Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
1.
Methods Enzymol ; 696: 287-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658084

RESUMO

Acidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp. strain A6 contains sequences for several reductive dehalogenases, including a gene for a previously unreported reductive dehalogenase, rdhA. Incubations of Acidimicrobium sp. strain A6 in the presence of perfluorinated substances, such as PFOA (perfluorooctanoic acid, C8HF15O2) or PFOS (perfluorooctane sulfonic acid, C8HF17O3S), have shown that fluoride, as well as shorter carbon chain PFAAs (perfluoroalkyl acids), are being produced, and the rdhA gene is expressed during these incubations. Results from initial gene knockout experiments indicate that the enzyme associated with the rdhA gene plays a key role in the PFAS defluorination by Acidimicrobium sp. strain A6. Experiments focusing on the defluorination kinetics by Acidimicrobium sp. strain A6 show that the defluorination kinetics are proportional to the amount of ammonium oxidized. To explore potential applications for PFAS bioremediation, PFAS-contaminated biosolids were augmented with Fe(III) and Acidimicrobium sp. strain A6, resulting in PFAS degradation. Since the high demand of Fe(III) makes growing Acidimicrobium sp. strain A6 in conventional rectors challenging, and since Acidimicrobium sp. strain A6 was shown to be electrogenic, it was grown in the absence of Fe(III) in microbial electrolysis cells, where it did oxidize ammonium and degraded PFAS.


Assuntos
Biodegradação Ambiental , Fluorocarbonos , Fluorocarbonos/metabolismo , Fluorocarbonos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Caprilatos/metabolismo , Halogenação , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/química , Oxirredução
2.
Toxicol In Vitro ; 97: 105810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513818

RESUMO

Grown evidence has shown that the liver and reproductive organs were the main target organs of perfluorooctanoic acid (PFOA). Herein, we studied a toxic mechanism of PFOA using HeLa Chang liver epithelial cells. When incubated with PFOA for 24 h or 48 h, cell proliferation was inhibited in a concentration- and time-dependent fashion, but interestingly, the feature of dead cells was not notable. Mitochondrial volume was increased with concentration and time, whereas the mitochondrial membrane potential and produced ATP amounts were significantly reduced. Autophagosome-like vacuoles and contraction of the mitochondrial inner membrane were observed in PFOA-treated cells. The expression of acetyl CoA carboxylase (ACC) and p-ACC proteins rapidly decreased, and that of mitochondrial dynamics-related proteins increased. The expression of solute carrier family 7 genes, ChaC glutathione-specific gamma-glutamylcyclotransferase 1, and 5S ribosomal RNA gene was up-regulated the most in cells exposed to PFOA for 24 h, and the KEGG pathway analysis revealed that PFOA the most affected metabolic pathways and olfactory transduction. More importantly, PPAR alpha, fatty acid binding protein 1, and CYP450 family 1 subfamily A member 1 were identified as the target proteins for binding between PFOA and cells. Taken together, we suggest that disruption of mitochondrial integrity and function may contribute closely to PFOA-induced cell proliferation inhibition.


Assuntos
Caprilatos , Fluorocarbonos , Caprilatos/metabolismo , Fígado/metabolismo , Hepatócitos , Fluorocarbonos/metabolismo , Proliferação de Células
3.
J Hazard Mater ; 470: 134143, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554507

RESUMO

To address time-consuming and efficiency-limited challenges in conventional zero-valent iron (ZVI, Fe0) reduction or biotransformation for perfluorooctanoic acid (PFOA) treatment, two calcium alginate-embedded amendments (biochar-immobilized PFOA-degrading bacteria (CB) and ZVI (CZ)) were developed to construct microbe-Fe0 high-rate interaction systems. Interaction mechanisms and key metabolic pathways were systematically explored using metagenomics and a multi-process coupling model for PFOA under microbe-Fe0 interaction. Compared to Fe0 (0.0076 day-1) or microbe (0.0172 day-1) systems, the PFOA removal rate (0.0426 day-1) increased by 1.5 to 4.6 folds in the batch microbe-Fe0 interaction system. Moreover, Pseudomonas accelerated the transformation of Fe0 into Fe3+, which profoundly impacted PFOA transport and fate. Model results demonstrated microbe-Fe0 interaction improved retardation effect for PFOA in columns, with decreased dispersivity a (0.48 to 0.20 cm), increased reaction rate λ (0.15 to 0.22 h-1), distribution coefficient Kd (0.22 to 0.46 cm3∙g-1), and fraction f´(52 % to 60 %) of first-order kinetic sorption of PFOA in microbe-Fe0 interaction column system. Moreover, intermediates analysis showed that microbe-Fe0 interaction diversified PFOA reaction pathways. Three key metabolic pathways (ko00362, ko00626, ko00361), eight functional genes, and corresponding enzymes for PFOA degradation were identified. These findings provide insights into microbe-Fe0 "neural network-type" interaction by unveiling biotransformation and mineral transformation mechanisms for efficient PFOA treatment.


Assuntos
Biodegradação Ambiental , Caprilatos , Fluorocarbonos , Ferro , Fluorocarbonos/metabolismo , Fluorocarbonos/química , Caprilatos/metabolismo , Caprilatos/química , Ferro/metabolismo , Ferro/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Biotransformação , Redes Neurais de Computação , Bactérias/metabolismo , Bactérias/genética , Pseudomonas/metabolismo , Pseudomonas/genética
4.
Environ Toxicol Chem ; 43(5): 965-975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501493

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative, and toxic synthetic chemicals of concern, which have been detected in nearly all environmental compartments. The present study provides a data analysis on PFAS concentrations in the Dutch inland and coastal national waters and fish sampled from 2008 to 2022 and 2015 to 2022, respectively. Although the fish database is relatively small, the water database is unique because of its temporal dimension. It appears that PFAS are omnipresent in Dutch water and fish, with relatively small spatial differences in absolute and relative concentrations (fingerprints) and few obvious temporal trends. Only perfluorooctanoic acid and perfluorooctanesulfonic acid (PFOS) aqueous concentrations in the rivers Rhine and Scheldt have substantially decreased since 2012. Still, PFOS concentrations exceed the European water quality standards at all and fish standards at many locations. Masses of PFAS entering the country and the North Sea are roughly 3.5 tonnes/year. Generally, the data suggest that most PFAS enter the Dutch aquatic environment predominantly through diffuse sources, yet several major point sources of specific PFAS were identified using fingerprints and monthly concentration profiles as identification tools. Finally, combining concentrations in fish and water, 265 bioaccumulation factors were derived, showing no statistically significant differences between freshwater and marine fish. Overall, the analysis provides new insights into PFAS bioaccumulation and spatiotemporal trends, mass discharges, and sources in The Netherlands. Environ Toxicol Chem 2024;43:965-975. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Monitoramento Ambiental , Peixes , Fluorocarbonos , Poluentes Químicos da Água , Países Baixos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Fluorocarbonos/metabolismo , Fluorocarbonos/análise , Peixes/metabolismo , Animais , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Bioacumulação , Rios/química , Caprilatos/metabolismo
5.
Environ Sci Process Impacts ; 26(4): 700-709, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38376352

RESUMO

Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant. Exposure to PFOA was observed to have a correlation with the expression levels of phospholipids. However, there are currently no studies that directly visualize the effects of PFOA on phospholipids. To this end, matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-IMS) was used to visualize changes in phospholipids in the different tissues of zebrafish following exposure to PFOA. This study found that the major perturbed phospholipids were phosphatidylcholine (PC), diacylglycerol (DG), phosphatidic acid (PA), phosphatidylglycerol (PG), sphingomyelin (SM), and triacylglycerol (TG). These perturbed phospholipids caused by PFOA were reversible in some tissues (liver, gill, and brain) and irreversible in others (such as the highly exposed intestine). Moreover, the spatial distribution of perturbed phospholipids was mainly located around the edge or center of the tissues, implying that these tissue regions need special attention. This study provides novel insight into the biological toxicity and toxicity mechanisms induced by emerging environmental pollutants.


Assuntos
Caprilatos , Fluorocarbonos , Fosfolipídeos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fluorocarbonos/metabolismo , Fosfolipídeos/metabolismo , Caprilatos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Microb Cell Fact ; 23(1): 71, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419072

RESUMO

BACKGROUND: The improvement of yeast tolerance to acetic, butyric, and octanoic acids is an important step for the implementation of economically and technologically sustainable bioprocesses for the bioconversion of renewable biomass resources and wastes. To guide genome engineering of promising yeast cell factories toward highly robust superior strains, it is instrumental to identify molecular targets and understand the mechanisms underlying tolerance to those monocarboxylic fatty acids. A chemogenomic analysis was performed, complemented with physiological studies, to unveil genetic tolerance determinants in the model yeast and cell factory Saccharomyces cerevisiae exposed to equivalent moderate inhibitory concentrations of acetic, butyric, or octanoic acids. RESULTS: Results indicate the existence of multiple shared genetic determinants and pathways underlying tolerance to these short- and medium-chain fatty acids, such as vacuolar acidification, intracellular trafficking, autophagy, and protein synthesis. The number of tolerance genes identified increased with the linear chain length and the datasets for butyric and octanoic acids include the highest number of genes in common suggesting the existence of more similar toxicity and tolerance mechanisms. Results of this analysis, at the systems level, point to a more marked deleterious effect of an equivalent inhibitory concentration of the more lipophilic octanoic acid, followed by butyric acid, on the cell envelope and on cellular membranes function and lipid remodeling. The importance of mitochondrial genome maintenance and functional mitochondria to obtain ATP for energy-dependent detoxification processes also emerged from this chemogenomic analysis, especially for octanoic acid. CONCLUSIONS: This study provides new biological knowledge of interest to gain further mechanistic insights into toxicity and tolerance to linear-chain monocarboxylic acids of increasing liposolubility and reports the first lists of tolerance genes, at the genome scale, for butyric and octanoic acids. These genes and biological functions are potential targets for synthetic biology approaches applied to promising yeast cell factories, toward more robust superior strains, a highly desirable phenotype to increase the economic viability of bioprocesses based on mixtures of volatiles/medium-chain fatty acids derived from low-cost biodegradable substrates or lignocellulose hydrolysates.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacologia , Ácidos Graxos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nutr Neurosci ; 27(3): 252-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36800228

RESUMO

Computer-based analysis of motility was used as a measure of amyloid-ß (Aß) proteotoxicity in the transgenic strain GMC101, expressing human Aß1-42 in body wall muscle cells. Aß-aggregation was quantified to relate the effects of caprylic acid (CA) to the amount of the proteotoxic protein. Gene knockdowns were induced through RNA-interference (RNAi). Moreover, the estimation of adenosine triphosphate (ATP) levels, the mitochondrial membrane potential (MMP) and oxygen consumption served the evaluation of mitochondrial function. CA improved the motility of GMC101 nematodes and reduced Aß aggregation. Whereas RNAi for orthologues encoding key enzymes for α-lipoic acid and ketone bodies synthesis did not affect motility stimulation by CA, knockdown of orthologues involved in ß-oxidation of fatty acids diminished its effects. The efficient energy gain by application of CA was finally proven by the increase of ATP levels in association with increased oxygen consumption and MMP. In conclusion, CA attenuates Aß proteotoxicity by supplying energy via FAO. Since especially glucose oxidation is disturbed in Alzheimer´s disease, CA could potentially serve as an alternative energy fuel.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Doença de Alzheimer/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacologia , Proteínas de Caenorhabditis elegans/genética , Peptídeos beta-Amiloides/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Animais de Doenças
8.
Environ Pollut ; 338: 122698, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832777

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 µM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.


Assuntos
Caprilatos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Feminino , Humanos , Animais , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Caprilatos/toxicidade , Caprilatos/metabolismo , Células da Granulosa , Mitocôndrias
9.
Chemosphere ; 345: 140427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844703

RESUMO

Perfluorooctanoic acid (PFOA) is becoming a concern due to its persistence, bioaccumulation, and potential harmful effects on humans and the environment. In this study, the fungus Phanerochaete chrysosporium (P. chrysosporium) was used to remove the PFOA in liquid culture system. The results showed that the average activities of laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP) enzymes secreted by P. chrysosporium were 0.0003 U/mL, 0.013 U/mL, and 0.0059 U/mL, respectively, during the incubation times of 0-75 days. The pH of 3 and incubation time of 45-55 days were the optimum parameters for the three enzymes activities. The enzyme activities in P. chrysosporium incubation system were firstly inhibited by adding PFOA and then they were enhanced after 14 days. The maximum removal efficiency of PFOA (69.23%) was achieved after 35 days in P. chrysosporium incubation system with an initial PFOA concentration of 0.002 mM and no veratryl alcohol (VA). Adsorption was not a main pathway for PFOA removal and the PFOA adsorbed in fungi mycelial mat accounted for merely 1.91%. The possible products of PFOA contained partially fluorinated aldehyde, alcohol, and aromatic ring. These partially fluorinated compounds might result from PFOA degradation via a combination of cross-coupling and rearrangement of free radicals.


Assuntos
Fluorocarbonos , Phanerochaete , Humanos , Phanerochaete/metabolismo , Peroxidases/metabolismo , Caprilatos/metabolismo , Fluorocarbonos/metabolismo , Lacase/metabolismo
10.
Environ Pollut ; 335: 122261, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499971

RESUMO

Perfluorooctanoic acid (PFOA) is a type of toxic per- and poly-fluoroalkyl substance (PFAS) commonly found in groundwater due to its use in firefighting and industrial applications. The main purpose of this study was to investigate the influence of PFOA shock on the biological performance of a hydrogen-driven bioreactor for nitrate and arsenate removal. Four hydrogen-driven removal reactors (HdBRs) used for the simultaneous removal of nitrate and arsenal were operated with concentrations of either 0, 1, 5, and 10 mg/L of PFOA to induce shock on the systems and examine the corresponding bacterial response. Our results showed that PFOA shock inhibited and decreased the maximum hydrogen-driven arsenate removal rate. Principal Component Analysis (PCA) confirmed that this performance decrease occurred due to a bacterial strike triggered by PFOA shock. PFOA toxicity also led to protein secretion and sludge density decreases. Bacterial analyses showed shifts in the community population due to PFOA shock. The dominant bacteria phylum Proteobacteria became more abundant, from 41.24% originally to 48.29% after exposure to 10 mg/L of PFOA. Other phyla, such as Euryarchaeota and Bacteroidetes, were more tolerant to PFOA shock. Although some of the predominant species within the sludge of each HdBR exhibited a decline, other species with similar functions persisted and assumed the functional responsibilities previously held by the dominant species.


Assuntos
Fluorocarbonos , Nitratos , Nitratos/metabolismo , Esgotos , Arseniatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Caprilatos/metabolismo , Bactérias/metabolismo
11.
J Hazard Mater ; 457: 131718, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269561

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are an important class of emerging contaminants in the environment. Most studies on the impact of PFAS mixtures considered phenotypic endpoints, which may not adequately reflect the sublethal effects on organisms. To fill this knowledge gap, we investigated the subchronic impact of environmentally relevant concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)-as individual compounds and a mixture (PFOS+PFOA)-on earthworm (Eisenia fetida), using phenotypic and molecular endpoints. PFAS decreased the survival (12.2-16.3%), biomass (9.0-9.8%), and reproduction (15.6-19.8%) of E. fetida after 28 d of exposure. The bioaccumulation of PFOS after 28 d increased (from 2790.7 ng/g-dw to 5224.9 ng/g-dw) while that of PFOA decreased (from 780.2 ng/g-dw to 280.5 ng/g-dw) when E. fetida was exposed to the mixture compared to the individual compounds. These bioaccumulation trends were partly attributed to changes in the soil distribution coefficient (Kd) of PFOS and PFOA when present in the mixture. Eighty percent of the (p and FDR < 0.05) altered metabolites after 28 d were similarly perturbed by both PFOA and PFOS+PFOA. The pathways dysregulated are related to the metabolism of amino acids, energy, and sulfur. We showed that PFOA dominates the molecular-level impact of the binary PFAS mixture.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Oligoquetos , Animais , Oligoquetos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Caprilatos/toxicidade , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
12.
Front Immunol ; 14: 1162633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051230

RESUMO

Dietary high soybean oil (SO) levels might cause hepatic lipid deposition, induce oxidative stress and inflammatory response in aquatic animals, while octanoate (OCT) is beneficial to metabolism and health in mammals. However, the effect of OCT has been studied rarely in aquatic animals. In this study, a 10-week feeding trial was conducted to investigate the effect of supplemental OCT on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammatory response of large yellow croaker (Larimichthys crocea) fed with high SO levels diet. The negative control diet contained 7% fish oil (FO), while the positive control diet contained 7% SO. The other four experimental diets were supplemented with 0.7, 2.1, 6.3 and 18.9 g/kg sodium octanoate (OCT) based on the positive control diet. Results showed that OCT supplementation effectively reduced the hepatic crude lipid, triglyceride (TG), total cholesterol (TC) and non-esterified free fatty acids contents, and alleviated lipid accumulation caused by the SO diet. Meanwhile, OCT supplementation decreased the serum TG, TC, alanine transaminase, aspartate transaminase and low-density lipoprotein cholesterol levels, increased the serum high-density lipoprotein cholesterol level, improved the serum lipid profiles and alleviated hepatic injury. Furthermore, with the supplementation of OCT, the mRNA expression of genes related to lipogenesis (acc1, scd1, fas, srebp1, dgat1 and cebpα) and fatty acid (FA) transport (fabp3, fatp and cd36) were down-regulated, while the mRNA expression of genes related to lipolysis (atgl, hsl and lpl) and FA ß-oxidation (cpt1 and mcad) were up-regulated. Besides that, dietary OCT increased the total antioxidant capacity, activities of peroxidase, catalase and superoxide dismutase and the content of reduced glutathione, decreased the content of 8-hydroxy-deoxyguanosine and malondialdehyde and relieved hepatic oxidative stress. Supplementation of 0.7 and 2.1 g/kg OCT down-regulated the mRNA expression of genes related to pro-inflammatory cytokines (tnfα, il1ß and ifnγ), and suppressed hepatic inflammatory response. In conclusion, supplementation with 0.7-2.1 g/kg OCT could reduce hepatic lipid accumulation, relieve oxidative stress and regulate inflammatory response in large yellow croaker fed the diet with high SO levels, providing a new way to alleviate the hepatic fat deposition in aquatic animals.


Assuntos
Antioxidantes , Perciformes , Animais , Antioxidantes/farmacologia , Óleo de Soja , Caprilatos/farmacologia , Caprilatos/metabolismo , Metabolismo dos Lipídeos , Dieta , Inflamação , Perciformes/genética , RNA Mensageiro/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
13.
Chemosphere ; 328: 138584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019398

RESUMO

The toxic perfluorooctanoic acid (PFOA) is widely spread in terrestrial and aquatic habitats owing to its resistance to conventional degradation processes. Advanced techniques to degrade PFOA requires drastic conditions with high energy cost. In this study, we investigated PFOA biodegradation in a simple dual biocatalyzed microbial electrosynthesis system (MES). Different PFOA loadings (1, 5, and 10 ppm) were tested and a biodegradation of 91% was observed within 120 h. Propionate production improved and short-carbon-chain PFOA intermediates were detected, which confirmed PFOA biodegradation. However, the current density decreased, indicating an inhibitory effect of PFOA. High-throughput biofilm analysis revealed that PFOA regulated the microbial flora. Microbial community analysis showed enrichment of the more resilient and PFOA adaptive microbes, including Methanosarcina and Petrimonas. Our study promotes the potential use of dual biocatalyzed MES system as an environment-friendly and inexpensive method to remediate PFOA and provides a new direction for bioremediation research.


Assuntos
Fluorocarbonos , Biodegradação Ambiental , Fluorocarbonos/metabolismo , Caprilatos/metabolismo
14.
Sci Adv ; 9(13): eadg3881, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000872

RESUMO

Ongoing climate change is driving the search for renewable and carbon-neutral alternatives to fossil fuels. Photocatalytic conversion of fatty acids to hydrocarbons by fatty acid photodecarboxylase (FAP) represents a promising route to green fuels. However, the alleged low activity of FAP on C2 to C12 fatty acids seemed to preclude the use for synthesis of gasoline-range hydrocarbons. Here, we reveal that Chlorella variabilis FAP (CvFAP) can convert n-octanoic acid in vitro four times faster than n-hexadecanoic acid, its best substrate reported to date. In vivo, this translates into a CvFAP-based production rate over 10-fold higher for n-heptane than for n-pentadecane. Time-resolved spectroscopy and molecular modeling demonstrate that CvFAP's high catalytic activity on n-octanoic acid is, in part, due to an autocatalytic effect of its n-heptane product, which fills the rest of the binding pocket. These results represent an important step toward a bio-based and light-driven production of gasoline-like hydrocarbons.


Assuntos
Chlorella , Ácidos Graxos , Ácidos Graxos/metabolismo , Caprilatos/metabolismo , Gasolina , Chlorella/metabolismo , Hidrocarbonetos
15.
Sci Total Environ ; 870: 161882, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731575

RESUMO

The ocean is an important sink for perfluorinated alkyl acids (PFAAs), but the toxic mechanisms of PFAAs to marine organisms have not been clearly studied. In this study, the growth rate, photosynthetic activity, oxidative stress and bioaccumulation were investigated using marine algae Chlorella sp. after the exposure of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate acid (PFOS). The results showed that PFOA of <40 mg/L and PFOS of <20 mg/L stimulated algal reproduction, and high doses inhibited the algal growth. The absorbed PFOA and PFOS by algal cells damaged cell membrane and caused metabolic disorder. The photosynthesis activity was inhibited, which was revealed by the significantly reduced maximal quantum yield (Fv/Fm), relative electron transfer rate (rETR) and carbohydrate synthesis. However, the chlorophyll a content increased along with the up-regulation of its encoding genes (psbB and chlB), probably due to an overcompensation effect. The increase of ROS and antioxidant substances (SOD, CAT and GSH) indicated that PFOA and PFOS caused oxidative stress. The BCF of marine algae Chlorella sp. to PFOA and PFOS was calculated to be between 82 and 200, confirming the bioaccumulation of PFOA and PFOS in marine algae. In summary, PFOA and PFOS can accumulate in Chlorella sp. cells, disrupt photosynthesis, trigger oxidative stress and inhibit algal growth. PFOS shows higher toxicity and bioaccumulation than PFOA. The information is important to evaluate the environmental risks of PFAAs.


Assuntos
Ácidos Alcanossulfônicos , Chlorella , Fluorocarbonos , Chlorella/metabolismo , Bioacumulação , Clorofila A , Caprilatos/toxicidade , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo
16.
Environ Pollut ; 317: 120722, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436667

RESUMO

Perfluorooctanoic acid (PFOA) is a widespread persistent organic pollutant. Fertile chicken eggs were exposed to PFOA and incubated to hatch. At three time points post hatch (0-, 1- and 3-months old), chickens were subjected to electrocardiography and sacrificed. Serum was subjected to LC-MS/MS for PFOA concentration, and organs were subjected to histopathological assessments. Additionally, PPARα-silencing lentivirus was co-applied with PFOA exposure, and the corresponding phenotypes were evaluated. Western blotting was performed to assess expressions of FABPs and pSMAD2 in heart and liver samples. Considerable amount of PFOA were detected in hatchling chicken serum, but not in one-month-old or three-month-old chicken serum. PFOA exposure resulted in developmental cardiotoxicity and hepatotoxicity in hatchling chickens. Meanwhile, one-month-old chickens still exhibited elevated heart rate, but classical cardiac remodeling (thicker right ventricular wall) were observed in exposed animals. Three-month-old chickens exhibited similar results as one-month-old ones. PPARα silencing only had partial protective effects in hatchling chickens, but the protective effects seemed to increase as chickens aged. Western blotting results indicated that L-FABP was involved in PFOA-induced hepatotoxicity, while pSMAD2 was involved in PFOA-induced cardiotoxicity. In summary, developmental exposure to PFOA resulted in persistent cardiotoxicity, but not hepatotoxicity. PPARα participates in both cardiotoxicity and hepatotoxicity.


Assuntos
Galinhas , Fluorocarbonos , Animais , Galinhas/metabolismo , Cardiotoxicidade , PPAR alfa/genética , PPAR alfa/metabolismo , Cromatografia Líquida , Peroxissomos/metabolismo , Espectrometria de Massas em Tandem , Caprilatos/toxicidade , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Proliferação de Células , Fígado/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36356723

RESUMO

Recent trials have reported the ability of triheptanoin to improve clinical outcomes for the severe symptoms associated with long-chain fatty acid oxidation disorders, including very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. However, the milder myopathic symptoms are still challenging to treat satisfactorily. Myopathic pathogenesis is multifactorial, but oxidative stress is an important component. We have previously shown that metabolic stress increases the oxidative burden in VLCAD-deficient cell lines and can deplete the antioxidant glutathione (GSH). We investigated whether medium-chain fatty acids provide protection against GSH depletion during metabolic stress in VLCAD-deficient fibroblasts. To investigate the effect of differences in anaplerotic capacity, we included both even-(octanoate) and odd-numbered (heptanoate) medium-chain fatty acids. Overall, we show that modulation of the concentration of medium-chain fatty acids in culture media affects levels of GSH retained during metabolic stress in VLCAD-deficient cell lines but not in controls. Lowered glutamine concentration in the culture media during metabolic stress led to GSH depletion and decreased viability in VLCAD deficient cells, which could be rescued by both heptanoate and octanoate in a dose-dependent manner. Unlike GSH levels, the levels of total thiols increased after metabolic stress exposure, the size of this increase was not affected by differences in cell culture medium concentrations of glutamine, heptanoate or octanoate. Addition of a PPAR agonist further exacerbated stress-related GSH-depletion and viability loss, requiring higher concentrations of fatty acids to restore GSH levels and cell viability. Both odd- and even-numbered medium-chain fatty acids efficiently protect VLCADdeficient cells against metabolic stress-induced antioxidant depletion.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Caprilatos , Caprilatos/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Heptanoatos/metabolismo , Antioxidantes , Glutamina , Ácidos Graxos/metabolismo , Glutationa , Meios de Cultura
18.
Sci Total Environ ; 861: 160567, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455738

RESUMO

Perfluorooctanoic acid (PFOA) is widely distributed in nature, particularly in aquatic environments. Its bioaccumulation and toxicity in aquatic organisms can be affected by both the chemical status of PFOA in water and the physiology of the organism. However, research on the patterns of these effects is scarce. In this study, we investigated the influence of aqueous pH (pH 6, acidic; pH 7.5, neutral; pH 9, basic) and fish sex on PFOA uptake, clearance, and biochemical effects in crucian carp (C. auratus) using flow-through exposure. In the 17-d kinetic experiment, PFOA bioaccumulation adhered to a uniform first-order model in which PFOA uptake rates from water to blood and liver in acidic conditions were faster than those in other conditions, indicating possible acidic pH influence on PFOA uptake. PFOA clearance rates in these compartments of males were slower than in females, which was attributed to the notably stronger expression of Oat2 (organic anion transporter 2, responsible for reabsorption) in the kidneys of males. Similar responses were observed for peroxisome proliferation-related biomarkers at different pH levels and in different sexes. These biochemical responses were driven by the internal concentrations of PFOA. The inhibition acetylcholinesterase activity in the fish brain was closely linked to changes in P-glycoprotein content, demonstrating a protective relationship. Collectively, an aqueous pH lower than 7.5 might affect the uptake of PFOA by fish. The clearance discrepancies between the sexes highlight the importance of anion carriers for ionizable organic compounds in aquatic organisms.


Assuntos
Carpas , Fluorocarbonos , Poluentes Químicos da Água , Masculino , Animais , Feminino , Acetilcolinesterase , Caprilatos/toxicidade , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Carpas/metabolismo , Água , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
19.
Aquat Toxicol ; 253: 106328, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302320

RESUMO

As a typical type of persistent organic pollutant, perfluorooctanoic acid (PFOA) is pervasive in the environment. Multiple studies have found that PFOA has hepatotoxicity, but the mechanism remains poorly understood. In this study, the toxic effects of different concentrations of PFOA on zebrafish liver cells were systematically assessed by recording cell survival, ultrastructural observations, and transcriptome analyses. The results showed that the inhibition of cell viability and the massive accumulation of autophagic vacuoles were observed at 400 µM PFOA, while transcriptomic changes occurred with treatments of 1 and 400 µM PFOA. The transcription levels of 1055 (977 up- and 78 down-regulated genes) and 520 (446 up- and 74 down-regulated genes) genes were significantly changed after treatment with 1 and 400 µM PFOA, respectively. Based on Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, significant expression changes were observed in autophagy, tight junction, signal transduction, immune system, endocrine system, and metabolism-related pathways, indicating that such processes were greatly affected by PFOA exposure. The findings of this study will provide a scientific basis for the toxic effects and potential toxic mechanisms of PFOA on zebrafish, and provide information for ecological risk assessments.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Poluentes Químicos da Água/toxicidade , Caprilatos/toxicidade , Caprilatos/metabolismo , Fígado
20.
J Control Release ; 352: 163-178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314534

RESUMO

Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.


Assuntos
Excipientes , Absorção Intestinal , Suínos , Animais , Excipientes/farmacologia , Caprilatos/análise , Caprilatos/metabolismo , Caprilatos/farmacologia , Ovalbumina/metabolismo , Sódio/metabolismo , Ciclosporina/farmacologia , Permeabilidade , Preparações Farmacêuticas/metabolismo , Muco/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA