Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Rep ; 35(3): 109001, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882304

RESUMO

It is well established that seizures beget seizures, yet the cellular processes that underlie progressive epileptogenesis remain unclear. Here, we use optogenetics to briefly activate targeted populations of mouse piriform cortex (PCx) principal neurons in vivo. After just 3 or 4 days of stimulation, previously subconvulsive stimuli trigger massive, generalized seizures. Highly recurrent allocortices are especially prone to "optokindling." Optokindling upsets the balance of recurrent excitation and feedback inhibition. To understand how this balance is disrupted, we then selectively reactivate the same neurons in vitro. Surprisingly, we find no evidence of heterosynaptic potentiation; instead, we observe a marked, pathway-specific decrease in feedback inhibition. We find no loss of inhibitory interneurons; rather, decreased GABA synthesis in feedback inhibitory neurons appears to underlie weakened inhibition. Optokindling will allow precise identification of the molecular processes by which brain activity patterns can progressively and pathologically disrupt the balance of cortical excitation and inhibition.


Assuntos
Estimulação Elétrica/métodos , Retroalimentação Sensorial , Córtex Piriforme/fisiopatologia , Convulsões/fisiopatologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Eletrodos Implantados , Potenciais Evocados/fisiologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Optogenética/métodos , Córtex Piriforme/metabolismo , Convulsões/metabolismo , Técnicas Estereotáxicas , Sinapses/patologia , Transmissão Sináptica
2.
J Alzheimers Dis ; 82(s1): S19-S35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459655

RESUMO

BACKGROUND: Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-ß peptide (Aß), which can be prevented by reducing Aß levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aß accumulation and Aß-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE: To characterize the effects of Aß on OB and PCx excitability/coupling and on olfaction. METHODS: Aß oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS: Aß did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aß. Finally, Aß treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION: Our results show that Aß-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Transtornos do Olfato/induzido quimicamente , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/fisiopatologia , Condutos Olfatórios/fisiopatologia , Fragmentos de Peptídeos/toxicidade , Córtex Piriforme/fisiopatologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Camundongos , Microinjeções/métodos , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/administração & dosagem , Córtex Piriforme/efeitos dos fármacos
3.
J Parkinsons Dis ; 10(4): 1411-1427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925105

RESUMO

BACKGROUND: Parkinson's disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits. OBJECTIVE: We hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system. METHODS: To address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB. RESULTS: We detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology. CONCLUSION: Together, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.


Assuntos
Bulbo Olfatório/fisiopatologia , Córtex Piriforme/fisiopatologia , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/farmacologia , Animais , Ritmo beta/fisiologia , Modelos Animais de Doenças , Potenciais Evocados/fisiologia , Camundongos , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Percepção Olfatória/fisiologia , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/metabolismo , Córtex Piriforme/patologia , Sinucleinopatias/induzido quimicamente , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/administração & dosagem
4.
Exp Neurol ; 330: 113305, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32278645

RESUMO

Experiments in animal models have identified specific brain regions such as the deep anterior piriform cortex as important for controlling the initiation or propagation of both generalized and focal seizure activity. However, there is little experimental evidence to translate these observations to the control of focal seizures in humans. Here, we summarize findings from different hemodynamic and neurotransmitter functional imaging studies in groups of patients with focal epilepsies arising from different cortical locations in support of a common area of brain dysfunction in focal epilepsies.


Assuntos
Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/fisiopatologia , Neuroimagem Funcional/métodos , Córtex Piriforme/diagnóstico por imagem , Córtex Piriforme/fisiopatologia , Animais , Humanos
6.
J Neurosci ; 40(12): 2485-2497, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32051327

RESUMO

We recently developed a rat model of relapse to drug seeking after food choice-induced voluntary abstinence. Here, we used this model to study the role of the orbitofrontal cortex (OFC) and its afferent projections in relapse to fentanyl seeking. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed relapse to fentanyl seeking after 13-14 voluntary abstinence days, achieved through a discrete choice procedure between fentanyl infusions and palatable food (20 trials/d). In both sexes, relapse after food choice-induced abstinence was associated with increased expression of the activity marker Fos in the OFC. Pharmacological inactivation of the OFC with muscimol plus baclofen (50 + 50 ng/side) decreased relapse to fentanyl seeking. We then determined projection-specific activation of OFC afferents during the relapse test by using Fos plus the retrograde tracer cholera toxin B (injected into the OFC). Relapse to fentanyl seeking was associated with increased Fos expression in the piriform cortex (Pir) neurons projecting to the OFC, but not in projections from the basolateral amygdala and thalamus. Pharmacological inactivation of the Pir with muscimol plus baclofen decreased relapse to fentanyl seeking after voluntary abstinence. Next, we used an anatomical disconnection procedure to determine whether projections between the Pir and OFC are critical for relapse to fentanyl seeking. Unilateral muscimol plus baclofen injections into the Pir in one hemisphere plus unilateral muscimol plus baclofen injections into the OFC in the contralateral, but not ipsilateral, hemisphere decreased relapse. Our results identify Pir-OFC projections as a new motivation-related pathway critical to relapse to opioid seeking after voluntary abstinence.SIGNIFICANCE STATEMENT There are few preclinical studies of fentanyl relapse, and these studies have used experimenter-imposed extinction or forced abstinence procedures. In humans, however, abstinence is often voluntary, with drug available in the drug environment but forgone in favor of nondrug alternative reinforcers. We recently developed a rat model of drug relapse after palatable food choice-induced voluntary abstinence. Here, we used classical pharmacology, immunohistochemistry, and retrograde tracing to demonstrate a critical role of the piriform and orbitofrontal cortices in relapse to opioid seeking after voluntary abstinence.


Assuntos
Analgésicos Opioides , Comportamento de Procura de Droga , Fentanila , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/psicologia , Córtex Piriforme/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Baclofeno/administração & dosagem , Baclofeno/farmacologia , Comportamento de Escolha , Feminino , Preferências Alimentares , Agonistas GABAérgicos/administração & dosagem , Agonistas GABAérgicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes fos , Masculino , Microinjeções , Muscimol/administração & dosagem , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração
7.
Neurobiol Aging ; 89: 63-70, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31980278

RESUMO

Hyposmia is common in Alzheimer's dementia (AD) and Parkinson's disease dementia (PDD). We evaluated the pattern of olfactory functional connectivity (FC) in AD and PDD to uncover neural correlates that are related to olfactory dysfunction. This study enrolled 57 patients with AD and PDD and 25 control subjects. Using a seed-based approach, we compared the resting-state network from the seed-region-of-interest in the olfactory bulb, olfactory tract, piriform cortex, and orbitofrontal cortex (OFC) between groups. The PDD group showed lower FC with striatal-thalamic-frontal regions from the olfactory bulb than the AD group. The PDD group showed lower FC from left OFC with striatal-frontal regions and lower FC from right OFC with left fronto-temporal areas than the AD group. In a correlation analysis, the FC from left OFC with right insula that differed between the PDD and control groups was positively correlated with olfactory function. The present study demonstrated that this distinct olfactory functional network pattern may represent different neural mechanisms for olfactory dysfunction in AD and PDD.


Assuntos
Doença de Alzheimer/complicações , Demência/etiologia , Demência/fisiopatologia , Rede Nervosa/fisiopatologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/fisiopatologia , Doença de Parkinson/complicações , Olfato/fisiologia , Idoso , Feminino , Humanos , Masculino , Córtex Piriforme/fisiopatologia , Córtex Pré-Frontal/fisiopatologia
8.
Epilepsy Behav ; 104(Pt A): 106885, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31935647

RESUMO

OBJECTIVE: Strong olfactory stimulation (OS) with such substances as toluene or ammonia has been reported to suppress seizures. We aimed to investigate the role of ammonia stimulation on acute kainic acid (KA)-induced seizures. We also investigated any possible effects of ammonia stimulation on the electrophysiology of the anterior piriform cortex (APC). METHODS: Adult male Sprague-Dawley rats were implanted with bilateral hippocampal electrodes and an electrode in the left APC. Animals were exposed to either distilled water (control) or ammonia stimulation for 20 s every 5 min during KA induction of status epilepticus (SE). The electroencephalogram (EEG) was analyzed for seizure frequency, duration, severity, and total KA doses given prior to reaching SE. Seizure-free EEG epochs that coincided with OS were chosen and analyzed via wavelet analysis for any spectral changes. RESULTS: We found no significant differences in seizure frequency, duration, severity, or administered KA doses before SE between the groups. In the experimental group, a wavelet analysis of variance (WANOVA) revealed a significant stimulation-induced increase of power in the delta and alpha bands prior to the first KA injection and higher power in the delta and theta bands after KA injection. CONCLUSIONS: Whereas the spectral analysis of the APC revealed specific OS-induced changes, our findings suggest that OS with ammonia does not result in altering the threshold of attaining KA-induced SE. This does not rule out a potential role for OS in reducing recurrent seizures in the KA or other epilepsy models.


Assuntos
Amônia/toxicidade , Ácido Caínico/toxicidade , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Animais , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
9.
Exp Neurol ; 324: 113137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794746

RESUMO

Epilepsy is a circuit-level brain disorder characterized by excessive or hypersynchronous epileptic seizures involving a complex epileptogenic network. Cumulative evidence suggests that the piriform cortex (PC) is a crucial site in seizure initiation, propagation, and generalization in epilepsy. The kindling model is a classic animal model of complex partial seizures with secondarily generalized tonic seizures, which is usually used for the study of epilepsy pathogenesis and preclinical anti-epilepsy drug evaluation. Various essential functions of the PC in epilepsy were discovered in the kindling model, therefore, this review focuses on discussing the role of the PC in the kindling model. We review what pathological changes happen in the PC in the kindling model, how the PC is involved in the kindling model through different interventions, and finally we also provide perspectives on some possible research directions for future studies.


Assuntos
Epilepsia/fisiopatologia , Excitação Neurológica , Córtex Piriforme/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos
10.
Am J Med Genet A ; 179(9): 1783-1790, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31294511

RESUMO

Rare individuals with 20p11.2 proximal deletions have been previously reported, with a variable phenotype that includes heterotaxy, biliary atresia, midline brain defects associated with panhypopituitarism, intellectual disability, scoliosis, and seizures. Deletions have ranged in size from 277 kb to 11.96 Mb. We describe a newborn with a de novo 2.7 Mb deletion of 20p11.22p11.21 that partially overlaps previously reported deletions and encompasses FOXA2. Her clinical findings further expand the 20p11.2 deletion phenotype to include severe midline cranial and intracranial defects such as aqueductal stenosis with hydrocephalus, mesencephalosynapsis with diencephalic-mesencephalic junction dysplasia, and pyriform aperture stenosis. We also report one individual with a missense variant in FOXA2 who had abnormal glucose homeostasis, panhypopituitarism, and endodermal organ dysfunction. Together, these findings support the critical role of FOXA2 in panhypopituitarism and midline defects.


Assuntos
Encéfalo/anormalidades , Constrição Patológica/genética , Fator 3-beta Nuclear de Hepatócito/genética , Hipopituitarismo/genética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Deleção Cromossômica , Cromossomos Humanos Par 20/genética , Constrição Patológica/diagnóstico por imagem , Constrição Patológica/fisiopatologia , Predisposição Genética para Doença , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Hidrocefalia/fisiopatologia , Hipopituitarismo/diagnóstico por imagem , Hipopituitarismo/fisiopatologia , Recém-Nascido , Mutação de Sentido Incorreto/genética , Fenótipo , Córtex Piriforme/diagnóstico por imagem , Córtex Piriforme/fisiopatologia
11.
Epilepsy Behav ; 97: 229-243, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31254843

RESUMO

OBJECTIVE: The objective of the study were to investigate patterns of multiunit cluster firing in the piriform cortex (PC) and mediodorsal thalamus (MDT) in a rat model of genetic generalized epilepsy (GGE) with absence seizures and to assess whether these regions contribute to the initiation or spread of generalized epileptiform discharges. METHODS: Multiunit clusters and their corresponding local field potentials (LFPs) were recorded from microelectrode arrays implanted in the PC and MDT in urethane anesthetized Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and nonepileptic control (NEC) rats. Peristimulus time histograms (PSTHs) and cross-correlograms were used to observe transient changes in both the rate of firing and synchrony over time. The phase locking of multiunit clusters to LFP signals (spike-LFP phase locking) was calculated for frequency bands associated with olfactory communication between the two brain regions. RESULTS: There were significant increases in both rate of firing and synchronous activity at the onset of generalized epileptiform discharges in both PC and MDT. Prior to and following these increases in synchronous activity, there were periods of suppression. Significant increases in spike-LFP phase locking were observed within the PC prior to the onset of epileptiform discharges across all spectral bands. There were also significant increases in spike-LFP phase locking within the theta band of the MDT prior to onset. Between the two brain regions, there was a significant decrease in spike-LFP phase locking -0.5 s prior to onset in the theta band which coincided with a significant elevation in spike-LFP phase locking in the gamma band. CONCLUSIONS: Both the PC and MDT are engaged in the absence epilepsy network. Early spike-LFP phase locking between these two brain regions suggests potential involvement in the initiation of seizure activity.


Assuntos
Epilepsia Tipo Ausência/fisiopatologia , Núcleo Mediodorsal do Tálamo/fisiopatologia , Córtex Piriforme/fisiopatologia , Animais , Análise por Conglomerados , Progressão da Doença , Eletroencefalografia , Fenômenos Eletrofisiológicos , Epilepsia Generalizada/fisiopatologia , Lateralidade Funcional/fisiologia , Potenciais da Membrana , Ratos , Convulsões/fisiopatologia , Olfato/fisiologia , Ritmo Teta
12.
Acta Neuropathol Commun ; 6(1): 14, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471869

RESUMO

Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms.The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system.Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons.We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity.The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for understanding the interplay between T2D and cognitive decline and for designing effective preventive therapies.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Nootrópicos/farmacologia , Percepção Olfatória/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/psicologia , Dipeptidil Peptidase 4/metabolismo , Proteína Duplacortina , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/patologia , Interneurônios/fisiologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Percepção Olfatória/fisiologia , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/patologia , Córtex Piriforme/fisiopatologia , Ratos Wistar
13.
Neuropathology ; 38(2): 135-143, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29250826

RESUMO

Epileptic seizure has been reported to enhance adult neurogenesis and induce aberrant synaptic reorganization in the human dentate gyrus in the hippocampal formation. However, adult neurogenesis in the extrahippocampal regions has not been well studied. To investigate seizure-enhanced neurogenesis in the extrahippocampal regions, we performed histological and immunohistochemical as well as western blot analyses on the cerebrum of Sprague-Dawley rats (n = 51, male, 7 weeks old, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (KA, 10 mg/kg) to induce status epilepticus (SE) (n = 36) or normal saline solution (n = 15) followed by 5'-bromo-2-deoxyuridine (BrdU) injection to label newborn cells. Even though severe neuronal damage was found in the piriform cortex of rats having SE, immunohistochemistry for double cortin (DCX) revealed an increase in the number of immature neurons in the piriform cortex. Double immunofluorescence staining demonstrated that DCX-positive cells in the piriform cortex were positive for both BrdU and neuronal nuclear antigen. Immunohistochemistry and western blotting revealed increased expressions of synaptophysin and postsynaptic density protein 95 in the piriform cortex of rat having SE. These results suggested the enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of the KA-treated rat.


Assuntos
Neurogênese , Plasticidade Neuronal , Córtex Piriforme/patologia , Estado Epiléptico/patologia , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Filamentos Intermediários/efeitos dos fármacos , Ácido Caínico , Masculino , Neurônios/citologia , Neurônios/patologia , Córtex Piriforme/citologia , Córtex Piriforme/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia , Sinaptofisina/metabolismo
14.
Epilepsy Behav ; 72: 1-7, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28564587

RESUMO

OBJECTIVE: Recent evidence in animals and humans suggests that low-frequency stimulation (LFS) has significant antiepileptic properties. The anterior piriform cortex (APC) is a highly susceptible seizure-trigger zone and may be critical for the initiation and propagation of seizures originating from cortical and limbic foci. We used the kainic acid (KA) seizure model in rats to assess the therapeutic effect of LFS of the APC on seizures. METHODS: Adult male Sprague-Dawley rats were implanted with electrodes in the left APC and recording electrodes bilaterally in the hippocampal CA3 regions. Rats were monitored continuously with video-EEG after the emergence of spontaneous recurrent seizures that followed induction of status epilepticus by intraperitoneal KA. After two weeks of baseline recordings to determine seizure frequency, LFS of the APC was applied 60-min On 15-min Off, for two weeks with 1Hz biphasic square waves, 0.2ms pulse width, at 200µA. Another 2-week period of video-EEG monitoring was done after the cessation of LFS to study the carry-over effect. Changes in seizure frequency, severity, and duration between baseline, during LFS, and post-LFS were analyzed using the Poisson regression model. RESULTS: Overall seizure frequency decreased during the post-LFS period to 5% of that at baseline (p=0.003). Severe seizures (stages 4 and 5 on the Racine scale) decreased to 0% of the baseline during the post-LFS period. CONCLUSIONS: Two weeks of LFS of the APC reduced spontaneous seizure frequency and severity in the KA model with the effect outlasting the stimulation. Our findings suggest that the APC can be an important therapeutic target for stimulation in epilepsy.


Assuntos
Estimulação Encefálica Profunda/métodos , Córtex Piriforme/fisiopatologia , Convulsões/terapia , Animais , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
15.
Brain Res ; 1651: 27-35, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27659963

RESUMO

The blood-brain barrier (BBB) disruption during brain insults leads to vasogenic edema as one of the primary steps in the epileptogenic process. However, the signaling pathway concerning vasogenic edema formation has not been clarified. In the present study, status epilepticus (SE) resulted in vascular endothelial growth factor (VEGF) over-expression accompanied by loss of BBB integrity in the rat piriform cortex. Leptomycin B (LMB, an inhibitor of chromosome region maintenance 1) attenuated SE-induced vasogenic edema formation. This anti-edema effect of LMB was relevant to inhibitions of VEGF over-expression as well as p38 mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, SB202190 (a p38 MAPK inhibitor) ameliorated vasogenic edema and VEGF over-expression induced by SE. These findings indicate that p38 MAPK/VEGF signaling pathway may be involved in BBB disruption following SE. Thus, we suggest that p38 MAPK/VEGF axis may be one of therapeutic targets for vasogenic edema in various neurological diseases.


Assuntos
Edema Encefálico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estado Epiléptico/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Fosforilação/efeitos dos fármacos , Pilocarpina , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/patologia , Córtex Piriforme/fisiopatologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Estado Epiléptico/complicações , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Eur J Neurosci ; 44(6): 2396-403, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422327

RESUMO

Multiple neurodegenerative disorders with tau pathology are characterised by the loss of memory and cognitive decline that can be associated with other symptoms including olfactory alterations that are often regarded as an early symptom of the diseases. Here, we have investigated whether olfactory dysfunction is present in the P301S human tau transgenic mice and if it is associated to tau pathology. Progressive tauopathy and neurodegeneration were noticeable in the olfactory bulb and piriform cortex at early age in the P301S human tau transgenic mice and olfactory sensitivity for social or non-social odours was significantly impaired at 3 months of age, when the piriform cortex-dependent odour-cross habituation was also disrupted. The olfactory alterations in the P301S tau transgenic mouse line provide an in vivo system where to test the mechanism-based therapies for the common and yet untreatable tauopathies.


Assuntos
Hipocampo/fisiopatologia , Memória/fisiologia , Bulbo Olfatório/fisiopatologia , Córtex Piriforme/fisiopatologia , Tauopatias/fisiopatologia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Sci Signal ; 9(432): ra60, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27303056

RESUMO

Anxiety and stress increase the frequency of epileptic seizures. These behavioral states induce the secretion of corticotropin-releasing factor (CRF), a 40-amino acid neuropeptide neurotransmitter that coordinates many behavioral responses to stress in the central nervous system. In the piriform cortex, which is one of the most seizurogenic regions of the brain, CRF normally dampens excitability. By contrast, CRF increased the excitability of the piriform cortex in rats subjected to kindling, a model of temporal lobe epilepsy. In nonkindled rats, CRF activates its receptor, a G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor, and signals through a Gαq/11-mediated pathway. After seizure induction, CRF signaling occurred through a pathway involving Gαs This change in signaling was associated with reduced abundance of regulator of G protein signaling protein type 2 (RGS2), which has been reported to inhibit Gαs-dependent signaling. RGS2 knockout mice responded to CRF in a similar manner as epileptic rats. These observations indicate that seizures produce changes in neuronal signaling that can increase seizure occurrence by converting a beneficial stress response into an epileptic trigger.


Assuntos
Epilepsia/metabolismo , Córtex Piriforme/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Epilepsia/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos , Camundongos Knockout , Córtex Piriforme/patologia , Córtex Piriforme/fisiopatologia , Proteínas RGS/genética , Proteínas RGS/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética
18.
Eur J Neurol ; 23(3): 605-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26616102

RESUMO

BACKGROUND AND PURPOSE: Previous studies have demonstrated that individuals suffering from disorder of consciousness (DOC) maintain some minor neural processing of percepts mediated by senses that early in their pathway intersect the thalamus, a key dysfunctional area in DOC patients. Here the degree of sensory preservation within the olfactory system, a system that lacks an obligatory thalamic relay, and its relationship to the consciousness level in DOC patients of various etiologies was assessed. METHODS: Clinical Coma Recovery Scale - Revised (CRS-R) as well as cerebral responses to odors by means of functional magnetic resonance were obtained in a group of vegetative state/unresponsive wakefulness syndrome (n = 26) patients, minimally conscious state (n = 7) patients and healthy controls (n = 25). RESULTS: A majority of vegetative state/unresponsive wakefulness syndrome patients (58%) and 100% of minimally conscious state patients demonstrated a significant preservation of olfactory neural processing, manifested by activation within the piriform cortex, an area considered as a primary olfactory region. Degree of preservation of olfactory processing differed linearly in line with the patients' etiologies where groups demonstrating greater conscious awareness demonstrated more significant processing. Viewed over all DOC patients, there was a significant negative association between odor-related activity in the orbitofrontal cortex and CRS-R scores. CONCLUSIONS: It is demonstrated that DOC patients exhibit a significant preservation of olfactory neural processing with a clear relationship to etiopathologies and clinical measures even years after of chronification of DOC.


Assuntos
Transtornos da Consciência/fisiopatologia , Percepção Olfatória/fisiologia , Córtex Piriforme/fisiopatologia , Adulto , Coma/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Neuroscience ; 304: 355-67, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26232046

RESUMO

The blood-brain barrier (BBB) is formed by the endothelial cells with specialized tight junctions (TJs) lining the blood vessels and astroglial endfeet surrounding the blood vessels. Although BBB disruption during brain insults leads to vasogenic edema as one of the primary steps in the epileptogenic process, little is known about the molecular and physiological events concerning vasogenic edema formation. In the present study, status epilepticus (SE) changed the expressions and subcellular localizations of TJ proteins (claudin-5, occludin and zonula occludens-1 (ZO-1)) in endothelial cells of the rat piriform cortex. Among TJ proteins, the alteration in ZO-1 expression was relevant to endothelin B (ETB) receptor-mediated endothelial nitric oxide synthase (eNOS) activation, which increased matrix metalloproteinase-9 (MMP-9) activity. Indeed, BQ788 (an ETB receptor antagonist) effectively attenuated SE-induced vasogenic edema by inhibiting eNOS-mediated MMP-9 activation and ZO-1 protein degradation in endothelial cells, although astroglial endfeet were detached from endothelial cells. Therefore, we suggest that SE-induced ETB receptor/eNOS-mediated MMP-9 activation may lead to impairments of endothelial cell function via TJ protein degradation, which are involved in vasogenic edema formation independent of perivascular astroglial functions.


Assuntos
Edema Encefálico/fisiopatologia , Metaloproteinase 9 da Matriz/metabolismo , Córtex Piriforme/fisiopatologia , Receptor de Endotelina B/metabolismo , Estado Epiléptico/fisiopatologia , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Claudina-5/metabolismo , Modelos Animais de Doenças , Antagonistas do Receptor de Endotelina B/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Ocludina/metabolismo , Oligopeptídeos/farmacologia , Piperidinas/farmacologia , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/patologia , Ratos Sprague-Dawley , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia
20.
Neurosci Lett ; 600: 121-6, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26067404

RESUMO

Exposure to urethane anesthesia reportedly produces selective neuronal cell loss in the piriform cortex of young brains; however, resulting functional deficits have not been investigated. The present study found abnormalities in piriform cortex activity of isolated brains in vitro that were harvested from guinea pigs exposed to urethane anesthesia at 14 days of age. Current source density (CSD) analysis and voltage-sensitive dye (VSD) imaging experiments were conducted 48h after urethane injection. We applied paired-pulse stimulation to the lateral olfactory tract (LOT) and assessed short-interval intra-cortical inhibition in the piriform cortex. CSD analysis revealed that a current sink in layer Ib remained active in response to successive stimuli, with an inter-stimulus interval of 30-60 ms, which was typically strongly inhibited. VSD imaging demonstrated stronger and extended neural activity in the urethane-treated piriform cortex, even in response to a second stimulus delivered in short succession. We identified gamma-aminobutyric acid (GABA) ergic neurons in the piriform cortex of sham and urethane-treated animals and found a decrease in GABA-immunoreactive cell density in the urethane group. These results suggest that urethane exposure induces loss of GABAergic interneurons and a subsequent reduction in paired-pulse inhibition in the immature piriform cortex.


Assuntos
Anestésicos Gerais/efeitos adversos , Neurônios/efeitos dos fármacos , Córtex Piriforme/efeitos dos fármacos , Uretana/efeitos adversos , Animais , Contagem de Células , Estimulação Elétrica , Cobaias , Neurônios/patologia , Neurônios/fisiologia , Bulbo Olfatório/fisiopatologia , Córtex Piriforme/crescimento & desenvolvimento , Córtex Piriforme/patologia , Córtex Piriforme/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA