Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
JCI Insight ; 9(12)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771640

RESUMO

Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, associate with neurodevelopmental disorders, including developmental and epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by use of a neonatally expressed, alternatively spliced isoform of NaV1.6 (NaV1.6N) and engineered mutations rendering the channel tetrodotoxin (TTX) resistant. We investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in 2 developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput, and developed a neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents with small, but significant, differences in voltage dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared with the corresponding WT channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.


Assuntos
Processamento Alternativo , Canal de Sódio Disparado por Voltagem NAV1.6 , Isoformas de Proteínas , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Humanos , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Tetrodotoxina/farmacologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Mutação , Linhagem Celular , Animais
2.
JACC Clin Electrophysiol ; 10(5): 829-842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430092

RESUMO

BACKGROUND: Sudden unexpected death in epilepsy (SUDEP) is a fatal complication experienced by otherwise healthy epilepsy patients. Dravet syndrome (DS) is an inherited epileptic disorder resulting from loss of function of the voltage-gated sodium channel, NaV 1.1, and is associated with particularly high SUDEP risk. Evidence is mounting that NaVs abundant in the brain also occur in the heart, suggesting that the very molecular mechanisms underlying epilepsy could also precipitate cardiac arrhythmias and sudden death. Despite marked reduction of NaV 1.1 functional expression in DS, pathogenic late sodium current (INa,L) is paradoxically increased in DS hearts. However, the mechanisms by which DS directly impacts the heart to promote sudden death remain unclear. OBJECTIVES: In this study, the authors sought to provide evidence implicating remodeling of Na+ - and Ca2+ -handling machinery, including NaV 1.6 and Na+/Ca2+exchanger (NCX) within transverse (T)-tubules in DS-associated arrhythmias. METHODS: The authors undertook scanning ion conductance microscopy (SICM)-guided patch clamp, super-resolution microscopy, confocal Ca2+ imaging, and in vivo electrocardiography studies in Scn1a haploinsufficient murine model of DS. RESULTS: DS promotes INa,L in T-tubular nanodomains, but not in other subcellular regions. Consistent with increased NaV activity in these regions, super-resolution microscopy revealed increased NaV 1.6 density near Ca2+release channels, the ryanodine receptors (RyR2) and NCX in DS relative to WT hearts. The resulting INa,L in these regions promoted aberrant Ca2+ release, leading to ventricular arrhythmias in vivo. Cardiac-specific deletion of NaV 1.6 protects adult DS mice from increased T-tubular late NaV activity and the resulting arrhythmias, as well as sudden death. CONCLUSIONS: These data demonstrate that NaV 1.6 undergoes remodeling within T-tubules of adult DS hearts serving as a substrate for Ca2+ -mediated cardiac arrhythmias and may be a druggable target for the prevention of SUDEP in adult DS subjects.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.6 , Animais , Feminino , Humanos , Masculino , Camundongos , Arritmias Cardíacas/genética , Cálcio/metabolismo , Epilepsias Mioclônicas/genética , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Morte Súbita Inesperada na Epilepsia
3.
Genes Brain Behav ; 23(2): e12879, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38444174

RESUMO

Absence seizures are characterized by brief lapses in awareness accompanied by a hallmark spike-and-wave discharge (SWD) electroencephalographic pattern and are common to genetic generalized epilepsies (GGEs). While numerous genes have been associated with increased risk, including some Mendelian forms with a single causal allele, most cases of GGE are idiopathic and there are many unknown genetic modifiers of GGE influencing risk and severity. In a previous meta-mapping study, crosses between transgenic C57BL/6 and C3HeB/FeJ strains, each carrying one of three SWD-causing mutations (Gabrg2tm1Spet(R43Q) , Scn8a8j or Gria4spkw1 ), demonstrated an antagonistic epistatic interaction between loci on mouse chromosomes 2 and 7 influencing SWD. These results implicate universal modifiers in the B6 background that mitigate SWD severity through a common pathway, independent of the causal mutation. In this study, we prioritized candidate modifiers in these interacting loci. Our approach integrated human genome-wide association results with gene interaction networks and mouse brain gene expression to prioritize candidate genes and pathways driving variation in SWD outcomes. We considered candidate genes that are functionally associated with human GGE risk genes and genes with evidence for coding or non-coding allele effects between the B6 and C3H backgrounds. Our analyses output a summary ranking of gene pairs, one gene from each locus, as candidates for explaining the epistatic interaction. Our top-ranking gene pairs implicate microtubule function, cytoskeletal stability and cell cycle regulation as novel hypotheses about the source of SWD variation across strain backgrounds, which could clarify underlying mechanisms driving differences in GGE severity in humans.


Assuntos
Estudo de Associação Genômica Ampla , Alta do Paciente , Humanos , Animais , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Alelos , Canal de Sódio Disparado por Voltagem NAV1.6
4.
Epileptic Disord ; 26(2): 219-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436508

RESUMO

Pathogenic variants in SCN8A are associated with a broad phenotypic spectrum, including Self-Limiting Familial Infantile Epilepsy (SeLFIE), characterized by infancy-onset age-related seizures with normal development and cognition. Movement disorders, particularly paroxysmal kinesigenic dyskinesia typically arising after puberty, may represent another core symptom. We present the case of a 1-year-old girl with a familial disposition to self-limiting focal seizures from the maternal side and early-onset orofacial movement disorders associated with SCN8A-SeLFIE. Brain MRI was normal. Genetic testing revealed a maternally inherited SCN8A variant [c.4447G > A; p.(Glu1483Lys)]. After the introduction of valproic acid, she promptly achieved seizure control as well as complete remission of strabismus and a significant decrease in episodes of tongue deviation. Family history, genetic findings, and epilepsy phenotype are consistent with SCN8A-SeLFIE. Movement disorders are an important part of the SCN8A phenotypic spectrum, and this case highlights the novel early-onset orofacial movement disorders associated with this condition. The episodes of tongue deviation and protrusion suggest focal oromandibular (lingual) dystonia. Additionally, while infantile strabismus or esophoria is a common finding in healthy individuals, our case raises the possibility of an ictal origin of the strabismus. This study underscores the importance of recognizing and addressing movement disorders in SCN8A-SeLFIE patients, particularly the rare early-onset orofacial manifestations. It adds to the growing body of knowledge regarding the diverse clinical presentations of SCN8A-associated disorders and suggests potential avenues for clinical management and further research.


Assuntos
Distonia , Distúrbios Distônicos , Epilepsia , Síndromes Epilépticas , Transtornos dos Movimentos , Estrabismo , Feminino , Humanos , Lactente , Distonia/genética , Distúrbios Distônicos/genética , Epilepsia/diagnóstico , Síndromes Epilépticas/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Convulsões/genética , Estrabismo/genética
5.
PLoS Comput Biol ; 20(3): e1011846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489374

RESUMO

In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.


Assuntos
Segmento Inicial do Axônio , Canais de Sódio Disparados por Voltagem , Segmento Inicial do Axônio/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Axônios/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia
6.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466077

RESUMO

Distinguishing clinical subgroups for patients suffering with diseases characterized by a wide phenotypic spectrum is essential for developing precision therapies. Patients with gain-of-function (GOF) variants in the SCN8A gene exhibit substantial clinical heterogeneity, viewed historically as a linear spectrum ranging from mild to severe. To test for hidden clinical subgroups, we applied two machine-learning algorithms to analyze a dataset of patient features collected by the International SCN8A Patient Registry. We used two research methodologies: a supervised approach that incorporated feature severity cutoffs based on clinical conventions, and an unsupervised approach employing an entirely data-driven strategy. Both approaches found statistical support for three distinct subgroups and were validated by correlation analyses using external variables. However, distinguishing features of the three subgroups within each approach were not concordant, suggesting a more complex phenotypic landscape. The unsupervised approach yielded strong support for a model involving three partially ordered subgroups rather than a linear spectrum. Application of these machine-learning approaches may lead to improved prognosis and clinical management of individuals with SCN8A GOF variants and provide insights into the underlying mechanisms of the disease.


Assuntos
Aprendizado de Máquina , Canal de Sódio Disparado por Voltagem NAV1.6 , Humanos , Prognóstico , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Fenótipo , Mutação com Ganho de Função , Algoritmos , Masculino , Feminino , Adulto , Predisposição Genética para Doença
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519006

RESUMO

Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.


Assuntos
Potenciais de Ação , Deficiências do Desenvolvimento , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Neurônios , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Animais , Masculino , Feminino , Células HEK293 , Mutação
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 174-180, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311555

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of five children with epilepsies due to variants of SCN8A gene. METHODS: Clinical data of five children (four males and one female) admitted to Linyi People's Hospital due to hereditary epilepsies between August 2015 and August 2022 were collected. Whole exome sequencing was carried out for these children, and candidate variants were verified by Sanger sequencing. RESULTS: All of the five children were found to harbor variants of the SCN8A gene. Case 1, who had benign familial infantile epilepsy, inherited a known pathogenic c.4840A>G variant from his father with similar symptoms. Cases 2 to 4 had presented with intermediate epilepsy. Among these, case 2 has harbored a de novo c.3967G>A variant which was rated as pathogenic (PS1+PS2+PM1+PM2_Supporting+PP3) based on the guidelines from the American College of Medical Genetics and Genomics. Cases 3 and 4 were found to respectively harbor a de novo c.415A>T and a c.4697C>T variant, which were both rated as likely pathogenic (PS2+PM1+PM2_Supporting+PP3). Case 5, who had early-onset infantile epileptic encephalopathy transformed into Lennox Gastaut-like syndrome, has harbored a de novo c.5615G>A variant, which was known to be pathogenic. The children had their age of onset ranging from 2 to 14 months, and all had focal seizures and generalized tonic clonic seizures. Four children (cases 1, 2, 3 and 5) had cluster seizures, four (cases 1 to 4) had become seizure-free after single or dual treatment and showed normal growth and development, whilst case 5 was drug-resistant and showed severe developmental retardation. CONCLUSION: The five children had new features such as cluster seizures, occasional benign seizures in adulthood, and intermediate epilepsy which are prone to relapse after discontinuation of medication, which may be attributed to the pathogenic variants of the SCN8A gene.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Espasmos Infantis , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Epilepsia/diagnóstico , Genômica , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Convulsões/genética , Espasmos Infantis/genética , Espasmos Infantis/diagnóstico
9.
Clin Sci (Lond) ; 138(4): 205-223, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348743

RESUMO

BACKGROUND: Epilepsy is a common neurological disease; however, few if any of the currently marketed antiseizure medications prevent or cure epilepsy. Discovery of pathological processes in the early stages of epileptogenesis has been challenging given the common use of preclinical models that induce seizures in physiologically normal animals. Moreover, despite known sex dimorphism in neurological diseases, females are rarely included in preclinical epilepsy models. METHODS: We characterized sex differences in mice carrying a pathogenic knockin variant (p.N1768D) in the Scn8a gene that causes spontaneous tonic-clonic seizures (TCs) at ∼3 months of age and found that heterozygous females are more resilient than males in mortality and morbidity. To investigate the cellular mechanisms that underlie female resilience, we utilized blood-brain barrier (BBB) and hippocampal transcriptomic analyses in heterozygous mice before seizure onset (pre-TC) and in mice that experienced ∼20 TCs (post-TC). RESULTS: In the pre-TC latent phase, both sexes exhibited leaky BBB; however, patterns of gene expression were sexually dimorphic. Females exhibited enhanced oxidative phosphorylation and protein biogenesis, while males activated gliosis and CREB signaling. After seizure onset (chronic phase), females exhibited a metabolic switch to lipid metabolism, while males exhibited increased gliosis and BBB dysfunction and a strong activation of neuroinflammatory pathways. CONCLUSION: The results underscore the central role of oxidative stress and BBB permeability in the early stages of epileptogenesis, as well as sex dimorphism in response to increasing neuronal hyperexcitability. Our results also highlight the need to include both sexes in preclinical studies to effectively translate results of drug efficacy studies.


Assuntos
Epilepsia , Caracteres Sexuais , Humanos , Criança , Feminino , Camundongos , Masculino , Animais , Gliose , Mutação , Epilepsia/genética , Epilepsia/tratamento farmacológico , Convulsões/genética , Convulsões/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo
10.
BMC Neurol ; 24(1): 31, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233770

RESUMO

BACKGROUND: SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A. Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia. METHODS: In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A pathogenic variants identified via exome sequencing. RESULTS: Clinical findings ranged from normal development with well-controlled epilepsy to significant developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4. CONCLUSIONS: This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides electrophysiological results on a novel loss-of-function SCN8A variant.


Assuntos
Disfunção Cognitiva , Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia/genética , Genótipo , Fenótipo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética
11.
Elife ; 122024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289338

RESUMO

Quinidine has been used as an anticonvulsant to treat patients with KCNT1-related epilepsy by targeting gain-of-function KCNT1 pathogenic mutant variants. However, the detailed mechanism underlying quinidine's blockade against KCNT1 (Slack) remains elusive. Here, we report a functional and physical coupling of the voltage-gated sodium channel NaV1.6 and Slack. NaV1.6 binds to and highly sensitizes Slack to quinidine blockade. Homozygous knockout of NaV1.6 reduces the sensitivity of native sodium-activated potassium currents to quinidine blockade. NaV1.6-mediated sensitization requires the involvement of NaV1.6's N- and C-termini binding to Slack's C-terminus and is enhanced by transient sodium influx through NaV1.6. Moreover, disrupting the Slack-NaV1.6 interaction by viral expression of Slack's C-terminus can protect against SlackG269S-induced seizures in mice. These insights about a Slack-NaV1.6 complex challenge the traditional view of 'Slack as an isolated target' for anti-epileptic drug discovery efforts and can guide the development of innovative therapeutic strategies for KCNT1-related epilepsy.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Quinidina , Animais , Humanos , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Homozigoto , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Proteínas do Tecido Nervoso/genética , Quinidina/farmacologia , Sódio
12.
J Biochem Mol Toxicol ; 38(1): e23546, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942847

RESUMO

Gastric cancer (GC) is a major contributor to cancer-related deaths and is characterized by high heterogeneity in epidemiology and histopathology worldwide. Increasing evidence indicates that circular RNAs (circRNAs) play multifaceted roles in cellular processes in human cancers. Here, we demonstrated that circFNTA high expression increases the proliferation, metastasis, and epithelial-mesenchymal transition process and tumorigenicity of GC cells. First, we found that circFNTA was upregulated in GC cells and tissues, and the high circFNTA levels were positively associated with the poor prognosis in GC patients. Using luciferase reporter and RNA-pull down assays, we elucidated that circFNTA sponged two microRNAs, miR-604 and miR-647. In addition, the proliferation and metastatic ability of GC cell reduction caused by silencing circFNTA was hindered by inhibitors of miR-604 and miR-647. Moreover, SCN8A was predicted by miRDB as a common target gene of miR-604 and miR-647, which was then verified by the luciferase reporter assay. Knockdown of circFNTA causes messenger RNA and protein levels in SCN8A to be downregulated in GC cells. However, this effect was overturned by cotransfection miR-604 and miR-647. Also, we identified that SCN8A was downregulated in GC tissues, which was positively correlated with circFNTA expression. In rescue experiments, the attenuated cell proliferation and metastatic ability caused by circFNTA knockdown was reversed by miR-604 and miR-647 inhibitors and SCN8A overexpression. Collectively, our findings suggest an oncogenic role of circFNTA in GC progression and elucidate that circFNTA exerts its function by modulating the miR-604/miR-647/SCN8A axis.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Luciferases/genética , Luciferases/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo
13.
Ann Neurol ; 95(4): 754-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38113311

RESUMO

OBJECTIVE: De novo mutations of the voltage-gated sodium channel gene SCN8A cause developmental and epileptic encephalopathy (DEE). Most pathogenic variants result in gain-of-function changes in activity of the sodium channel Nav1.6, poorly controlled seizures, and significant comorbidities. In previous work, an antisense oligonucleotide (ASO) reduced Scn8a transcripts and increased lifespan after neonatal administration to a mouse model. Here, we tested long-term ASO treatment initiated after seizure onset, as required for clinical application. METHODS: ASO treatment was initiated after observation of a convulsive seizure and repeated at 4 to 6 week intervals for 1 year. We also tested the long-term efficacy of an AAV10-short hairpin RNA (shRNA) virus administered on P1. RESULTS: Repeated treatment with the Scn8a ASO initiated after seizure onset provided long-term survival and reduced seizure frequency during a 12 month observation period. A single treatment with viral shRNA was also protective during 12 months of observation. INTERPRETATION: Downregulation of Scn8a expression that is initiated after the onset of seizures is effective for long-term treatment in a model of SCN8A-DEE. Repeated ASO administration or a single dose of viral shRNA prevented seizures and extended survival through 12 months of observation. ANN NEUROL 2024;95:754-759.


Assuntos
Epilepsia , Animais , Camundongos , Modelos Animais de Doenças , Regulação para Baixo/genética , Epilepsia/terapia , Epilepsia/tratamento farmacológico , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Convulsões/genética , Canais de Sódio/genética
14.
J Neuroinflammation ; 20(1): 306, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115011

RESUMO

BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.


Assuntos
Comportamento de Doença , Malária Cerebral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Transdução de Sinais
15.
Cell Rep ; 42(8): 113000, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590134

RESUMO

Inspiration is the inexorable active phase of breathing. The brainstem pre-Bötzinger complex (preBötC) gives rise to inspiratory neural rhythm, but its underlying cellular and ionic bases remain unclear. The long-standing "pacemaker hypothesis" posits that the persistent Na+ current (INaP) that gives rise to bursting-pacemaker properties in preBötC interneurons is essential for rhythmogenesis. We tested the pacemaker hypothesis by conditionally knocking out and knocking down the Scn8a (Nav1.6 [voltage-gated sodium channel 1.6]) gene in core rhythmogenic preBötC neurons. Deleting Scn8a substantially decreases the INaP and abolishes bursting-pacemaker activity, which slows inspiratory rhythm in vitro and negatively impacts the postnatal development of ventilation. Diminishing Scn8a via genetic interference has no impact on breathing in adult mice. We argue that the Scn8a-mediated INaP is not obligatory but that it influences the development and rhythmic function of the preBötC. The ubiquity of the INaP in respiratory brainstem interneurons could underlie breathing-related behaviors such as neonatal phonation or rhythmogenesis in different physiological conditions.


Assuntos
Tronco Encefálico , Respiração , Animais , Camundongos , Interneurônios , Neurônios , Taxa Respiratória , Canal de Sódio Disparado por Voltagem NAV1.6
16.
Epilepsia ; 64(12): 3365-3376, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585367

RESUMO

OBJECTIVE: Genetic variants in the SCN8A gene underlie a wide spectrum of neurodevelopmental phenotypes including several distinct seizure types and a host of comorbidities. One of the major challenges facing clinicians and researchers alike is to identify genotype-phenotype (G-P) correlations that may improve prognosis, guide treatment decisions, and lead to precision medicine approaches. METHODS: We investigated G-P correlations among 270 participants harboring gain-of-function (GOF) variants enrolled in the International SCN8A Registry, a patient-driven online database. We performed correlation analyses stratifying the cohort by clinical phenotypes to identify diagnostic features that differ among patients with varying levels of clinical severity, and that differ among patients with distinct GOF variants. RESULTS: Our analyses confirm positive correlations between age at seizure onset and developmental skills acquisition (developmental quotient), rate of seizure freedom, and percentage of cohort with developmental delays, and identify negative correlations with number of current and weaned antiseizure medications. This set of features is more detrimentally affected in individuals with a priori expectations of more severe clinical phenotypes. Our analyses also reveal a significant correlation between a severity index combining clinical features of individuals with a particular highly recurrent variant and an independent electrophysiological score assigned to each variant based on in vitro testing. SIGNIFICANCE: This is one of the first studies to identify statistically significant G-P correlations for individual SCN8A variants with GOF properties. The results suggest that individual GOF variants (1) are predictive of clinical severity for individuals carrying those variants and (2) may underlie distinct clinical phenotypes of SCN8A disease, thus helping to explain the wide SCN8A-related epilepsy disease spectrum. These results also suggest that certain features present at initial diagnosis are predictive of clinical severity, and with more informed treatment plans, may serve to improve prognosis for patients with SCN8A GOF variants.


Assuntos
Epilepsia , Mutação com Ganho de Função , Humanos , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/tratamento farmacológico , Convulsões/genética , Convulsões/tratamento farmacológico , Fenótipo , Canal de Sódio Disparado por Voltagem NAV1.6/genética
17.
Glia ; 71(12): 2850-2865, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572007

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease in elderly people, which is characterized by motor disabilities in PD patients. Nav1.6 is the most abundant subtype of voltage-gated sodium channels (VGSCs) in the brain of adult mammals and rodents. Here we investigated the role of Nav1.6 in the external globus pallidus (GP) involved in the pathogenesis of motor deficits in unilateral 6-OHDA(6-hydroxydopamine)lesioned rats. The results show that Nav1.6 is dramatically increased in reactive astrocytes of the ipsilateral GP in the middle stage, but not different from the control rats in the later stage of the pathological process in 6-OHDA lesioned rats. Furthermore, the down-regulation of Nav1.6 expression in the ipsilateral GP can significantly improve motor deficits in 6-OHDA lesioned rats in the middle stage of the pathological process. The electrophysiological experiments show that the down-regulation of Nav1.6 expression in the ipsilateral GP significantly decreases the abnormal high synchronization between the ipsilateral M1 (the primary motor cortex) and GP in 6-OHDA lesioned rats. Ca2+ imaging reveals that the down-regulation of Nav1.6 expression reduces the intracellular concentration of Ca2+ ([Ca2+ ]i) in primary cultured astrocytes. These findings suggest that the increased Nav1.6 expression of reactive astrocytes in the GP play an important role in the pathogenesis of motor dysfunction in the middle stage in 6-OHDA lesioned rats, which may participate in astrocyte-neuron communication by regulating [Ca2+ ]i of astrocytes, thereby contributing to the formation of abnormal electrical signals of the basal ganglia (BG) in 6-OHDA lesioned rats.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6 , Doença de Parkinson , Animais , Ratos , Astrócitos/metabolismo , Modelos Animais de Doenças , Globo Pálido/metabolismo , Mamíferos , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley
18.
J Registry Manag ; 50(1): 4-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577282

RESUMO

Genetic variants in the SCN8A gene underlie a wide spectrum of neurodevelopmental phenotypes that range from severe epileptic encephalopathy to benign familial infantile epilepsy to neurodevelopmental delays with or without seizures. A host of additional comorbidities also contribute to the phenotypic spectrum. As a result of the recent identification of the genetic etiology and the length of time it often takes to diagnose patients, little data are available on the natural history of these conditions. The International SCN8A Patient Registry was developed in 2015 to fill gaps in understanding the spectrum of the disease and its natural history, as well as the lived experiences of individuals with SCN8A syndrome. Another goal of the registry is to collect longitudinal data from participants on a regular basis. In this article, we describe the construction and structure of the International SCN8A Patient Registry, present the type of information available, and highlight particular analyses that demonstrate how registry data can provide insights into the clinical management of SCN8A syndrome.


Assuntos
Epilepsia Generalizada , Epilepsia , Sistema de Registros , Humanos , Epilepsia/epidemiologia , Epilepsia/genética , Epilepsia/terapia , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Fenótipo , Convulsões/genética , Síndrome
19.
J Int Med Res ; 51(7): 3000605231187931, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37498161

RESUMO

Variants in SCN8A are associated with several diseases, including developmental and epileptic encephalopathy, intermediate epilepsy or mild-to-moderate developmental and epileptic encephalopathy, self-limited familial infantile epilepsy, neurodevelopmental delays with generalized epilepsy, neurodevelopmental disorder without epilepsy, hypotonia, and movement disorders. Herein, we report an 8-year-old Moroccan boy with intermediate epilepsy of unknown origin, intellectual disability, autism spectrum disorder, and hyperactivity. The patient presented a normal 46, XY karyotype and a normal comparative genomic hybridization profile. Whole-exome sequencing was performed, and heterozygous variants were identified in KCNK4 and SCN8A. The SCN8A variant [c.4499C > T (p.Pro1500Leu)] was also detected in the healthy mother and was classified as a variant of uncertain clinical significance. This variant occurs in a highly conserved domain, which may affect the function of the encoded protein. More studies are needed to confirm the pathogenicity of this novel variant to establish the effective care, management, and genetic counselling of affected individuals.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Transtornos dos Movimentos , Masculino , Criança , Humanos , Transtorno do Espectro Autista/complicações , Hibridização Genômica Comparativa , Epilepsia/complicações , Deficiência Intelectual/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética
20.
Sci Adv ; 9(23): eadf9524, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285436

RESUMO

Perception, thoughts, and actions are encoded by the coordinated activity of large neuronal populations spread over large areas. However, existing electrophysiological devices are limited by their scalability in capturing this cortex-wide activity. Here, we developed an electrode connector based on an ultra-conformable thin-film electrode array that self-assembles onto silicon microelectrode arrays enabling multithousand channel counts at a millimeter scale. The interconnects are formed using microfabricated electrode pads suspended by thin support arms, termed Flex2Chip. Capillary-assisted assembly drives the pads to deform toward the chip surface, and van der Waals forces maintain this deformation, establishing Ohmic contact. Flex2Chip arrays successfully measured extracellular action potentials ex vivo and resolved micrometer scale seizure propagation trajectories in epileptic mice. We find that seizure dynamics in absence epilepsy in the Scn8a+/- model do not have constant propagation trajectories.


Assuntos
Córtex Cerebral , Epilepsia , Camundongos , Animais , Microeletrodos , Fenômenos Eletrofisiológicos , Convulsões , Canal de Sódio Disparado por Voltagem NAV1.6
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA