nanomaterials. Therefore, such studies were carried out in this paper. Their purpose was to compare the influence of PEG-coated-magnetite NPs with the core of 5, 10 and 30 nm on six carefully selected cell lines. The proliferation rate, viability, metabolic activity, migration activity, ROS levels and cytoskeleton architecture of cells have been evaluated for specified incubation periods. These were 24 and 72-h long incubations with IONPs administered in two doses: 5 and 25 µg Fe/ml. A decrease in viability was observed after exposure to the tested NPs for all the analyzed cell lines. This effect was not connected with core diameter but depended on the exposure time to the nanomaterials. IONPs increased not only the proliferation rate of macrophages-being phagocytic cells-but also, under certain conditions stimulated tumor cell divisions. Most likely, the increase in proliferation rate of macrophages contributed to the changes in the architecture of their cytoskeleton. The growth in the level of ROS in cells had been induced mainly by the smallest NPs. This effect was observed for HEK293T cells and two cancerous lines: U87MG (at both doses tested) and T98G (only for the higher dose). This requires further study concerning both potential toxicity of such IONPs to the kidneys and assessing their therapeutic potential in the treatment of glioblastoma multiforme.


Assuntos
Linhagem Celular/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
5.
Oxid Med Cell Longev ; 2021: 9176993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34845419

RESUMO

OBJECTIVES: Some DNA viruses, such as BKPyV, are capable of inducing neoplastic transformation in human tissues through still unclear mechanisms. The goal of this study is to investigate the carcinogenic potential of BK polyomavirus (BKPyV) in human embryonic kidney 293 (Hek293) cells, dissecting the molecular mechanism that determines the neoplastic transformation. MATERIALS AND METHODS: BKPyV, isolated from urine samples of infected patients, was used to infect monolayers of Hek293 cells. Subsequently, intracellular redox changes, GSH/GSSH concentration by HPLC, and reactive oxygen/nitrogen species (ROS/RNS) production were monitored. Moreover, to understand the signaling pathway underlying the neoplastic transformation, the redox-sensitive HFS1-Hsp27 molecular axis was examined using the flavonoid quercetin and polishort hairpin RNA technologies. RESULTS: The data obtained show that while BKPyV replication is closely linked to the transcription factor p53, the increase in Hek293 cell proliferation is due to the activation of the signaling pathway mediated by HSF1-Hsp27. In fact, its inhibition blocks viral replication and cell growth, respectively. CONCLUSIONS: The HSF1-Hsp27 signaling pathway is involved in BKPyV infection and cellular replication and its activation, which could be involved in cell transformation.


Assuntos
Vírus BK/patogenicidade , Células HEK293/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Infecções por Polyomavirus/fisiopatologia , Proliferação de Células , Feminino , Humanos , Masculino
6.
Biomed Res Int ; 2021: 6639232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708127

RESUMO

Bombyxin, as an insulin-like insect hormone, was discovered in the silkmoth Bombyx mori. It can regulate the metabolism of trehalose and glycogen in Bombyx mori, but whether it has glucose absorption and glycogen synthesis effect on mammalian cells was not clear. BombyxinII (BbxII) and mutant BbxII (mBbxII) genes were cloned into pcDNA3.1(+) vector, respectively; then, gene vectors were transfected into 293FT cells using Lipofectamine 2000. Levels of mRNA and protein expression of BbxII and mBbxII were detected by PCR and Western blot in 293FT cells, respectively. Glucose consumption and glycogenesis were determined by glucose oxidase-peroxidase (GOD-POD) and periodic acid-Schiff (PAS) staining in HepG2 cells; the PI3K signaling pathway was inhibited with wortmannin S1952 in HepG2 cells. Result showed that BbxII and mBbxII genes were being successfully expressed in 293FT cells, respectively. The expression protein of BbxII gene is 10kd pre-bombyxinII, and yet, the expression protein of mBbxII gene is 4kd mature bombyxinII. Only the 4kd bombyxinII showed increased glucose uptake and glycogenesis in HepG2 cells, and the ability of increasing glucose uptake was equal to the human insulin (10 nM). PI3K-wortmannin S1952 inhibitor can decrease the glycogen synthesis induced by bombyxin II protein in HepG2 cells. In conclusion, mature bombyxin II may adjust glucose absorption and glycogen synthesis in HepG2 cells through the PI3K signaling pathway.


Assuntos
Glucose/metabolismo , Glicogênio/metabolismo , Neuropeptídeos/metabolismo , Animais , Bombyx/genética , Células HEK293/metabolismo , Células Hep G2/metabolismo , Humanos , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
7.
Theranostics ; 11(17): 8185-8196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373736

RESUMO

Background: Efficient and specific induction of cell death in liver cancer is urgently needed. In this study, we aimed to design an exosome-based platform to deliver ferroptosis inducer (Erastin, Er) and photosensitizer (Rose Bengal, RB) into tumor tissues with high specificity. Methods: Exosome donor cells (HEK293T) were transfected with control or CD47-overexpressing plasmid. Exosomes were isolated and loaded with Er and RB via sonication method. Hepa1-6 cell xenograft C57BL/6 model was injected with control and engineered exosomes via tail vein. In vivo distribution of the injected exosomes was analyzed via tracking the fluorescence labeled exosomes. Photodynamic therapy was conducted by 532 nm laser irradiation. The therapeutic effects on hepatocellular carcinoma and toxic side-effects were systemically analyzed. Results: CD47 was efficiently loaded on the exosomes from the donor cells when CD47 was forced expressed by transfection. CD47 surface functionalization (ExosCD47) made the exosomes effectively escape the phagocytosis of mononuclear phagocyte system (MPS), and thus increased the distribution in tumor tissues. Erastin and RB could be effectively encapsulated into exosomes after sonication, and the drug-loaded exosomes (Er/RB@ExosCD47) strongly induced ferroptosis both in vitro and in vivo in tumor cells after irradiation of 532 nm laser. Moreover, compared with the control exosomes (Er/RB@ExosCtrl), Er/RB@ExosCD47 displayed much lower toxicity in liver. Conclusion: The engineered exosomes composed of CD47, Erastin, and Rose Bengal, induce obvious ferroptosis in hepatocellular carcinoma (HCC) with minimized toxicity in liver and kidney. The proposed exosomes would provide a promising strategy to treat types of malignant tumors.


Assuntos
Carcinoma Hepatocelular , Sistemas de Liberação de Medicamentos/métodos , Exossomos , Ferroptose/efeitos dos fármacos , Piperazinas , Animais , Antígeno CD47/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/transplante , Corantes Fluorescentes/metabolismo , Células HEK293/metabolismo , Xenoenxertos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fotoquimioterapia/métodos , Piperazinas/metabolismo , Piperazinas/farmacologia , Piperazinas/toxicidade , Rosa Bengala/metabolismo
8.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961781

RESUMO

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Biologia Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica/métodos
9.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946875

RESUMO

Lentiviral vectors (LVs) are a powerful tool for gene and cell therapy and human embryonic kidney cells (HEK293) have been extensively used as a platform for production of these vectors. Like most cells and cellular tissues, HEK293 cells release extracellular vesicles (EVs). EVs released by cells share similar size, biophysical characteristics and even a biogenesis pathway with cell-produced enveloped viruses, making it a challenge to efficiently separate EVs from LVs. Thus, EVs co-purified with LVs during downstream processing, are considered "impurities" in the context of gene and cell therapy. A greater understanding of EVs co-purifying with LVs is needed to enable improved downstream processing. To that end, EVs from an inducible lentivirus producing cell line were studied under two conditions: non-induced and induced. EVs were identified in both conditions, with their presence confirmed by transmission electron microscopy and Western blot. EV cargos from each condition were then further characterized by a multi-omic approach. Nineteen proteins were identified by mass spectrometry as potential EV markers to differentiate EVs in LV preparations. Lipid composition of EV preparations before and after LV induction showed similar enrichment in phosphatidylserine. RNA cargos in EVs showed enrichment in transcripts involved in viral processes and binding functions. These findings provide insights on the product profile of lentiviral preparations and could support the development of improved separation strategies aimed at removing co-produced EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Vetores Genéticos/biossíntese , Vetores Genéticos/genética , Células HEK293/metabolismo , Lentivirus/genética , Transporte Biológico , Técnicas de Cultura de Células , Cromatografia Líquida , Biologia Computacional/métodos , Meios de Cultivo Condicionados , Exossomos , Vesículas Extracelulares/ultraestrutura , Humanos , Lipidômica , Espectrometria de Massas , Proteômica/métodos
10.
Clin Cancer Res ; 27(15): 4301-4310, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33664059

RESUMO

PURPOSE: OATP1B1 (SLCO1B1) is the most abundant and pharmacologically relevant uptake transporter in the liver and a key mediator of xenobiotic clearance. However, the regulatory mechanisms that determine OATP1B1 activity remain uncertain, and as a result, unexpected drug-drug interactions involving OATP1B1 substrates continue to be reported, including several involving tyrosine kinase inhibitors (TKI). EXPERIMENTAL DESIGN: OATP1B1-mediated activity in overexpressing HEK293 cells and hepatocytes was assessed in the presence of FDA-approved TKIs, while rosuvastatin pharmacokinetics in the presence of an OATP1B1 inhibiting TKI were measured in vivo. Tyrosine phosphorylation of OATP1B1 was determined by LC/MS-MS-based proteomics and transport function was measured following exposure to siRNAs targeting 779 different kinases. RESULTS: Twenty-nine of 46 FDA-approved TKIs studied significantly inhibit OATP1B1 function. Inhibition of OATP1B1 by TKIs, such as nilotinib, is predominantly noncompetitive, can increase systemic concentrations of rosuvastatin in vivo, and is associated with reduced phosphorylation of OATP1B1 at tyrosine residue 645. Using genetic screens and functional validation studies, the Src kinase LYN was identified as a potential regulator of OATP1B1 activity that is highly sensitive to inhibition by various TKIs at clinically relevant concentrations. CONCLUSIONS: A novel kinase-dependent posttranslational mechanism of OATP1B1 activation was identified and interference with this process by TKIs can influence the elimination of a broad range of xenobiotic substrates.


Assuntos
Células HEK293/metabolismo , Hepatócitos/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/fisiologia , Proteínas Tirosina Quinases/fisiologia , Animais , Humanos , Camundongos , Fosforilação
11.
Transfusion ; 61(1): 236-245, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128268

RESUMO

BACKGROUND: Vel expression on erythrocytes is variable due to polymorphisms, complicating Vel typing. Weak Vel expression can be caused by mutations within SMIM1 in a heterozygous setting, suggesting a dominant negative effect of SMIM1 mutants on wild type (wt)SMIM1 expression. Here we report how SMIM1 expression is regulated during erythropoiesis, to understand its variable expression on erythrocytes. STUDY DESIGN AND METHODS: Peripheral blood reticulocytes at different stages, cultured erythroid precursors and HEK293T cells were used to investigate expression and putative competition between wtSMIM1 and mutated SMIM1 VEL*01W.01, (c.152T>A (p.Met51Lys)), VEL*01W.02 (c.152T>G (p.Met51Arg)), and VEL*01W.03 (c.161T>C (p.Leu54Pro)). RESULTS: Depending on the mutations in SMIM1 an effect on total and membrane expression of SMIM1 was observed in transfected HEK293T cells, but co-expression of wtSMIM1 and mutatedSMIM1 did not have an effect on wtSMIM1 membrane expression. During differentiation of donors expressing VEL*01W.01, VEL*01W.03, Vel-positive, Vel-negative (homozygote SMIM1*64_80del), and Vel-heterozygote SMIM1*64_80del primary human erythroblasts no overt defect was found in Vel expression dynamics or total SMIM1 expression levels when compared with wtSMIM1 erythroblasts. However, during enucleation, total Vel expression was significantly lower on reticulocytes of Vel-weak donors expressing heterozygote mutated SMIM1 compared to Vel-positive or Vel-heterozygote SMIM1*64_80del donors, while Vel expression on extruded nuclei was maintained. In addition, reticulocyte maturation in vivo showed further loss of Vel expression in these individuals and nearly absent on erythrocytes. CONCLUSION: These results suggest that SMIM1 mutations exert a dominant negative effect on wtSMIM1 probably by affecting SMIM1 multimerization and thereby Vel epitope presentation at the latest stages of erythroid differentiation.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Eritrócitos/metabolismo , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Doadores de Sangue , Diferenciação Celular/imunologia , Eritroblastos/metabolismo , Eritropoese/genética , Citometria de Fluxo/métodos , Deleção de Genes , Células HEK293/metabolismo , Homozigoto , Humanos , Proteínas de Membrana/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Reticulócitos/metabolismo
12.
Elife ; 92020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33136001

RESUMO

Selective protein distribution on distinct plasma membranes is important for epithelial cell function. To date, how proteins are directed to specific epithelial cell surface is not fully understood. Here we report a conserved DSSDE motif in LDL-receptor (LDLR) modules of corin (a transmembrane serine protease) and CD320 (a receptor for vitamin B12 uptake), which regulates apical membrane targeting in renal epithelial cells. Altering this motif prevents specific apical corin and CD320 expression in polarized Madin-Darby canine kidney (MDCK) cells. Mechanistic studies indicate that this DSSDE motif participates in a Rab11a-dependent mechanism that specifies apical sorting. In MDCK cells, inhibition of Rab11a, but not Rab11b, expression leads to corin and CD320 expression on both apical and basolateral membranes. Together, our results reveal a novel molecular recognition mechanism that regulates LDLR module-containing proteins in their specific apical expression in polarized renal epithelial cells.


Assuntos
Antígenos CD/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Polaridade Celular , Cães , Regulação da Expressão Gênica , Células HEK293/metabolismo , Humanos , Rim/citologia , Células Madin Darby de Rim Canino/metabolismo , Receptores de LDL/genética , Alinhamento de Sequência
13.
Sci Rep ; 10(1): 16273, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004926

RESUMO

Protein N-myristoylation of Src-family kinases (SFKs) is a critical co-translational modification to anchor the enzymes in the plasma membrane. Phosphorylation of SFKs is also an essential modification for regulating their enzymatic activities. In this study, we used Phos-tag SDS-PAGE to investigate N-myristoylation-dependent phosphorylation of SFKs and their non-N-myristoylated G2A mutants. The serine-13 residue of Lyn (Lyn-S13) was shown to be N-myristoylation-dependently phosphorylated. Although there have been more than 40 reports of mass spectrometric studies on phosphorylation at Lyn-S13, the kinase responsible remained unclear. We succeeded in identifying casein kinase 1γ (CK1γ) as the kinase responsible for phosphorylation of Lyn-S13. In HEK293 cells co-expressing Lyn and CK1γ, the phosphorylation level of Lyn-S13 increased significantly. CK1γ is unique among the CK1 family (α, γ, δ, and ε) in carrying an S-palmitoylation site for membrane binding. Co-expression with the non-S-palmitoylated CK1γ mutant, which localized in the cytosol, gave no increase in the phosphorylation level at Lyn-S13. In HEK293 cells expressing the non-S-palmitoylated Lyn-C3A mutant, on the other hand, the Lyn-C3A mutant was phosphorylated at Lyn-S13, and the mutant remained at the Golgi. These results showed that S-palmitoylated CK1γ can phosphorylate S13 of N-myristoylated Lyn at the Golgi during intracellular protein traffic.


Assuntos
Caseína Quinase I/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , Sistema Livre de Células , Eletroforese em Gel de Poliacrilamida , Células HEK293/metabolismo , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Fosforilação , Serina
14.
Invest Ophthalmol Vis Sci ; 61(12): 6, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027505

RESUMO

Purpose: Affecting children by age 3, primary congenital glaucoma (PCG) can cause debilitating vision loss by the developmental impairment of aqueous drainage resulting in high intraocular pressure (IOP), globe enlargement, and optic neuropathy. TEK haploinsufficiency accounts for 5% of PCG in diverse populations, with low penetrance explained by variable dysgenesis of Schlemm's canal (SC) in mice. We report eight families with TEK-related PCG, and provide evidence for SVEP1 as a disease modifier in family 8 with a higher penetrance and severity. Methods: Exome sequencing identified coding/splice site variants with an allele frequency less than 0.0001 (gnomAD). TEK variant effects were assayed in construct-transfected HEK293 cells via detection of autophosphorylated (active) TEK protein. An enucleated eye from an affected member of family 8 was examined via histology. SVEP1 expression in developing outflow tissues was detected by immunofluorescent staining of 7-day mouse anterior segments. SVEP1 stimulation of TEK expression in human umbilical vascular endothelial cells (HUVECs) was measured by TaqMan quantitative PCR. Results: Heterozygous TEK loss-of-function alleles were identified in eight PCG families, with parent-child disease transmission observed in two pedigrees. Family 8 exhibited greater disease penetrance and severity, histology revealed absence of SC in one eye, and SVEP1:p.R997C was identified in four of the five affected individuals. During SC development, SVEP1 is secreted by surrounding tissues. SVEP1:p.R997C abrogates stimulation of TEK expression by HUVECs. Conclusions: We provide further evidence for PCG caused by TEK haploinsufficiency, affirm autosomal dominant inheritance in two pedigrees, and propose SVEP1 as a modifier of TEK expression during SC development, affecting disease penetrance and severity.


Assuntos
Moléculas de Adesão Celular/genética , Genes Modificadores/genética , Hidroftalmia/genética , Receptor TIE-2/genética , Idoso , Animais , Western Blotting , Pré-Escolar , Feminino , Frequência do Gene , Técnicas de Genotipagem , Células HEK293/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidroftalmia/diagnóstico , Hidroftalmia/fisiopatologia , Lactente , Recém-Nascido , Pressão Intraocular/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Penetrância , Fosforilação , Isoformas de Proteínas , Receptor TIE-2/metabolismo , Sequenciamento do Exoma
15.
Sci Rep ; 10(1): 14193, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843676

RESUMO

The evaluation of Cytochrome P450 (CYP) enzymatic activity is essential to estimate drug pharmacokinetics. Numerous CYP allelic variants have been identified; the functional characterisation of these variants is required for their application in precision medicine. Results from heterologous expression systems using mammalian cells can be integrated in in vivo studies; however, other systems such as E. coli, bacteria, yeast, and baculoviruses are generally used owing to the difficulty in expressing high CYP levels in mammalian cells. Here, by optimising transfection and supplementing conditions, we developed a heterologous expression system using 293FT cells to evaluate the enzymatic activities of three CYP isoforms (CYP1A2, CYP2C9, and CYP3A4). Moreover, we established co-expression with cytochrome P450 oxidoreductase and cytochrome b5. This expression system would be a potential complementary or beneficial alternative approach for the pharmacokinetic evaluation of clinically used and developing drugs in vitro.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Engenharia Genética/métodos , Proteínas Recombinantes/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Expressão Gênica/genética , Expressão Gênica/fisiologia , Células HEK293/metabolismo , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Isoformas de Proteínas , Transfecção/métodos
16.
J Vis Exp ; (160)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32568248

RESUMO

HBV mainly infects human hepatocytes, but it has also been found to infect extrahepatic tissues such as kidney and testis. Nonetheless, cell-based HBV models are limited to hepatoma cell lines (such as HepG2 and Huh7) overexpressing a functional HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Here, we used 293T-NE-3NRs (293T overexpressing human NTCP, HNF4α, RXRα and PPARα) and HepG2-NE (HepG2 overexpressing NTCP) as model cell lines. HBV infection in these cell lines was performed either by using concentrated HBV virus particles from HepG2.2.15 or co-culturing HepG2.2.15 with the target cell lines. HBcAg immunofluorescence for HBcAg was performed to confirm HBV infection. The two methods presented here will help us study HBV infection in non-hepatic cell lines.


Assuntos
Células HEK293/metabolismo , Células Hep G2/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Hepatócitos/metabolismo , Humanos
17.
Exp Dermatol ; 29(6): 556-561, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278324

RESUMO

The SLC30A2 gene encodes zinc transporter ZnT2, which is indispensable for the transport of zinc into the breast milk in the mammary gland. Transient neonatal zinc deficiency (TNZD) is caused by a mutation in the maternal SLC30A2 gene and has a clinical presentation similar to that of acrodermatitis enteropathica (AE). We described the case of a Chinese infant who presented with AE-like lesions 10 days after birth. Sanger sequencing of the AE-causing gene SLC39A4 revealed no mutations in genomic DNA from the infant, excluding the possibility of AE. Detection of the mother's breast milk showed a significantly lower zinc level. Thus, SLC30A2 sequencing was performed on her genomic DNA and a previously unreported homozygous c.262G > A (p.E88K) mutation was disclosed. Functional analysis suggested the novel mutation could lead to a strong disruption of zinc secretion, which indicated a complete loss of function in the ZnT2 protein. We finally diagnosed the infant with TNZD. To the best of our knowledge, this is the first case of TNZD caused by a homozygous mutation in the maternal SLC30A2 gene. Compared to the heterozygous condition, a homozygous mutation seems to result in a more significant decrease in zinc secretion and a more rapid onset of TNZD.


Assuntos
Proteínas de Transporte de Cátions/genética , Transtornos do Crescimento/genética , Leite Humano/química , Dermatopatias/etiologia , Zinco/deficiência , Transporte Biológico/genética , Análise Mutacional de DNA , Feminino , Transtornos do Crescimento/complicações , Células HEK293/metabolismo , Homozigoto , Humanos , Recém-Nascido , Mutação , Dermatopatias/diagnóstico , Zinco/metabolismo
18.
Hum Gene Ther ; 31(7-8): 423-439, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32159399

RESUMO

Human cytomegalovirus (HCMV) reactivations are associated with lower overall survival after transplantations. Adoptive transfer of HCMV-reactive expanded or selected T cells can be applied as a compassionate use, but requires that the human leukocyte antigen-matched donor provides memory cells against HCMV. To overcome this, we developed engineered T cells expressing chimeric antigen receptors (CARs) targeted against the HCMV glycoprotein B (gB) expressed upon viral reactivation. Single-chain variable fragments (scFvs) derived from a human high-affinity gB-specific neutralizing monoclonal antibody (SM5-1) were fused to CARs with 4-1BB (BBL) or CD28 (28S) costimulatory domains and subcloned into retroviral vectors. CD4+ and CD8+ T cells obtained from HCMV-seronegative adult blood or cord blood (CB) transduced with the vectors efficiently expressed the gB-CARs. The specificity and potency of gB-CAR-T cells were demonstrated and compared in vitro using the following: 293T cells expressing gB, and with mesenchymal stem cells infected with a HCMV TB40 strain expressing Gaussia luciferase (HCMV/GLuc). BBL-gB-CAR-T cells generated with adult or CB demonstrated significantly higher in vitro activation and cytotoxicity performance than 28-gB-CAR-T cells. Nod.Rag.Gamma (NRG) mice transplanted with human CB CD34+ cells with long-term human immune reconstitution were used to model HCMV/GLuc infection in vivo by optical imaging analyses. One week after administration, response to BBL-gB-CAR-T cell therapy was observed for 5/8 mice, defined by significant reduction of the bioluminescent signal in relation to untreated controls. Response to therapy was sporadically associated with CAR detection in spleen. Thus, exploring scFv derived from the high-affinity gB-antibody SM5-1 and the 4-1BB signaling domain for CAR design enabled an in vitro high on-target effect and cytotoxicity and encouraging results in vivo. Therefore, gB-CAR-T cells can be a future clinical option for treatment of HCMV reactivations, particularly when memory T cells from the donors are not available.


Assuntos
Infecções por Citomegalovirus/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Sangue Fetal , Células HEK293/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos NOD
19.
Sci Rep ; 10(1): 1004, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969668

RESUMO

The experimental evidence that Adhesion G Protein-Coupled Receptors (aGPCRs) functionally couple to heterotrimeric G proteins has been emerging in incremental steps, but attributing biological significance to their G protein signalling function still presents a major challenge. Here, utilising activated truncated forms of the receptors, we show that ADGRE2/EMR2 and ADGRE5/CD97 are G protein-coupled in a variety of recombinant systems. In a yeast-based assay, where heterologous GPCRs are coupled to chimeric G proteins, EMR2 showed broad G protein-coupling, whereas CD97 coupled more specifically to Gα12, Gα13, Gα14 and Gαz chimeras. Both receptors induced pertussis-toxin (PTX) insensitive inhibition of cyclic AMP (cAMP) levels in mammalian cells, suggesting coupling to Gαz. EMR2 was shown to signal via Gα16, and via a Gα16/Gαz chimera, to stimulate IP1 accumulation. Finally, using an NFAT reporter assay, we identified a polyclonal antibody that activates EMR2 G protein signalling in vitro. Our results highlight the potential for the development of soluble agonists to understand further the biological effects and therapeutic opportunities for ADGRE receptor-mediated G protein signalling.


Assuntos
Anticorpos/imunologia , Antígenos CD/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Western Blotting , Células HEK293/metabolismo , Humanos , Imunoprecipitação , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/efeitos dos fármacos
20.
J Biotechnol ; 309: 44-52, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31891733

RESUMO

Process intensification in mammalian cell culture-based recombinant protein production has been achieved by high cell density perfusion exceeding 108 cells/mL in the recent years. As the majority of therapeutic proteins are produced in Chinese Hamster Ovary (CHO) cells, intensified perfusion processes have been mainly developed for this type of host cell line. However, the use of CHO cells can result in non-human posttranslational modifications of the protein of interest, which may be disadvantageous compared with human cell lines. In this study, we developed a high cell density perfusion process of Human Embryonic Kidney (HEK293) cells producing recombinant human Erythropoietin (rhEPO). Firstly, a small-scale perfusion system from commercial bench-top screening bioreactors was developed for <250 mL working volume. Then, after the first trial runs with CHO cells, the system was modified for HEK293 cells (more sensitive than CHO cells) to achieve a higher oxygen transfer under mild aeration and agitation conditions. Steady states for medium (20 × 106 cells/mL) and high cell densities (80 × 106 cells/mL), normal process temperature (37 °C) and mild hypothermia (33 °C) as well as different cell specific perfusion rates (CSPR) from 10 to 60 pL/cell/day were applied to study the performance of the culture. The volumetric productivity was maximized for the high cell density steady state but decreased when an extremely low CSPR of 10 pL/cell/day was applied. The shift from high to low CSPR strongly reduced the nutrient uptake rates. The results from our study show that human cell lines, such as HEK293 can be used for intensified perfusion processes.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Eritropoetina/biossíntese , Células HEK293/metabolismo , Perfusão/métodos , Proteínas Recombinantes/biossíntese , Animais , Células CHO/metabolismo , Contagem de Células , Cricetulus , Humanos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA