Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Curr Biol ; 34(13): 2785-2800.e7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38823381

RESUMO

Host-microbe interactions influence intestinal stem cell (ISC) activity to modulate epithelial turnover and composition. Here, we investigated the functional impacts of viral infection on intestinal homeostasis and the mechanisms by which viral infection alters ISC activity. We report that Drosophila A virus (DAV) infection disrupts intestinal homeostasis in Drosophila by inducing sustained ISC proliferation, resulting in intestinal dysplasia, loss of gut barrier function, and reduced lifespan. We found that additional viruses common in laboratory-reared Drosophila also promote ISC proliferation. The mechanism of DAV-induced ISC proliferation involves progenitor-autonomous epidermal growth factor receptor (EGFR) signaling, c-Jun N-terminal kinase (JNK) activity in enterocytes, and requires Sting-dependent nuclear factor κB (NF-κB) (Relish) activity. We further demonstrate that activating Sting-Relish signaling is sufficient to induce ISC proliferation, promote intestinal dysplasia, and reduce lifespan in the absence of infection. Our results reveal that viral infection can significantly disrupt intestinal physiology, highlight a novel role for Sting-Relish signaling, and support a role for viral infection in aging.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Homeostase , Intestinos , Proteínas de Membrana , NF-kappa B , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Drosophila melanogaster/virologia , Drosophila melanogaster/fisiologia , Intestinos/virologia , Células-Tronco/virologia , Células-Tronco/metabolismo , Proliferação de Células , Fatores de Transcrição
3.
FEBS Lett ; 598(11): 1354-1365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594179

RESUMO

Chronic infection with the hepatitis B virus (HBV) induces progressive hepatic impairment. Achieving complete eradication of the virus remains a formidable challenge. Cytotoxic T lymphocytes, specific to viral antigens, either exhibit a numerical deficiency or succumb to an exhausted state in individuals chronically afflicted with HBV. The comprehension of the genesis and dissemination of stem cell memory T cells (TSCMs) targeting HBV remains inadequately elucidated. We identified TSCMs in subjects with chronic HBV infection and scrutinized their efficacy in a murine model with human hepatocyte transplants, specifically the TK-NOG mice. TSCMs were discerned in all subjects under examination. Introduction of TSCMs into the HBV mouse model precipitated a severe necro-inflammatory response, resulting in the elimination of human hepatocytes. TSCMs may constitute a valuable tool in the pursuit of a remedial therapy for HBV infection.


Assuntos
Diferenciação Celular , Vírus da Hepatite B , Hepatócitos , Células T de Memória , Linfócitos T Citotóxicos , Animais , Humanos , Hepatócitos/virologia , Hepatócitos/imunologia , Hepatócitos/transplante , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Linfócitos T Citotóxicos/imunologia , Camundongos , Diferenciação Celular/imunologia , Células T de Memória/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Masculino , Feminino , Modelos Animais de Doenças , Células-Tronco/virologia , Células-Tronco/imunologia , Células-Tronco/citologia , Adulto
4.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451085

RESUMO

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Assuntos
Citomegalovirus , Células-Tronco , Trofoblastos , Replicação Viral , Feminino , Humanos , Gravidez , Diferenciação Celular/genética , Linhagem da Célula/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Placenta/citologia , Placenta/patologia , Placenta/fisiopatologia , Placenta/virologia , Primeiro Trimestre da Gravidez , Células-Tronco/citologia , Células-Tronco/virologia , Trofoblastos/citologia , Trofoblastos/virologia
5.
Scand J Immunol ; 97(5): e13262, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36853017

RESUMO

Reservoirs of HIV remain a major obstacle to the complete eradication of virus despite regular anti-retroviral therapy (ART). Memory stem cells (Tscm), one of the major reservoirs, are relatively less studied owing to their presence in lower numbers and inaccessible anatomical locations. We have evaluated the molecular characteristics of Tscms in patients with ART interruption (n = 15) versus patients on uninterrupted ART (n = 12) using flow cytometry. RNA sequencing was done in the sorted Tscms to study the differential gene expression. Patients with ART interruption had significantly lower baseline CD4+T-cell counts and high viral loads as compared to patients on ART. The former group had significantly higher frequency of CD4+ and CD8+Tscms with a higher expression of PD-1 on CD8+Tscms. The transcriptome profile of Tscm was significantly different among the patient groups. The main pathways were cellular and metabolic pathways, cellular development pathways, cell differentiation and negative regulation of cellular migratory pathways. An increased yet dysfunctional CD8+ memory stem cells describe HIV-1-infected patients with break-in ART and a distinct transcriptional signature of CD4+ Tscm as compared to those of patients on ART. A more detailed understanding of the biology and dynamics of Tscm in future studies is warranted. Strategies to improve the functionality of the CD8+ Tscm will help these patients to tackle the outburst of viral replication that occurs after the cessation of therapy.


Assuntos
Antirretrovirais , Infecções por HIV , Células de Memória Imunológica , Células-Tronco , Interrupção do Tratamento , Adulto , Feminino , Humanos , Masculino , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/dietoterapia , Infecções por HIV/virologia , Células de Memória Imunológica/virologia , Células-Tronco/virologia , Análise de Sequência de RNA
6.
Mol Psychiatry ; 27(12): 5049-5061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195636

RESUMO

Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.


Assuntos
COVID-19 , Delírio , Hipocampo , Neurogênese , Idoso , Humanos , COVID-19/sangue , COVID-19/metabolismo , COVID-19/patologia , Delírio/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-6 , Células-Tronco/metabolismo , Células-Tronco/virologia
7.
J Virol ; 96(18): e0096222, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073923

RESUMO

Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/ß-catenin pathway by upregulating the accumulation and nuclear translocation of ß-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.


Assuntos
Células-Tronco , Vírus da Gastroenterite Transmissível , Animais , Ciclina D1/metabolismo , Interferons/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/virologia , Metaloproteinase 7 da Matriz , Células-Tronco/citologia , Células-Tronco/virologia , Suínos , Vírus da Gastroenterite Transmissível/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Sci Rep ; 12(1): 2966, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194053

RESUMO

With highly active anti-retroviral therapy (HAART), higher incidence of airway abnormalities is common in the HIV population consistent with the concept of accelerated lung "aging". Our previous findings demonstrated that HIV induces human airway basal cells (BC) into destructive and inflammatory phenotypes. Since BC function as stem/progenitor cells of the small airway epithelium (SAE), responsible for self-renewal and differentiation of SAE, we hypothesized that BC from people living with HIV (PLWH) may have altered differentiation capacity that contribute to premature aging. The data demonstrates that BC from PLWH have impaired capacity to differentiate in vitro and senescent phenotypes including shortened telomeres, increased expression of ß-galactosidase and cell cycle inhibitors, and mitochondrial dysfunction. In vitro studies demonstrated that BC senescence is partly due to adverse effects of HAART on BC. These findings provide an explanation for higher incidence of airway dysfunction and accelerated lung aging observed in PLWH.


Assuntos
Diferenciação Celular , Infecções por HIV/metabolismo , HIV-1/metabolismo , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Adulto , Feminino , Humanos , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mucosa Respiratória/virologia , Células-Tronco/virologia , Encurtamento do Telômero
9.
Front Immunol ; 12: 769990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887863

RESUMO

Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.


Assuntos
Reprogramação Celular/genética , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Macaca mulatta/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Células-Tronco/metabolismo , Animais , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Interações Hospedeiro-Patógeno , Intestino Delgado/virologia , Macaca mulatta/metabolismo , Macaca mulatta/virologia , Masculino , Organoides/metabolismo , Organoides/virologia , RNA-Seq/métodos , Transdução de Sinais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Células-Tronco/virologia , Carga Viral
10.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831310

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause devastating fetal neuropathological abnormalities, including microcephaly. Most studies of ZIKV infection in pregnancy have focused on post-implantation stage embryos. Currently, we have limited knowledge about how a pre-implantation stage embryo deals with a viral infection. This study investigates ZIKV infection on mouse trophoblast stem cells (TSCs) and their in vitro differentiated TSCs (DTSCs), which resemble the cellular components of the trophectoderm layer of the blastocyst that later develops into the placenta. We demonstrate that TSCs and DTSCs are permissive to ZIKV infection; however, ZIKV propagated in TSCs and DTSCs exhibit substantially lower infectivity, as shown in vitro and in a mouse model compared to ZIKV that was generated in Vero cells or mouse embryonic fibroblasts (MEFs). We further show that the low infectivity of ZIKV propagated in TSCs and DTSCs is associated with a reduced level of glycosylation on the viral envelope (E) proteins, which are essential for ZIKV to establish initial attachment by binding to cell surface glycosaminoglycans (GAGs). The decreased level of glycosylation on ZIKV E is, at least, partially due to the low-level expression of a glycosylation-related gene, Hexa, in TSCs and DTSCs. Furthermore, this finding is not limited to ZIKV since similar observations have been made as to the chikungunya virus (CHIKV) and West Nile virus (WNV) propagated in TSCs and DTSCs. In conclusion, our results reveal a novel phenomenon suggesting that murine TSCs and their differentiated cells may have adapted a cellular glycosylation system that can limit viral infectivity by altering the glycosylation of viral envelope proteins, therefore serving as a unique, innate anti-viral mechanism in the pre-implantation stage embryo.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Trofoblastos/citologia , Proteínas do Envelope Viral/metabolismo , Zika virus/fisiologia , Animais , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosilação , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/metabolismo , Células-Tronco/metabolismo , Células-Tronco/virologia , Trofoblastos/virologia , Células Vero , Vírus do Nilo Ocidental/fisiologia , Zika virus/patogenicidade
11.
Science ; 373(6551): 231-236, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244417

RESUMO

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Interferência de RNA , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Células-Tronco/enzimologia , Células-Tronco/virologia , Processamento Alternativo , Animais , Encéfalo/enzimologia , Encéfalo/virologia , Linhagem Celular , RNA Helicases DEAD-box/química , Humanos , Imunidade Inata , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Organoides/enzimologia , Organoides/virologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/imunologia , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonuclease III/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Replicação Viral , Zika virus/genética , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/enzimologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
12.
Am J Pathol ; 191(9): 1511-1519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102107

RESUMO

Chemosensory changes are well-reported symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme 2 (ACE2). It is not known whether ACE2 is expressed on taste receptor cells (TRCs), or whether TRCs are infected directly. in situ hybridization probe and an antibody specific to ACE2 indicated presence of ACE2 on a subpopulation of TRCs (namely, type II cells in taste buds in taste papillae). Fungiform papillae of a SARS-CoV-2+ patient exhibiting symptoms of coronavirus disease 2019 (COVID-19), including taste changes, were biopsied. Presence of replicating SARS-CoV-2 in type II cells was verified by in situ hybridization. Therefore, taste type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of a patient's fungiform papillae taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks after symptom onset. Another patient experiencing post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes, frequently reported in COVID-19, may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest that further work is needed to understand the acute and postacute dynamics of viral kinetics in the human taste bud.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19 , Regulação Enzimológica da Expressão Gênica , SARS-CoV-2/metabolismo , Células-Tronco , Papilas Gustativas , COVID-19/enzimologia , COVID-19/patologia , COVID-19/virologia , Feminino , Humanos , Masculino , Células-Tronco/enzimologia , Células-Tronco/patologia , Células-Tronco/virologia , Papilas Gustativas/enzimologia , Papilas Gustativas/patologia , Papilas Gustativas/virologia
13.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003804

RESUMO

The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.


Assuntos
COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , Mucosa Nasal/virologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/fisiopatologia , Diferenciação Celular , Cílios/patologia , Cílios/fisiologia , Cílios/virologia , Furina/genética , Furina/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Macaca , Modelos Biológicos , Mucosa Nasal/patologia , Mucosa Nasal/fisiopatologia , Pandemias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células-Tronco/patologia , Células-Tronco/virologia , Internalização do Vírus , Replicação Viral/genética , Replicação Viral/fisiologia
14.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652988

RESUMO

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Assuntos
COVID-19/patologia , Organoides/virologia , SARS-CoV-2/fisiologia , Células-Tronco/virologia , Animais , Apoptose , COVID-19/virologia , Sistema Cardiovascular/citologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/virologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Pulmão/citologia , Pulmão/patologia , Pulmão/virologia , Organoides/patologia , Células-Tronco/patologia , Tropismo Viral , Internalização do Vírus
15.
Stem Cell Reports ; 16(3): 437-445, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631122

RESUMO

COVID-19 is a transmissible respiratory disease caused by a novel coronavirus, SARS-CoV-2, and has become a global health emergency. There is an urgent need for robust and practical in vitro model systems to investigate viral pathogenesis. Here, we generated human induced pluripotent stem cell (iPSC)-derived lung organoids (LORGs), cerebral organoids (CORGs), neural progenitor cells (NPCs), neurons, and astrocytes. LORGs containing epithelial cells, alveolar types 1 and 2, highly express ACE2 and TMPRSS2 and are permissive to SARS-CoV-2 infection. SARS-CoV-2 infection induces interferons, cytokines, and chemokines and activates critical inflammasome pathway genes. Spike protein inhibitor, EK1 peptide, and TMPRSS2 inhibitors (camostat/nafamostat) block viral entry in LORGs. Conversely, CORGs, NPCs, astrocytes, and neurons express low levels of ACE2 and TMPRSS2 and correspondingly are not highly permissive to SARS-CoV-2 infection. Infection in neuronal cells activates TLR3/7, OAS2, complement system, and apoptotic genes. These findings will aid in understanding COVID-19 pathogenesis and facilitate drug discovery.


Assuntos
Encéfalo/virologia , COVID-19/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Pulmão/virologia , Células-Tronco Neurais/virologia , Organoides/virologia , SARS-CoV-2/patogenicidade , Apoptose/fisiologia , Encéfalo/metabolismo , COVID-19/metabolismo , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Inflamação/virologia , Pulmão/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Organoides/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Células-Tronco/virologia
16.
Stem Cell Reports ; 16(3): 373-384, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631123

RESUMO

COVID-19, caused by SARS-CoV-2, is a socioeconomic burden, which exhibits respiratory illness along with unexpected neurological complications. Concerns have been raised about whether the observed neurological symptoms are due to direct effects on CNS or associated with the virus's systemic effect. Recent SARS-CoV-2 infection studies using human brain organoids revealed that SARS-CoV-2 targets human neurons. Human brain organoids are stem cell-derived reductionist experimental systems that have highlighted the neurotropic effects of SARS-CoV-2. Here, we summarize the neurotoxic effects of SARS-CoV-2 using brain organoids and comprehensively discuss how brain organoids could further improve our understanding when they are fine-tuned.


Assuntos
Encéfalo/virologia , COVID-19/virologia , Neurônios/virologia , Organoides/virologia , SARS-CoV-2/patogenicidade , Humanos , Células-Tronco/virologia
17.
Theranostics ; 11(5): 2170-2181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500718

RESUMO

Introduction: An increasing number of children with severe coronavirus disease 2019 (COVID-19) is being reported, yet the spectrum of disease severity and expression patterns of angiotensin-converting enzyme 2 (ACE2) in children at different developmental stages are largely unknow. Methods: We analysed clinical features in a cohort of 173 children with COVID-19 (0-15 yrs.-old) between January 22, 2020 and March 15, 2020. We systematically examined the expression and distribution of ACE2 in different developmental stages of children by using a combination of children's lung biopsies, pluripotent stem cell-derived lung cells, RNA-sequencing profiles, and ex vivo SARS-CoV-2 pseudoviral infections. Results: It revealed that infants (< 1yrs.-old), with a weaker potency of immune response, are more vulnerable to develop pneumonia whereas older children (> 1 yrs.-old) are more resistant to lung injury. The expression levels of ACE2 however do not vary by age in children's lung. ACE2 is notably expressed not only in Alveolar Type II (AT II) cells, but also in SOX9 positive lung progenitor cells detected in both pluripotent stem cell derivatives and infants' lungs. The ACE2+SOX9+ cells are readily infected by SARS-CoV-2 pseudovirus and the numbers of the double positive cells are significantly decreased in older children. Conclusions: Infants (< 1 yrs.-old) with SARS-CoV-2 infection are more vulnerable to lung injuries. ACE2 expression in multiple types of lung cells including SOX9 positive progenitor cells, in cooperation with an unestablished immune system, could be risk factors contributing to vulnerability of infants with COVID-19. There is a need to continue monitoring lung development in young children who have recovered from SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Pulmão/citologia , Células-Tronco/metabolismo , Adolescente , Biópsia , Criança , Pré-Escolar , Feminino , Humanos , Sistema Imunitário , Lactente , Recém-Nascido , Pulmão/virologia , Masculino , RNA-Seq , Fatores de Risco , SARS-CoV-2 , Fatores de Transcrição SOX9/metabolismo , Análise de Célula Única , Células-Tronco/virologia
19.
BMC Bioinformatics ; 21(Suppl 18): 578, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33375933

RESUMO

BACKGROUND: As the number of RNA-seq datasets that become available to explore transcriptome diversity increases, so does the need for easy-to-use comprehensive computational workflows. Many available tools facilitate analyses of one of the two major mechanisms of transcriptome diversity, namely, differential expression of isoforms due to alternative splicing, while the second major mechanism-RNA editing due to post-transcriptional changes of individual nucleotides-remains under-appreciated. Both these mechanisms play an essential role in physiological and diseases processes, including cancer and neurological disorders. However, elucidation of RNA editing events at transcriptome-wide level requires increasingly complex computational tools, in turn resulting in a steep entrance barrier for labs who are interested in high-throughput variant calling applications on a large scale but lack the manpower and/or computational expertise. RESULTS: Here we present an easy-to-use, fully automated, computational pipeline (Automated Isoform Diversity Detector, AIDD) that contains open source tools for various tasks needed to map transcriptome diversity, including RNA editing events. To facilitate reproducibility and avoid system dependencies, the pipeline is contained within a pre-configured VirtualBox environment. The analytical tasks and format conversions are accomplished via a set of automated scripts that enable the user to go from a set of raw data, such as fastq files, to publication-ready results and figures in one step. A publicly available dataset of Zika virus-infected neural progenitor cells is used to illustrate AIDD's capabilities. CONCLUSIONS: AIDD pipeline offers a user-friendly interface for comprehensive and reproducible RNA-seq analyses. Among unique features of AIDD are its ability to infer RNA editing patterns, including ADAR editing, and inclusion of Guttman scale patterns for time series analysis of such editing landscapes. AIDD-based results show importance of diversity of ADAR isoforms, key RNA editing enzymes linked with the innate immune system and viral infections. These findings offer insights into the potential role of ADAR editing dysregulation in the disease mechanisms, including those of congenital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline enables even a novice user to easily explore common mechanisms of transcriptome diversity, including RNA editing landscapes.


Assuntos
Software , Transcriptoma , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Expressão Gênica , Ontologia Genética , Humanos , Análise de Componente Principal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Edição de RNA , RNA-Seq , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/virologia , Zika virus/fisiologia
20.
Cell Stem Cell ; 27(6): 869-875.e4, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33259798

RESUMO

Current smoking is associated with increased risk of severe COVID-19, but it is not clear how cigarette smoke (CS) exposure affects SARS-CoV-2 airway cell infection. We directly exposed air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term CS and then infected them with SARS-CoV-2. We found an increase in the number of infected airway cells after CS exposure with a lack of ABSC proliferation. Single-cell profiling of the cultures showed that the normal interferon response was reduced after CS exposure with infection. Treatment of CS-exposed ALI cultures with interferon ß-1 abrogated the viral infection, suggesting one potential mechanism for more severe viral infection. Our data show that acute CS exposure allows for more severe airway epithelial disease from SARS-CoV-2 by reducing the innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to CS.


Assuntos
COVID-19/fisiopatologia , Mucosa Respiratória/fisiopatologia , Fumar/efeitos adversos , Células-Tronco/virologia , COVID-19/genética , COVID-19/imunologia , COVID-19/terapia , Células Cultivadas , Regulação para Baixo , Humanos , Imunidade Inata , Interferon beta/uso terapêutico , Gravidade do Paciente , Mucosa Respiratória/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA