Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
Cells ; 13(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786091

RESUMO

The dysfunction of α and ß cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and ß cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Animais , Tomografia por Raios X/métodos , Camundongos , Humanos , Insulina/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1376530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681771

RESUMO

Background/Objectives: Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods: We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results: The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions: The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Glucagon , Glucose , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Administração Oral , Glicemia/metabolismo , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/sangue , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Glucose/metabolismo , Glucose/administração & dosagem , Intolerância à Glucose/sangue , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Insulina/administração & dosagem , Resistência à Insulina , Cinética , Modelos Teóricos
3.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593829

RESUMO

Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.


Assuntos
Células Secretoras de Glucagon , Glucagon , Comunicação Parácrina , Urocortinas , Animais , Urocortinas/metabolismo , Urocortinas/genética , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Camundongos , Glucagon/metabolismo , Glucose/metabolismo , Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , AMP Cíclico/metabolismo , Somatostatina/farmacologia , Somatostatina/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653360

RESUMO

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Assuntos
Dieta Hiperlipídica , Células Secretoras de Glucagon , Glucagon , Canais Iônicos , Camundongos Knockout , Animais , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Camundongos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Dieta Hiperlipídica/efeitos adversos , Masculino , Transdução de Sinais , Insulina/metabolismo , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Proglucagon/metabolismo , Proglucagon/genética , Pirazinas , Tiadiazóis
5.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632302

RESUMO

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Assuntos
Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Glicemia/metabolismo , Secreção de Insulina
6.
Am J Physiol Endocrinol Metab ; 326(5): E723-E734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506753

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Análise de Sequência de RNA , Análise de Célula Única , Animais , Camundongos , Diabetes Mellitus Tipo 1/genética , Análise de Célula Única/métodos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Células Secretoras de Insulina/metabolismo , Análise de Sequência de RNA/métodos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Células Secretoras de Glucagon/metabolismo , Feminino , RNA-Seq/métodos , Camundongos Endogâmicos C57BL
7.
PLoS One ; 19(3): e0299821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517864

RESUMO

Pancreatic ß-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-ß like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from ß cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-ß like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-ß like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic ß cells from α cells.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , MicroRNAs , Animais , Camundongos , Transdiferenciação Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Glucagon , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Mol Cell Endocrinol ; 588: 112202, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552943

RESUMO

Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and ß-cell count, increased glucagon staining and α-cell count, and increased α-cell/ß-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.


Assuntos
Compostos Benzidrílicos , Ilhotas Pancreáticas , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos/toxicidade , Feminino , Fenóis/toxicidade , Gravidez , Ovinos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Disruptores Endócrinos/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Exposição Materna/efeitos adversos , Insulina/metabolismo , Feto/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia
9.
Peptides ; 175: 171179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360354

RESUMO

Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.


Assuntos
Células Secretoras de Glucagon , Receptores dos Hormônios Gastrointestinais , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Transdução de Sinais
10.
PLoS One ; 19(2): e0298660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412155

RESUMO

Insulin dysregulation in horses is characterised by hyperinsulinaemia and/or tissue insulin resistance and is associated with increased risk of laminitis. There is growing evidence in other species that dopamine attenuates insulin release from the pancreas; however, this has yet to be examined in horses. The present study aimed to identify whether there are cells capable of producing or responding to dopamine within the equine gastrointestinal mucosa and pancreas. Tissue samples were collected from the stomach, small and large intestines, and pancreas of six mature horses following euthanasia. Samples of stomach contents and faeces were also collected. Immunohistochemistry was performed to identify tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine production, and dopamine D2 receptors in tissue sections. Additional immunostaining for glucagon, insulin and chromogranin A was performed to identify α cells, ß cells and enteroendocrine cells, respectively. Gastric parietal cells expressed both TH and D2 receptors, indicating that they are capable of both producing and responding to dopamine. Dopamine was quantified in stomach contents and faeces by high-performance liquid chromatography with electrochemical detection, with similar concentrations found at both sites. Dopamine D2 receptors were expressed in duodenal epithelial cells but not more distally. A subset of enteroendocrine cells, located sporadically along the gastrointestinal tract, were found to be immunopositive for the D2 receptor. In pancreatic islets, TH was present in α cells, while D2 receptors were strongly expressed in ß cells and variably expressed in α cells. These findings are consistent with studies of other species; however, dynamic studies are required to further elucidate the role of dopamine in the modulation of insulin and glucagon secretion in horses. This descriptive study provides preliminary evidence for a potential role of dopamine to act as a paracrine messenger in the gastrointestinal mucosa and endocrine pancreas of horses.


Assuntos
Dopamina , Células Secretoras de Glucagon , Animais , Cavalos , Receptores de Dopamina D2 , Glucagon , Pâncreas , Trato Gastrointestinal/química , Insulina , Mucosa , Receptores de Dopamina D1
11.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266068

RESUMO

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Metilação de DNA , Pâncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
12.
Trends Cell Biol ; 34(3): 180-197, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37626005

RESUMO

ß-Cell replacement by in situ reprogramming of non-ß-cells is a promising diabetes therapy. Following the observation that near-total ß-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Insulina , Glucagon
13.
Diabetologia ; 67(1): 156-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870650

RESUMO

AIMS/HYPOTHESIS: Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS: We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS: Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION: Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY: Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo
14.
J Endocrinol ; 260(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888975

RESUMO

Long lagging behind insulin, glucagon research has caught up in large part, thanks to technological breakthroughs. Here we review how the field was propelled by the development of novel techniques and approaches. The glucagon radioimmunoassay and islet isolation are methods that now seem trivial, but for decades they were crucial in defining the biology of the pancreatic alpha cell and the role of glucagon in glucose homeostasis. More recently, mouse models have become the main workhorse of this research effort, if not of biomedical research in general. The mouse model allowed detailed mechanistic studies that are revealing alpha cell functions beyond its canonical glucoregulatory role. A recent profusion of gene expression and transcription regulation studies is providing new vistas into what constitutes alpha cell identity. In particular, the combination of transcriptomic techniques with functional recordings promises to move molecular guesswork into real-time physiology. The challenge right now is not to get enamored with these powerful techniques and to make sure that the research continues to be transformative and paradigm shifting. We should imagine a future in which the biology of the alpha cell will be studied at single-cell resolution, non-invasively, and in real time in the human body.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Modelos Animais de Doenças , Ilhotas Pancreáticas/metabolismo
15.
N Engl J Med ; 389(21): 1972-1978, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37991855

RESUMO

Mahvash disease is an exceedingly rare genetic disorder of glucagon signaling characterized by hyperglucagonemia, hyperaminoacidemia, and pancreatic α-cell hyperplasia. Although there is no known definitive treatment, octreotide has been used to decrease systemic glucagon levels. We describe a woman who presented to our medical center after three episodes of small-volume hematemesis. She was found to have hyperglucagonemia and pancreatic hypertrophy with genetically confirmed Mahvash disease and also had evidence of portal hypertension (recurrent portosystemic encephalopathy and variceal hemorrhage) in the absence of cirrhosis. These findings established a diagnosis of portosinusoidal vascular disease, a presinusoidal type of portal hypertension previously known as noncirrhotic portal hypertension. Liver transplantation was followed by normalization of serum glucagon and ammonia levels, reversal of pancreatic hypertrophy, and resolution of recurrent encephalopathy and bleeding varices.


Assuntos
Doenças Genéticas Inatas , Glucagon , Hipertensão Portal , Transplante de Fígado , Feminino , Humanos , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/cirurgia , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/cirurgia , Glucagon/sangue , Glucagon/genética , Hipertensão Portal/sangue , Hipertensão Portal/etiologia , Hipertensão Portal/genética , Hipertensão Portal/cirurgia , Hipertrofia/genética , Cirrose Hepática , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/cirurgia , Pancreatopatias/genética , Pancreatopatias/patologia , Pancreatopatias/cirurgia , Células Secretoras de Glucagon/patologia
16.
Diabetes ; 72(12): 1741-1747, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983524

RESUMO

In type 1 diabetes, the reduced glucagon response to insulin-induced hypoglycemia has been used to argue that ß-cell secretion of insulin is required for the full glucagon counterregulatory response. For years, the concept has been that insulin from the ß-cell core flows downstream to suppress glucagon secretion from the α-cells in the islet mantle. This core-mantle relationship has been supported by perfused pancreas studies that show marked increases in glucagon secretion when insulin was neutralized with antisera. Additional support comes from a growing number of studies focused on vascular anatomy and blood flow. However, in recent years this core-mantle view has generated less interest than the argument that optimal insulin secretion is due to paracrine release of glucagon from α-cells stimulating adjacent ß-cells. This mechanism has been evaluated by knockout of ß-cell receptors and impairment of α-cell function by inhibition of Gi designer receptors exclusively activated by designer drugs. Other studies that support this mechanism have been obtained by pharmacological blocking of glucagon-like peptide 1 receptor in humans. While glucagon has potent effects on ß-cells, there are concerns with the suggested paracrine mechanism, since some of the supporting data are from isolated islets. The study of islets in static incubation or perifusion systems can be informative, but the normal paracrine relationships are disrupted by the isolation process. While this complicates interpretation of data, arguments supporting paracrine interactions between α-cells and ß-cells have growing appeal. We discuss these conflicting views of the relationship between pancreatic α-cells and ß-cells and seek to understand how communication depends on blood flow and/or paracrine mechanisms.


Assuntos
Células Secretoras de Glucagon , Hipoglicemia , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Secreção de Insulina , Hipoglicemia/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo
18.
Nat Commun ; 14(1): 6119, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777536

RESUMO

The coding variant (p.Arg192His) in the transcription factor PAX4 is associated with an altered risk for type 2 diabetes (T2D) in East Asian populations. In mice, Pax4 is essential for beta cell formation but its role on human beta cell development and/or function is unknown. Participants carrying the PAX4 p.His192 allele exhibited decreased pancreatic beta cell function compared to homozygotes for the p.192Arg allele in a cross-sectional study in which we carried out an intravenous glucose tolerance test and an oral glucose tolerance test. In a pedigree of a patient with young onset diabetes, several members carry a newly identified p.Tyr186X allele. In the human beta cell model, EndoC-ßH1, PAX4 knockdown led to impaired insulin secretion, reduced total insulin content, and altered hormone gene expression. Deletion of PAX4 in human induced pluripotent stem cell (hiPSC)-derived islet-like cells resulted in derepression of alpha cell gene expression. In vitro differentiation of hiPSCs carrying PAX4 p.His192 and p.X186 risk alleles exhibited increased polyhormonal endocrine cell formation and reduced insulin content that can be reversed with gene correction. Together, we demonstrate the role of PAX4 in human endocrine cell development, beta cell function, and its contribution to T2D-risk.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudos Transversais , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
19.
Elife ; 122023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732504

RESUMO

Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity. The α-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form α-pseudoislets. The α-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key α-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in α-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary α-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glucagon/metabolismo , Transcriptoma , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Fluoresceínas/metabolismo , Células Secretoras de Insulina/metabolismo
20.
Sci Rep ; 13(1): 12948, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558746

RESUMO

Hypoglycemia in type 1 diabetes associates with changes in the pancreatic islet α cells, where the receptor for advanced glycation end products (RAGE) is highly expressed. This study compared islet RAGE expression in donors without diabetes, those at risk of, and those with type 1 diabetes. Laser-dissected islets were subject to RNA bioinformatics and adjacent pancreatic tissue were assessed by confocal microscopy. We found that islets from type 1 diabetes donors had differential expression of the RAGE gene (AGER) and its correlated genes, based on glucagon expression. Random forest machine learning revealed that AGER was the most important predictor for islet glucagon levels. Conversely, a generalized linear model identified that glucagon expression could be predicted by expression of RAGE signaling molecules, its ligands and enzymes that create or clear RAGE ligands. Confocal imaging co-localized RAGE, its ligands and signaling molecules to the α cells. Half of the type 1 diabetes cohort comprised of adolescents and a patient with history of hypoglycemia-all showed an inverse relationship between glucagon and RAGE. These data confirm an association between glucagon and islet RAGE, its ligands and signaling pathways in type 1 diabetes, which warrants functional investigation into a role for RAGE in hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagon , Hipoglicemia , Receptor para Produtos Finais de Glicação Avançada , Adolescente , Humanos , Diabetes Mellitus Tipo 1/genética , Glucagon , Células Secretoras de Glucagon/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Ligantes , Receptor para Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA