Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 259(6): 138, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687380

RESUMO

MAIN CONCLUSION: The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering. A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.


Assuntos
Acroleína , Acroleína/análogos & derivados , Aldeído Oxirredutases , Cinnamomum aromaticum , Acroleína/metabolismo , Cinnamomum aromaticum/genética , Cinnamomum aromaticum/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Casca de Planta/genética , Casca de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Zhong Yao Cai ; 27(5): 326-9, 2004 May.
Artigo em Chinês | MEDLINE | ID: mdl-15376384

RESUMO

OBJECTIVE: To extract high-quality DNA for RAPD and other molecular biology research from Chinese traditional medicine Cinnamomum cassia Presl.. METHOD: Improved CTAB method, low pH medium with high salt method (LPHS) and urea method were used for DNA extract. The yield and quality of DNA was analysed by electrophoresis, ratios of A260/A280 and PCR amplification. RESULTS: The modified CTAB method and low pH medium with high salt method can produce high qualiy DNA for PCR amplification.


Assuntos
Cinnamomum aromaticum/genética , DNA de Plantas/isolamento & purificação , Genoma de Planta , Plantas Medicinais/genética , Compostos de Cetrimônio/química , Cinnamomum aromaticum/química , DNA de Plantas/genética , Eletroforese em Gel de Ágar , Casca de Planta/química , Plantas Medicinais/química , Reação em Cadeia da Polimerase/métodos , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA