RESUMO
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.
Assuntos
4-Aminobutirato Transaminase/metabolismo , Solanina/análogos & derivados , Solanum tuberosum/genética , 4-Aminobutirato Transaminase/genética , Edição de Genes , Hidroxilação , Cetocolesteróis/biossíntese , Cetocolesteróis/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/fisiologia , Saponinas/biossíntese , Saponinas/química , Solanina/química , Solanina/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologiaRESUMO
Approximately two-thirds of US infants receive infant formula (IF) as a primary or sole nutritional source during the first six months of life. IF is available in a variety of commercial presentations; from a manufacturing standpoint, they can be categorized as powder- (PIF) or liquid- (LIF) based formulations. Thirty commercial IFs were analyzed in their oxidative and non-oxidative lipid profiles. We identified 7-ketocholesterol - a major end-product of cholesterol oxidation - as a potential biomarker of IF manufacturing. The statistical analysis allowed a re-classification of IF based on their metabolomic fingerprint, resulting in three groups assigned with low-to-high oxidative status. Finally, we modeled the dietary intake of cholesterol, sterols, and 7-ketocholesterol in the first year of life. The database provided in this study will be instrumental for scientists interested in infant nutrition, to establish bases for epidemiological studies aimed to find connections between nutrition and diet-associated diseases, such as sitosterolemia.
Assuntos
Fórmulas Infantis/química , Cetocolesteróis/química , Lipídeos/química , Dieta , Avaliação Nutricional , OxirreduçãoRESUMO
Oxysterols are molecules derived by the oxidation of cholesterol and can be formed either by auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-oxidation, 7-ketocholesterol and 7ß-hydroxycholesterol are the main forms generated. These oxysterols, formed endogenously and brought in large quantities by certain foods, have major cytotoxic properties. They are powerful inducers of oxidative stress, inducing dysfunction of organelles (mitochondria, lysosomes and peroxisomes) that can cause cell death. These molecules are often identified in increased amounts in common pathological states such as cardiovascular diseases, certain eye conditions, neurodegenerative disorders and inflammatory bowel diseases. To oppose the cytotoxic effects of these molecules, it is important to know their biological activities and the signaling pathways they affect. Numerous cell models of the vascular wall, eye, brain, and digestive tract have been used. Currently, to counter the cytotoxic effects of 7-ketocholesterol and 7ß-hydroxycholesterol, natural molecules and oils, often associated with the Mediterranean diet, as well as synthetic molecules, have proved effective in vitro. Bioremediation approaches and the use of functionalized nanoparticles are also promising. At the moment, invertebrate and vertebrate models are mainly used to evaluate the metabolism and the toxicity of 7-ketocholesterol and 7ß-hydroxycholesterol. The most frequently used models are mice, rats and rabbits. In order to cope with the difficulty of transferring the results obtained in animals to humans, the development of in vitro alternative methods such as organ/body-on-a-chip based on microfluidic technology are hopeful integrative approaches.
Assuntos
Modelos Animais de Doenças , Hidroxicolesteróis/toxicidade , Cetocolesteróis/toxicidade , Organelas/efeitos dos fármacos , Animais , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Catarata/induzido quimicamente , Catarata/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Hidroxicolesteróis/química , Hidroxicolesteróis/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Cetocolesteróis/química , Cetocolesteróis/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Organelas/metabolismoRESUMO
A variety of experimental and theoretical approaches have been employed to investigate the sterol flip-flop motion in lipid bilayer membranes. However, the sterol effect on the dipole potential of lipid bilayer membranes is less well studied and the influence of dipole potential on sterol flip-flop motion in lipid bilayer membranes is less well understood. In our previous works, we have demonstrated the performance of our coarse-grained (CG) model in the computation of the dipole potential. In this work, five 30 µs CG simulations of dimyristoylphosphatidylcholine (DMPC) bilayers were carried out at different sterol concentrations (in a range from 10 to 50% mole fraction). Then, a comparison was made between the effects of cholesterol (CHOL) and 6-ketocholestanol (6-KC) on the dipole potential of DMPC lipid bilayers as well as the sterol flip-flop motion. Our CG simulations show that the membrane dipole potential is impacted more significantly by 6-KC than by CHOL. This finding is consistent with recent experimental studies. Meanwhile, our work suggests that the sterol-sterol interactions (in particular, electrostatic interactions) should be critical to the formation of sterol-sterol clusters, which would hinder the sterol flip-flop motion inside the lipid bilayers. This is in support of the recent experimental study on the sterol transportation in lipid bilayer membranes.
Assuntos
Cetocolesteróis/química , Bicamadas Lipídicas/química , Modelos QuímicosRESUMO
Unsaturated fatty acids (UFAs) are known to lower the level of sterols in blood, which accounts for their cardioprotective effect. To understand the molecular basis of this effect, Langmuir monolayer studies have been performed. A series of UFAs differing in the length of the fatty acid chain and the number of double bonds (oleic acid, OA; linoleic acid, LA; stearidonic acid, SDA; eicosanoic acid, EA) were mixed with cholesterol and its more toxic oxidized derivative, 7ketocholesterol (7-KC), abundantly present in atheroma plaques. Strong attractive UFA-sterol interactions were attributed to the formation of "surface complexes", in which sterol molecules are bound, thereby reducing the amount of free sterol molecules. It has been found that strength of interactions increases with the degree of unsaturation of the acyl chain in UFA molecule. The most attractive interactions correspond to mixtures with SDA containing 70â¯mol% of 7-KC and 50â¯mol% of cholesterol. In both cases, the formation of high stability complexes of, respectively, 2:1 and 1:1 sterol/SDA stoichiometry has been proposed. Other complexes of lower stability and 1:2 stoichiometry were postulated for chol (or 7-KC)/LA systems. The complexes of the lowest stability correspond to chol (or 7-KC) mixtures with OA and EA of 1:1 stoichiometry. In all the cases, the interactions of 7-KC with UFAs are more energetically favorable versus cholesterol. The elongation of the hydrophobic chain of UFAs decreased the interactions with the studied sterols. The obtained results can be related to different conformations of the fatty acids chains.
Assuntos
Colesterol/química , Ácidos Graxos Insaturados/química , Cetocolesteróis/química , Propriedades de Superfície , TermodinâmicaRESUMO
In this work the Langmuir monolayer technique was used to study interactions between cholesterol (chol) and 7-ketocholesterol (7-KC) with saturated (arachidic acid, AA) and polyunsaturated fatty acids (PUFAs) (ω-3 α-linolenic acid, α-LA,and ω-6 γ- linolenic, γ-LA) in order to get insight into their potential role in atherosclerosis. For this study, surface pressure (π)-area (A) isotherms, compressibility modulus (Cs-1) versus π plots, Brewster angle microscopy (BAM) images and excess functions (Aexc and ΔGexc) were analysed. Different behaviour has been observed. For cholesterol/AA mixed monolayers, components immiscibility occurs, whatever the surface pressure or the mixtures composition is, whereas for the 7-KC/AA mixed system, ideal behaviour was observed at low and high surface pressures for all the investigated compositions. However, the remaining mixed studied systems (sterol/PUFA) exhibit negative deviations from the ideality, although some differences do occurr. The magnitude of these deviations depend on the kind of a PUFA (for ω-3 PUFA greater than for ω-6) - attributed to the different geometry of their acyl chains- and the type of a sterol (for 7-KC greater than for cholesterol).The strength of attractive interactions followed the order: chol/ γ-LA <7-KC/γ-LA < chol/α-LA < 7-KC/ α-LA, postulating the formation of stable complexes of 1:2 stoichiometry for 7-KC/α-LA mixed monolayers and 1:1 stoichiometry for chol/α-LA mixed films. For 7-KC/γ-LA system, the formation of a low stability complex of 2:1 stoichiometry was suggested. The existence of these complexes can play an important role in diminishing the circulating sterols in the blood stream, thus decreasing the probability of atherosclerotic plaques formation.
Assuntos
Colesterol/química , Ácidos Graxos Insaturados/química , Cetocolesteróis/química , Ácidos Eicosanoicos/química , Humanos , Tamanho da Partícula , Pressão , Propriedades de SuperfícieRESUMO
Mammalian cell entry protein (Mce4A) is a member of MCE-family, and is being considered as a potential drug target of Mycobacterium tuberculosis infection because it is required for invasion and latent survival of pathogen by utilizing host's cholesterol. In the present study, we performed molecular docking followed by 100â¯ns MD simulation studies to understand the mechanism of interaction of Mce4A to the cholesterol derivatives and probucol. The selected ligands, cholesterol, 25-hydroxycholesterol, 5-cholesten-3ß-ol-7-one and probucol bind to the predicted active site cavity of Mce4A, and complexes remain stable during entire simulation of 100â¯ns. In silico studies were further validated by fluorescence-binding studies to calculate actual binding affinity and number of binding site(s). The non-toxicity of all ligands was confirmed on human monocytic cell (THP1) by MTT assay. This work provides a deeper insight into the mechanism of interaction of Mce4A to cholesterol derivatives, which may be further exploited to design potential and specific inhibitors to ameliorate the Mycobacterium pathogenesis.
Assuntos
Proteínas de Bactérias/genética , Colesterol/metabolismo , Interações Hospedeiro-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculose/genética , Proteínas de Bactérias/química , Sítios de Ligação , Colesterol/química , Humanos , Hidroxicolesteróis/química , Cetocolesteróis/química , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/patogenicidade , Ligação Proteica , Tuberculose/microbiologiaRESUMO
Oxysterols are products of cholesterol oxidation. They can be formed endogenously (in both enzymatic and non-enzymatic reactions) as well as exogenously (delivered with food). Recent studies clearly demonstrate cytotoxic properties of these compounds, being mainly due to their incorporation into natural lipid bilayers. This process can influence mechanical and physicochemical properties of biomembrane-mainly by modifying the interactions between its components, which may result in the disruption of proper functioning of cell membrane and could lead to its degradation. Therefore, it can be assumed that oxysterols may affect the initiation of neurodegenerative diseases, including Alzheimer's disease. However, the mode of action of these molecules at the molecular level is not fully known. To get a better understanding of the role of oxysterols in neurodegeneration, it is of great importance to examine mutual interactions between oxysterols and neuronal membrane components. One of the most promising techniques that can be used to analyze such interactions is the Langmuir monolayer technique. In this work, we have prepared an artificial neuronal membrane modeled as multicomponent Langmuir monolayer built up with cholesterol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and sphingomyelin (SM). To examine whether there are any changes in the membrane properties under oxidative stress, in this paper we have investigated the impact of the representative ring-oxidized oxysterol: 7-ketocholesterol (7-KC). Our results show that replacing cholesterol with 7-KC increases the interaction between molecules in the model membrane.
Assuntos
Membrana Celular/química , Cetocolesteróis/química , Bicamadas Lipídicas/química , Modelos Químicos , Neurônios/química , Membrana Celular/metabolismo , Cetocolesteróis/metabolismo , Bicamadas Lipídicas/metabolismo , Neurônios/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismoRESUMO
Biological membranes are heterogeneous structures with complex electrostatic profiles arising from lipids, sterols, membrane proteins, and water molecules. We investigated the effect of cholesterol and its derivative 6-ketocholestanol (6-kc) on membrane electrostatics by directly measuring the dipole electric field (Fâd) within lipid bilayers containing cholesterol or 6-kc at concentrations of 0-40 mol% through the vibrational Stark effect (VSE). We found that adding low concentrations of cholesterol, up to â¼10 mol %, increases Fâd, while adding more cholesterol up to 40 mol% lowers Fâd. In contrast, we measured a monotonic increase in Fâd as 6-kc concentration increased. We propose that this membrane electric field is affected by multiple factors: the polarity of the sterol molecules, the reorientation of the phospholipid dipole due to sterol, and the impact of the sterol on hydrogen bonding with surface water. We used molecular dynamics simulations to examine the distribution of phospholipids, sterol, and helix in bilayers containing these sterols. At low concentrations, we observed clustering of sterols near the vibrational probe whereas at high concentrations, we observed spatial correlation between the positions of the sterol molecules. This work demonstrates how a one-atom difference in a sterol changes the physicochemical and electric field properties of the bilayer.
Assuntos
Colesterol/química , Cetocolesteróis/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Eletricidade Estática , Campos Eletromagnéticos , Espectrofotometria Infravermelho , Propriedades de Superfície , Vibração , Água/químicaRESUMO
Nowadays, there are a few steroid drugs or intermediates that have been obtained via the transformation of microorganisms, and many strains of transformed steroids have not been found yet. Therefore, it is very significant to screen for the strains that have the abilities to transform steroids to produce valuable products. This study has focused on the screen and identification of strains, the structural identification of converted products, and the optimization of transformation conditions, as well as the establishment of transformation systems. A soil microbiota was screened for strain involved in the biotransformation of steroids. A new isolate IS547 is capable of converting a variety of steroids (such as cholesterol, ergosterol, hydrocortisone, progesterone, pregnenolone, and 16,17-alpha-epoxypregnenolone). Based on the 18S rDNA gene sequence comparison, the isolate IS547 has been demonstrated to be very closely related to Cladosporium sp. genus. Present paper is the first report regarding the microbial transformation by Cladosporium sp. to produce active intermediates, which include 7-hydroxy cholesterol, 20-droxyl-16α,17α-epoxypregna-4-dien-3-one, 7-ketocholesterol, and 7-droxyl-16α,17α-epoxypregna-4-dien-3,20-dione. Under the optimum conditions, the yields of product 3 and product 4 were 20.58 and 17.42%, respectively, higher than that prior to the optimization. The transformation rate increased significantly under the optimum fermentation conditions. This study describes an efficient, rapid, and inexpensive biotransformation system for the production of active pharmaceutical intermediates.
Assuntos
Bactérias/metabolismo , Colesterol/metabolismo , Cladosporium/metabolismo , Microbiota/fisiologia , Pregnenolona/análogos & derivados , Microbiologia do Solo , Esteroides/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biotransformação , Colesterol/química , Cladosporium/genética , Cladosporium/isolamento & purificação , Cladosporium/ultraestrutura , Fermentação , Flavonoides/química , Flavonoides/metabolismo , Cetocolesteróis/química , Cetocolesteróis/metabolismo , Pregnenolona/metabolismo , Esteroides/químicaRESUMO
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder induced by a mutation in the ABCD1 gene, which causes the accumulation of very long-chain fatty acids in tissue and plasma. Oxidative stress may be a hallmark of X-ALD. In the plasma of X-ALD patients with different forms of the disease, characterized by high levels of C24:0 and C26:0, we observed the presence of oxidative stress revealed by decreased levels of GSH, α-tocopherol, and docosahexaenoic acid (DHA). We showed that oxidative stress caused the oxidation of cholesterol and linoleic acid, leading to the formation of cholesterol oxide derivatives oxidized at C7 (7-ketocholesterol (7KC), 7ß-hydroxycholesterol (7ß-OHC), and 7α-hydroxycholesrol (7α-OHC)) and of 9- and 13-hydroxyoctadecadienoic acids (9-HODE, 13-HODE), respectively. High levels of 7KC, 7ß-OHC, 7α-OHC, 9-HODE and 13-HODE were found. As 7KC induces oxidative stress, inflammation and cell death, which could play key roles in the development of X-ALD, the impact of 7KC on the peroxisomal status was determined in microglial BV-2 cells. Indeed, environmental stress factors such as 7KC could exacerbate peroxisomal dysfunctions in microglial cells and thus determine the progression of the disease. 7KC induces oxiapoptophagy in BV-2 cells: overproduction of H2O2 and O2-, presence of cleaved caspase-3 and PARP, nuclear condensation and/or fragmentation; elevated [LC3-II/LC3-I] ratio, increased p62 levels. 7KC also induces several peroxisomal modifications: decreased Abcd1, Abcd2, Abcd3, Acox1 and/or Mfp2 mRNA and protein levels, increased catalase activity and decreased Acox1-activity. However, the Pex14 level was unchanged. It is suggested that high levels of 7KC in X-ALD patients could foster generalized peroxisomal dysfunction in microglial cells, which could in turn intensify brain damage.
Assuntos
Adrenoleucodistrofia/sangue , Cetocolesteróis/sangue , Microglia/metabolismo , Estresse Oxidativo , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/sangue , Acil-CoA Oxidase/sangue , Adolescente , Adulto , Animais , Apoptose , Encéfalo/patologia , Estudos de Casos e Controles , Catalase/metabolismo , Sobrevivência Celular , Criança , Progressão da Doença , Ácidos Docosa-Hexaenoicos/química , Glutationa/química , Humanos , Peróxido de Hidrogênio/química , Cetocolesteróis/química , Ácido Linoleico/química , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/metabolismo , Camundongos , Microglia/citologia , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/sangue , Proteínas Repressoras/metabolismo , Adulto Jovem , alfa-Tocoferol/químicaRESUMO
In multiple sclerosis (MS) a process of white matter degradation leading to demyelination is observed. Oxidative stress, inflammation, apoptosis, necrosis and/or autophagy result together into a progressive loss of oligodendrocytes. 7-ketocholesterol (7KC), found increased in the cerebrospinal fluid of MS patients, triggers a rupture of RedOx homeostasis associated with mitochondrial dysfunctions, aptoptosis and autophagy (oxiapoptophagy) in cultured murine oligodendrocytes (158N). α-tocopherol is able to mild the alterations induced by 7KC partially restoring the cellular homeostasis. In presence of 7KC, the amount of adherent 158N cells was decreased and oxidative stress was enhanced. An increase of caspase-3 and PARP degradation (evidences of apoptosis), and an increased LC3-II/LC3-I ratio (criterion of autophagy), were detected. These events were associated with a decrease of the mitochondrial membrane potential (ΔΨm) and by a decrease of oxidative phosphorylation revealed by reduced NAD+ and ATP. The cellular lactate was higher while pyruvate, citrate, fumarate, succinate (tricarboxylic acid (TCA) cycle intermediates) were significantly reduced in exposed cells, suggesting that an impairment of mitochondrial respiratory functions could lead to an increase of lactate production and to a reduced amount of ATP and acetyl-CoA available for the anabolic pathways. The concentration of sterol precursors lathosterol, lanosterol and desmosterol were significantly reduced together with satured and unsatured long chain fatty acids (C16:0 - C18:0, structural elements of membrane phospholipids). Such reductions were milder with α-tocopherol. It is likely that the cell death induced by 7KC is associated with mitochondrial dysfunctions, including alterations of oxidative phosphorylation, which could result from lipid anabolism dysfunctions, especially on TCA cycle intermediates. A better knowledge of mitochondrial associated dysfunctions triggered by 7KC will contribute to bring new information on the demyelination processes which are linked with oxidative stress and lipid peroxidation, especially in MS.
Assuntos
Colesterol/química , Ciclo do Ácido Cítrico , Cetocolesteróis/química , Mitocôndrias/metabolismo , Oligodendroglia/metabolismo , Oxisteróis/química , alfa-Tocoferol/química , Trifosfato de Adenosina/química , Animais , Núcleo Celular/metabolismo , Ácidos Graxos Insaturados/química , Citometria de Fluxo , Inflamação , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos , Lipídeos/química , Espectrometria de Massas , Potencial da Membrana Mitocondrial , Camundongos , Esclerose Múltipla/metabolismo , NAD/química , Oligodendroglia/citologia , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Although activation of the ErbB family of receptor tyrosine kinases (ErbB1-4) is driven by oligomerization mediated by intermolecular interactions between the extracellular, the kinase and the transmembrane domains, the transmembrane domain has been largely neglected in this regard. The largest contributor to the intramembrane electric field, the dipole potential, alters the conformation of transmembrane peptides, but its effect on ErbB proteins is unknown. Here, we show by Förster resonance energy transfer (FRET) and number and brightness (N&B) experiments that the epidermal growth factor (EGF)-induced increase in the homoassociation of ErbB1 and ErbB2 and their heteroassociation are augmented by increasing the dipole potential. These effects were even more pronounced for ErbB2 harboring an activating Val â Glu mutation in the transmembrane domain (NeuT). The signaling capacity of ErbB1 and ErbB2 was also correlated with the dipole potential. Since the dipole potential decreased the affinity of EGF to ErbB1, the augmented growth factor-induced effects at an elevated dipole potential were actually induced at lower receptor occupancy. We conclude that the dipole potential plays a permissive role in the clustering of ErbB receptors and that the effects of lipid rafts on ligand binding and receptor signaling can be partially attributed to the dipole potential.
Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Linhagem Celular , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cetocolesteróis/química , Cetocolesteróis/metabolismo , Microdomínios da Membrana/metabolismo , Floretina/química , Floretina/metabolismo , Mutação Puntual , Domínios Proteicos , Receptor ErbB-2/genética , Transdução de Sinais , Tirosina/metabolismoRESUMO
OBJECTIVE: Oxidised low density lipoprotein (oxLDL) contributes to atherosclerosis, whereas high density lipoprotein (HDL) is known to be atheroprotective due, at least in part, to its ability to remove oxidised lipids from oxLDL. The molecular details of the lipid transfer process are not fully understood. We aimed to identify major oxidised lipid species of oxLDL and investigate their transfer upon co-incubation with HDL with varying levels of oxidation. APPROACH AND RESULTS: A total of 14 major species of oxidised phosphatidylcholine and oxidised cholesteryl ester from oxLDL were identified using an untargeted mass spectrometry approach. HDL obtained from pooled plasma of normolipidemic subjects (N=5) was oxidised under mild and heavy oxidative conditions. Non-oxidised (native) HDL and oxidised HDL were co-incubated with oxLDL, re-isolated and lipidomic analysis was performed. Lipoprotein surface lipids, oxidised phosphatidylcholines and oxidised cholesterols (7-ketocholesterol and 7ß-hydroxycholesterol), but not internal oxidised cholesteryl esters, were effectively transferred to native HDL. Saturated and monounsaturated lyso-phosphatidylcholines were also transferred from the oxLDL to native HDL. These processes were attenuated when HDL was oxidised under mild and heavy oxidative conditions. The impaired capacities were accompanied by an increase in a ratio of sphingomyelin to phosphatidylcholine and a reduction in phosphatidylserine content in oxidised HDL, both of which are potentially important regulators of the oxidised lipid transfer capacity of HDL. CONCLUSIONS: Our study has revealed the differential transfer efficiency of surface and internal oxidised lipids from oxLDL and their acceptance onto HDL. These capacities were modulated when HDL was itself oxidised.
Assuntos
Lipoproteínas HDL/química , Lipoproteínas LDL/química , Triglicerídeos/química , Adulto , Idoso , Transporte Biológico , Ésteres do Colesterol/química , Cobre/química , Jejum , Feminino , Humanos , Hidroxicolesteróis/química , Cetocolesteróis/química , Lipoproteínas HDL/isolamento & purificação , Lipoproteínas LDL/isolamento & purificação , Lisofosfatidilcolinas/química , Masculino , Pessoa de Meia-Idade , Oxidantes/química , Oxirredução , Fosfatidilcolinas/química , Fosfatidilserinas/química , Esfingomielinas/química , Triglicerídeos/isolamento & purificaçãoRESUMO
The exposure of organic-coated marine aerosols containing cholesterol (Chol) to radiation and/or an oxidizing atmosphere results in the formation of oxidized derivatives or oxysterols and will likely change aerosol surface properties. However, the intermolecular interactions between oxysterols and other lipid components and their influence on the surface properties of marine aerosols are not well-known. To address this question, the interfacial behavior and domain morphology of model Langmuir monolayers of two ring-substituted oxysterols, 7-ketocholesterol (7-KChol) and 5ß,6ß-epoxycholesterol (5,6ß-EChol), mixed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were investigated by means of compression isotherms and Brewster angle microscopy (BAM) over a broad range of surface pressures and sterol molar ratios. Mixed DPPC/cholesterol (Chol) monolayers were also measured for comparison. The results of compression experiments showed that the condensing effect induced on mixed DPPC/sterol monolayers at low surface pressures and for intermediate molar ratios (0.3 ≤ X(sterol) ≤ 0.7) was weaker for oxysterols than for Chol. Additionally, mixed DPPC/oxysterol monolayers exhibited markedly smaller (â¼2-3-fold) interfacial rigidity. Examination of the excess free energy of mixing further revealed that DPPC monolayers containing 7-KChol and Chol were thermodynamically more stable at high surface pressures than those with 5,6ß-EChol, indicating that the strength of interactions between DPPC and 5,6ß-EChol was the smallest. Finally, BAM images in the LE-LC phase of DPPC revealed that in comparison to Chol the addition of small amounts of oxysterols results in larger and less numerous domains, showing that oxysterols are not as effective in fluidizing the condensed phase of DPPC. Taken together, these results suggest that the strength of van der Waals interactions of DPPC alkyl chains with sterols follows the sterol hydrophobicity, with Chol being the most hydrophobic and oxysterols more hydrophilic due to their ketone and epoxy moieties. The difference in the condensing ability and stability of 7-KChol and 5,6ß-EChol on DPPC likely originates from the distinct molecular structure and position of oxidation on the steroid nucleus. As suggested by recent MD simulations, depending on the oxidation position, ring-substituted oxysterols have a broader angular distribution of orientation than Chol in bilayers, which could be responsible for the observed reduction in condensing ability.
Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/análogos & derivados , Cetocolesteróis/química , Colesterol/química , Microscopia de Força Atômica , Microscopia de Fluorescência , Propriedades de Superfície , TermodinâmicaRESUMO
Using replica exchange umbrella sampling we calculated free energy profiles for uptake of cholesterol and one of its oxysterols (7-ketocholesterol) from an aqueous solution into a high-density lipoprotein particle. These atomistic molecular dynamics simulations show that both sterols are readily taken up from the aqueous solution with comparable free energy minima at the surface of the particle of -17 kcal/mol for cholesterol and -14 kcal/mol for 7-ketocholesterol. Moreover, given its preferred position at the particle surface, 7-ketocholesterol is expected to be able to participate directly in biological signaling processes.
Assuntos
Colesterol/química , Cetocolesteróis/química , Lipoproteínas HDL/química , Simulação de Dinâmica Molecular , Oxirredução , Soluções , Solventes/química , Água/químicaRESUMO
OBJECTIVE: The cluster of differentiation-1d (CD1d) recognizes and presents the lipid antigens to NK-T lymphocytes. Atherosclerotic lesions contain atherogenic lipids, mainly cholesterol and its oxides. Peroxisome proliferator-activated receptor-γ (PPARγ) is also known to exist in atherosclerotic lesions, participating in regulation of lipid metabolism. The current study tested whether CD1d acts as a surface receptor that mediates induction and activation of PPARγ by oxysterols commonly found in atherosclerotic lesions. METHODS AND RESULTS: CD1d overexpression in HEK 293 cells transfected with CD1d cDNA was confirmed by fluorescence, flow cytometry, Western blotting and mRNA expression. Tritiated ((3)H) 7-ketocholesterol (7K) was used for lipid binding assays. Radioactive assessment demonstrated an increased 7K-binding activity HEK 293 cells with CD1d overexpression. The 7K binding could be blocked by another oxysterol, 25-hydroxycholesterol, but not by native free cholesterol. Addition of CD1d:IgG dimer protein or an anti-CD1d antibody, but not control IgG, significantly diminished 7K binding to CD1d-expressing HEK 293 cells. CD1d deficiency markedly diminished the 7K-binding in macrophages and smooth muscle cells. Western blot and gel shift assays demonstrated that CD1d-mediated 7K binding induced expression and activation of PPARγ. The PPARγ agonist PGJ2 enhances the 7K stimulatory effect on PPARγ expression and activity but the antagonist GW9662 inhibits the 7K effect on the CD1d-expressing cells. CONCLUSIONS: CD1d acts as a cell surface receptor that recognizes and binds oxysterols and initializes a pathway connecting oxysterol binding to PPARγ activation.
Assuntos
Antígenos CD1d/metabolismo , Membrana Celular/metabolismo , Colesterol/química , Oxigênio/química , PPAR gama/metabolismo , Animais , Aterosclerose/fisiopatologia , Primers do DNA/genética , Células HEK293 , Humanos , Hidroxicolesteróis/química , Imunoglobulina G/química , Cetocolesteróis/química , Lipídeos/química , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Ligação Proteica , Esteróis/químicaRESUMO
A new method, reversed phase liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry (RPLC-SALDI MS) for the determination of brassicasterol (BR), cholesterol (CH), stigmasterol (ST), campesterol (CA) and ß-sitosterol (SI) in oil samples has been developed. The sample preparation consisted of alkaline saponification followed by extraction of the unsaponificable fraction with diethyl ether. The recovery of the sterols ranged from 91 to 95% with RSD less than 4%. Separation of the five major sterols on a C18 column using methanol-water gradient was achieved in about 10min. An on-line UV detector was employed for the initial sterol detection prior to effluent deposition using a laboratory-built spotter with 1:73 splitter. Off-line SALDI MS was then applied for mass determination/identification and quantification of the separated sterols. Ionization of the nonpolar analytes was achieved by silver ion cationization with silver nanoparticles used as the SALDI matrix providing limits of detection 12, 6 and 11fmol for CH, ST and SI, respectively. Because of the incorporated splitter, the effective limits of detection of the RPLC-SALDI MS analysis were 4, 3 and 4pmol (or 0.08, 0.06 and 0.08µg/mL) for CH, ST and SI, respectively. For quantification, 6-ketocholestanol (KE) was used as the internal standard. The method has been applied for the identification and quantification of sterols in olive, linseed and sunflower oil samples. The described off-line coupling of RPLC to SALDI MS represents an alternative to GC-MS for analysis of nonpolar compounds.
Assuntos
Colestadienóis/isolamento & purificação , Colesterol/análogos & derivados , Fitosteróis/isolamento & purificação , Sitosteroides/isolamento & purificação , Estigmasterol/isolamento & purificação , Colestadienóis/química , Colesterol/química , Colesterol/isolamento & purificação , Cromatografia de Fase Reversa/métodos , Cromatografia de Fase Reversa/normas , Cetocolesteróis/química , Cetocolesteróis/isolamento & purificação , Óleo de Semente do Linho/análise , Óleo de Semente do Linho/química , Azeite de Oliva , Fitosteróis/química , Óleos de Plantas/análise , Óleos de Plantas/química , Padrões de Referência , Prata/química , Sitosteroides/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Estigmasterol/química , Óleo de GirassolRESUMO
Hepatic conversion to bile acids is a major elimination route for cholesterol in mammals. CYP7A1 catalyzes the first and rate-limiting step in classic bile acid biosynthesis, converting cholesterol to 7α-hydroxycholesterol. To identify the structural determinants that govern the stereospecific hydroxylation of cholesterol, we solved the crystal structure of CYP7A1 in the ligand-free state. The structure-based mutation T104L in the B' helix, corresponding to the nonpolar residue of CYP7B1, was used to obtain crystals of complexes with cholest-4-en-3-one and with cholesterol oxidation product 7-ketocholesterol (7KCh). The structures reveal a motif of residues that promote cholest-4-en-3-one binding parallel to the heme, thus positioning the C7 atom for hydroxylation. Additional regions of the binding cavity (most distant from the access channel) are involved to accommodate the elongated conformation of the aliphatic side chain. Structural complex with 7KCh shows an active site rigidity and provides an explanation for its inhibitory effect. Based on our previously published data, we proposed a model of cholesterol abstraction from the membrane by CYP7A1 for metabolism. CYP7A1 structural data provide a molecular basis for understanding of the diversity of 7α-hydroxylases, on the one hand, and cholesterol-metabolizing enzymes adapted for their specific activity, on the other hand.
Assuntos
Colesterol 7-alfa-Hidroxilase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Colesterol 7-alfa-Hidroxilase/genética , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Hidroxilação , Cetocolesteróis/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de ProteínaRESUMO
Cholesterol is one of the oxidizable lipids constituting biomembranes and plasma lipoproteins. Cholesterol hydroperoxides (Chol-OOH) are the primary products if cholesterol is subjected to attack by reactive oxygen species. In particular, singlet molecular oxygen reacts with cholesterol to yield cholesterol 5α-hydroperoxide as the major hydroperoxide species. Chol-OOH may accumulate in biological systems because of its resistance to glutathione-dependent enzymatic detoxification reactions. Their degradation products (including hydroxycholesterol and 7-ketocholesterol) participate in the pathophysiological functions of oxysterols. Highly reactive cholesterol 5,6-secosterol present in atherosclerotic lesions can be derived from the degradation of cholesterol 5α-hydroperoxide. Chol-OOH themselves may affect the lipid rafts of biomembranes, thereby leading to the modification of signal transduction pathways.