Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
1.
Channels (Austin) ; 18(1): 2420651, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39462453

RESUMO

The endogenous endocannabinoid-like compound N-arachidonoyl-L-serine (ARA-S) facilitates activation of the human Kv7.1/KCNE1 channel and shortens a prolonged action potential duration and QT interval in guinea pig hearts. Hence, ARA-S is interesting to study further in cardiac models to explore the functional impact of such Kv7.1/KCNE1-mediated effects. To guide which animal models would be suitable for assessing ARA-S effects, and to aid interpretation of findings in different experimental models, it is useful to know whether Kv7.1/KCNE1 channels from relevant species respond similarly to ARA-S. To this end, we used the two-electrode voltage clamp technique to compare the effects of ARA-S on Kv7.1/KCNE1 channels from guinea pig, rabbit, and human Kv7.1/KCNE1, when expressed in Xenopus laevis oocytes. We found that the activation of Kv7.1/KCNE1 channels from all tested species was facilitated by ARA-S, seen as a concentration-dependent shift in the voltage-dependence of channel opening and increase in current amplitude and conductance over a broad voltage range. The rabbit channel displayed quantitatively similar effects as the human channel, whereas the guinea pig channel responded with more prominent increase in current amplitude and maximal conductance. This study suggests that rabbit and guinea pig models are both suitable for studying ARA-S effects mediated via Kv7.1/KCNE1.


Assuntos
Endocanabinoides , Canal de Potássio KCNQ1 , Xenopus laevis , Animais , Cobaias , Humanos , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Endocanabinoides/metabolismo , Coelhos , Oócitos/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/metabolismo , Serina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Especificidade da Espécie
2.
Elife ; 132024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480699

RESUMO

In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval. Polyunsaturated fatty acids (PUFAs) are potent activators of KCNQ1 channels and activate IKs channels by binding to two different sites, one in the voltage sensor domain - which shifts the voltage dependence to more negative voltages - and the other in the pore domain - which increases the maximal conductance of the channels (Gmax). However, the mechanism by which PUFAs increase the Gmax of the IKs channels is still poorly understood. In addition, it is unclear why IKs channels have a very small single-channel conductance and a low open probability or whether PUFAs affect any of these properties of IKs channels. Our results suggest that the selectivity filter in KCNQ1 is normally unstable, contributing to the low open probability, and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state.


Travelling through the heart are waves of electrical activity that cause muscle cells to contract and pump blood around the body. The waves are generated by charged ions which flow via tiny channels in and out of the muscle cells. This electrical activity spreads quickly from one cell to the next to make sure all the muscle cells contract at the right time. When these ion channels are compromised, this can lead to heart problems such as long QT syndrome (LQTS). In patients with LQTS, electrical activity in the heart does not follow the typical rhythm, which can result in an irregular heartbeat and lead to cardiac arrest. The most common cause of LQTS is mutations in the channel KCNQ1, which allows potassium ions to flow out of heart muscle cells. This outflux of potassium restores the electrical charge inside the cell so that it is ready to receive another electrical wave and contract at the right time. Current treatments for LQTS do not target KCNQ1 channels directly and have side effects. An alternative approach could be to use a group of molecules called polyunsaturated fatty acids (or PUFAs for short) which increase the flow of ions that pass through KCNQ1. However, it is not fully understood how PUFAs achieve this. Previous research showed that PUFAs activate KCNQ1 via two independent sites: one at the voltage sensor which decides whether the channel is open or closed (Site I), and another at the pore domain ions pass through (Site II). While it is well understood how PUFAs activate the channel at Site I, little is known about the activation mechanism that occurs at Site II. To investigate, Golluscio et al. modified egg cells from the frog Xenopus laevis to express KCNQ1 channels. Experiments investigating the electrical properties of KCNQ1 revealed that the selective filter in the pore domain ­ which permits potassium but no other ions to pass through ­ is usually unstable. However, PUFAs help to stabilize this filter, causing KCNQ1 to stay open more often and allow potassium ions to flow out of muscle cells. The findings of Golluscio et al. suggest that PUFAs could represent an important therapeutic tool to treat LQTS and potentially other cardiac disorders. However, further studies in heart cells, animals and eventually humans will be required to confirm this conclusion.


Assuntos
Ácidos Graxos Insaturados , Canal de Potássio KCNQ1 , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Humanos , Animais , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Potenciais de Ação/efeitos dos fármacos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética , Ativação do Canal Iônico/efeitos dos fármacos
3.
Biochim Biophys Acta Biomembr ; 1866(7): 184377, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39103068

RESUMO

KCNQ1, also known as Kv7.1, is a voltage gated potassium channel that associates with the KCNE protein family. Mutations in this protein has been found to cause a variety of diseases including Long QT syndrome, a type of cardiac arrhythmia where the QT interval observed on an electrocardiogram is longer than normal. This condition is often aggravated during strenuous exercise and can cause fainting spells or sudden death. KCNE1 is an ancillary protein that interacts with KCNQ1 in the membrane at varying molar ratios. This interaction allows for the flow of potassium ions to be modulated to facilitate repolarization of the heart. The interaction between these two proteins has been studied previously with cysteine crosslinking and electrophysiology. In this study, electron paramagnetic resonance (EPR) spectroscopy line shape analysis in tandem with site directed spin labeling (SDSL) was used to observe changes in side chain dynamics as KCNE1 interacts with KCNQ1. KCNE1 was labeled at different sites that were found to interact with KCNQ1 based on previous literature, along with sites outside of that range as a control. Once labeled KCNE1 was incorporated into vesicles, KCNQ1 (helices S1-S6) was titrated into the vesicles. The line shape differences observed upon addition of KCNQ1 are indicative of an interaction between the two proteins. This method provides a first look at the interactions between KCNE1 and KCNQ1 from a dynamics perspective using the full transmembrane portion of KCNQ1.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ligação Proteica , Humanos , Animais , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética
4.
Sci Rep ; 14(1): 19822, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192025

RESUMO

Our study probed the differences in ion channel gene expression in the endometrium of women with Recurrent Implantation Failure (RIF) compared to fertile women. We analyzed the relative expression of genes coding for T-type Ca2+, ENaC, CFTR, and KCNQ1 channels in endometrial samples from 20 RIF-affected and 10 control women, aged 22-35, via microarray analysis and quantitative real-time PCR. Additionally, we examined DNA methylation in the regulatory region of KCNQ1 using ChIP real-time PCR. The bioinformatics component of our research included Gene Ontology analysis, protein-protein interaction networks, and signaling pathway mapping to identify key biological processes and pathways implicated in RIF. This led to the discovery of significant alterations in the expression of ion channel genes in RIF women's endometrium, most notably an overexpression of CFTR and reduced expression of SCNN1A, SCNN1B, SCNN1G, CACNA1H, and KCNQ1. A higher DNA methylation level of KCNQ1's regulatory region was also observed in RIF patients. Gene-set enrichment analysis highlighted a significant presence of genes involved with ion transport and membrane potential regulation, particularly in sodium and calcium channel complexes, which are vital for cation movement across cell membranes. Genes were also enriched in broader ion channel and transmembrane transporter complexes, underscoring their potential extensive role in cellular ion homeostasis and signaling. These findings suggest a potential involvement of ion channels in the pathology of implantation failure, offering new insights into the mechanisms behind RIF and possible therapeutic targets.


Assuntos
Metilação de DNA , Implantação do Embrião , Endométrio , Humanos , Feminino , Endométrio/metabolismo , Adulto , Implantação do Embrião/genética , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Regulação da Expressão Gênica , Adulto Jovem , Canais Iônicos/genética , Canais Iônicos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Perfilação da Expressão Gênica , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo
5.
Circ Res ; 135(7): 722-738, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39166328

RESUMO

BACKGROUND: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which ß-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Células-Tronco Pluripotentes Induzidas , Canal de Potássio KCNQ1 , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosforilação , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Células HEK293 , Canais de Potássio de Abertura Dependente da Tensão da Membrana
6.
Stem Cell Res ; 79: 103496, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018827

RESUMO

The KCNQ1 gene encodes a voltage-gated potassium channel required for cardiac action potentials. Mutations in this gene have been associated with hereditary long QT syndrome 1, Jervell and Lange-Nielsen syndromes, and familial atrial fibrillation. The NM_000218.3(KCNQ1): c.604 + 2T > C mutation has been categorized as the causative variant leading to LQT1. In this study, we generated a KCNQ1 (c.644 + 2T > C) mutation human embryonic stem cell line WAe009-A-1L based on CRISPR base editing system. WAe009-A-1L cell has the potential to differentiate cardiomyocytes and would be used as an in vitro disease model for mechanism exploration and drug screening.


Assuntos
Edição de Genes , Células-Tronco Embrionárias Humanas , Canal de Potássio KCNQ1 , Mutação , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Edição de Genes/métodos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Linhagem Celular , Sistemas CRISPR-Cas , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
7.
Cell Mol Life Sci ; 81(1): 301, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003683

RESUMO

Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought-possibly serving nature to shape potassium conductance to the needs of individual cell types.


Assuntos
Subunidades Proteicas , Humanos , Animais , Subunidades Proteicas/metabolismo , Células HEK293 , Potenciais da Membrana , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética
8.
Proc Natl Acad Sci U S A ; 121(25): e2322475121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857404

RESUMO

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.


Assuntos
Temperatura Baixa , Canal de Potássio KCNQ1 , Sensação Térmica , Animais , Feminino , Masculino , Camundongos , Potenciais de Ação/fisiologia , Gânglios Espinais/metabolismo , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Mentol/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sensação Térmica/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética
9.
Toxicology ; 505: 153830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754619

RESUMO

The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 µM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.


Assuntos
Potenciais de Ação , Arritmias Cardíacas , Miócitos Cardíacos , Piperidinas , Proteômica , Pirimidinas , Quinazolinas , Humanos , Arritmias Cardíacas/induzido quimicamente , Animais , Proteômica/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Piperidinas/farmacologia , Piperidinas/toxicidade , Pirimidinas/toxicidade , Pirimidinas/farmacologia , Quinazolinas/toxicidade , Quinazolinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Fosforilação , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/genética , Cobaias , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/efeitos dos fármacos , Fosfoproteínas/metabolismo , Relação Dose-Resposta a Droga
10.
Stem Cell Res ; 78: 103443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763038

RESUMO

Long QT Syndrome (LQTS) is a genetic heart disorder that can induce cardiac arrhythmias. The most prevalent subtype, LQT1, stems from rare variants in the KCNQ1 gene. Utilizing induced pluripotent stem cells (iPSCs) enables detailed cellular studies and personalized medicine approaches for this life-threatening condition. We generated two LQT1 iPSC lines with single nucleotide nonsense mutations, c.1031 C > T and c.1121 T > A in KCNQ1. Both lines exhibited typical iPSC morphology, expressed high levels of pluripotent markers, maintained normal karyotype, and possessed the capability to differentiate into three germ layers. These cell lines serve as important tools for investigating the biological mechanisms underlying LQT1 due to mutations in the KCNQ1 gene.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canal de Potássio KCNQ1 , Síndrome do QT Longo , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Síndrome do QT Longo/metabolismo , Linhagem Celular , Heterozigoto , Mutação , Masculino , Feminino , Diferenciação Celular
11.
Stem Cell Res ; 77: 103425, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653148

RESUMO

The KCNQ1 gene encodes a voltage-gated potassium channel, which plays an important role in the repolarization of myocardial action potentials. Mutations in this gene often result in type 1 long QT syndrome (LQT1). Here, we generated a KCNQ1 (c.1032 + 2 T > C) mutant human embryonic stem cell line (WAe009-A-1D) based on the transient expression adenine base editing system that converts base A to G. The WAe009-A-1D cell maintains the morphology, pluripotency, and normal karyotype of the stem cells and is capable of differentiating into all three germ layers in vivo.


Assuntos
Edição de Genes , Células-Tronco Embrionárias Humanas , Canal de Potássio KCNQ1 , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Linhagem Celular , Sistemas CRISPR-Cas , Diferenciação Celular , Mutação
12.
Biochem Biophys Res Commun ; 714: 149947, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657442

RESUMO

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Assuntos
Proteínas de Ancoragem à Quinase A , Proteínas do Citoesqueleto , Canal de Potássio KCNQ1 , Síndrome do QT Longo , Animais , Feminino , Humanos , Masculino , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/química , Células CHO , Cricetulus , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/química , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Modelos Moleculares , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica
14.
Exp Physiol ; 109(5): 791-803, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460127

RESUMO

The mechanisms behind renal vasodilatation elicited by stimulation of ß-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during ß-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV7.1 channels was examined in a wire-myograph. The ß-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV7 and BKCa channels affected the ß-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV7 channels significantly decreased the ß-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the ß-adrenergic vasorelaxation. The ß-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV7.1 channels. As opposed to rats, inhibition of KV7 channels did not affect the murine ß-adrenergic vasorelaxation. Although inhibition and activation of KV7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected ß-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV7 and BKCa channels significantly reduced the ß-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.


Assuntos
Rim , Vasodilatação , Animais , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Masculino , Ratos , Camundongos , Rim/metabolismo , Rim/irrigação sanguínea , Canal de Potássio KCNQ1/metabolismo , Isoproterenol/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Camundongos Endogâmicos C57BL , Ratos Wistar , Hipertensão/fisiopatologia , Hipertensão/metabolismo
15.
Cardiovasc Res ; 120(7): 735-744, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38442735

RESUMO

AIMS: While variants in KCNQ1 are the commonest cause of the congenital long QT syndrome, we and others find only a small IKs in cardiomyocytes from human-induced pluripotent stem cells (iPSC-CMs) or human ventricular myocytes. METHODS AND RESULTS: We studied population control iPSC-CMs and iPSC-CMs from a patient with Jervell and Lange-Nielsen (JLN) syndrome due to compound heterozygous loss-of-function (LOF) KCNQ1 variants. We compared the effects of pharmacologic IKs block to those of genetic KCNQ1 ablation, using JLN cells, cells homozygous for the KCNQ1 LOF allele G643S, or siRNAs reducing KCNQ1 expression. We also studied the effects of two blockers of IKr, the other major cardiac repolarizing current, in the setting of pharmacologic or genetic ablation of KCNQ1: moxifloxacin, associated with a very low risk of drug-induced long QT, and dofetilide, a high-risk drug. In control cells, a small IKs was readily recorded but the pharmacologic IKs block produced no change in action potential duration at 90% repolarization (APD90). In contrast, in cells with genetic ablation of KCNQ1 (JLN), baseline APD90 was markedly prolonged compared with control cells (469 ± 20 vs. 310 ± 16 ms). JLN cells displayed increased sensitivity to acute IKr block: the concentration (µM) of moxifloxacin required to prolong APD90 100 msec was 237.4 [median, interquartile range (IQR) 100.6-391.6, n = 7] in population cells vs. 23.7 (17.3-28.7, n = 11) in JLN cells. In control cells, chronic moxifloxacin exposure (300 µM) mildly prolonged APD90 (10%) and increased IKs, while chronic exposure to dofetilide (5 nM) produced greater prolongation (67%) and no increase in IKs. However, in the siRNA-treated cells, moxifloxacin did not increase IKs and markedly prolonged APD90. CONCLUSION: Our data strongly suggest that KCNQ1 expression modulates baseline cardiac repolarization, and the response to IKr block, through mechanisms beyond simply generating IKs.


Assuntos
Potenciais de Ação , Células-Tronco Pluripotentes Induzidas , Síndrome de Jervell-Lange Nielsen , Canal de Potássio KCNQ1 , Moxifloxacina , Miócitos Cardíacos , Humanos , Potenciais de Ação/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de Jervell-Lange Nielsen/metabolismo , Síndrome de Jervell-Lange Nielsen/fisiopatologia , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Sulfonamidas/farmacologia
16.
Stem Cell Res ; 76: 103336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341987

RESUMO

Gain-of-function mutations in the KCNQ1 gene can cause atrial fibrillation. In this study, we generated an induced stem cell line (GRCHJUi001) from one member of an atrial fibrillation family line, whom had heterozygous mutation in the KCNQ1 gene c.625 T > C (p.Ser209Pro), and the cell line showed maintenance of stem cells characterized by morphology, normal karyotype, and pluripotency.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Linhagem Celular
17.
Epigenetics ; 19(1): 2294516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38126131

RESUMO

Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.


Assuntos
Metilação de DNA , RNA Longo não Codificante , Gravidez , Feminino , Humanos , Animais , Ratos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Impressão Genômica , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Rim/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo
18.
J Gen Physiol ; 155(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37526928

RESUMO

The KCNQ1 channel is important for the repolarization phase of the cardiac action potential. Loss of function mutations in KCNQ1 can cause long QT syndrome (LQTS), which can lead to cardiac arrythmia and even sudden cardiac death. We have previously shown that polyunsaturated fatty acids (PUFAs) and PUFA analogs can activate the cardiac KCNQ1 channel, making them potential therapeutics for the treatment of LQTS. PUFAs bind to KCNQ1 at two different binding sites: one at the voltage sensor (Site I) and one at the pore (Site II). PUFA interaction at Site I shifts the voltage dependence of the channel to the left, while interaction at Site II increases maximal conductance. The PUFA analogs, linoleic-glycine and linoleic-tyrosine, are more effective than linoleic acid at Site I, but less effective at Site II. Using both simulations and experiments, we find that the larger head groups of linoleic-glycine and linoleic-tyrosine interact with more residues than the smaller linoleic acid at Site I. We propose that this will stabilize the negatively charged PUFA head group in a position to better interact electrostatically with the positively charges in the voltage sensor. In contrast, the larger head groups of linoleic-glycine and linoleic-tyrosine compared with linoleic acid prevent a close fit of these PUFA analogs in Site II, which is more confined. In addition, we identify several KCNQ1 residues as critical PUFA-analog binding residues, thereby providing molecular models of specific interactions between PUFA analogs and KCNQ1. These interactions will aid in future drug development based on PUFA-KCNQ1 channel interactions.


Assuntos
Síndrome do QT Longo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Coração , Ácidos Graxos Insaturados/metabolismo , Síndrome do QT Longo/genética , Mutação , Ácidos Linoleicos/farmacologia
19.
Nucleosides Nucleotides Nucleic Acids ; 42(12): 1019-1027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37367232

RESUMO

We compared the expression of six genes in stomach tissue samples between healthy men and women in different age groups to study sexually dimorphic gene expression. Real-Time RT-PCR was used to compare gene expression between men and women. Our results showed that the expression of KCNQ1 (p = 0.01) was significantly higher in non-menopausal women compared to post-menopausal women. In addition, the expression level of the ATP4A gene in men under 35 years was significantly higher than in men above 50 (p = 0.026). Sexually and age dimorphic gene expression in some genes throughout life may affect gastric function.


Assuntos
Mucosa Gástrica , Canal de Potássio KCNQ1 , Masculino , Humanos , Feminino , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Mucosa Gástrica/metabolismo , Estômago , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo
20.
Elife ; 122023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37350568

RESUMO

Voltage-gated potassium (KV) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. KV channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias. Interventions intended to restore KV channel function have strong therapeutic potential in such disorders. Polyunsaturated fatty acids (PUFAs) and PUFA analogues comprise a class of KV channel activators with potential applications in the treatment of arrhythmogenic disorders such as long QT syndrome (LQTS). LQTS is caused by a loss-of-function of the cardiac IKs channel - a tetrameric potassium channel complex formed by KV7.1 and associated KCNE1 protein subunits. We have discovered a set of aromatic PUFA analogues that produce robust activation of the cardiac IKs channel, and a unique feature of these PUFA analogues is an aromatic, tyrosine head group. We determine the mechanisms through which tyrosine PUFA analogues exert strong activating effects on the IKs channel by generating modified aromatic head groups designed to probe cation-pi interactions, hydrogen bonding, and ionic interactions. We found that tyrosine PUFA analogues do not activate the IKs channel through cation-pi interactions, but instead do so through a combination of hydrogen bonding and ionic interactions.


Assuntos
Síndrome do QT Longo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Ácidos Graxos Insaturados/metabolismo , Síndrome do QT Longo/genética , Arritmias Cardíacas , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA