Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.219
Filtrar
1.
Medicine (Baltimore) ; 103(32): e39202, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121317

RESUMO

Vancomycin, a first-line drug for treating methicillin-resistant Staphylococcus aureus infections, is associated with acute kidney injury (AKI). This study involved an evaluation of biomarkers for AKI detection and their comparison with traditional serum creatinine (SCr). We prospectively enrolled patients scheduled to receive intravenous vancomycin for methicillin-resistant S aureus infection. Blood samples for pharmacokinetic assessment and SCr and cystatin C (CysC) measurements were collected at baseline and on days 3, 7, and 10 from the initiation of vancomycin administration (day 1). Urinary biomarkers, including kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin, and clusterin, were collected from days 1 to 7 and adjusted for urinary creatinine levels. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation. Of the 42 patients, 6 experienced vancomycin-induced AKI. On day 7, the change from baseline eGFR using CysC (ΔeGFRCysC) showed a stronger correlation with vancomycin area under the curve (r = -0.634, P < .001) than that using SCr (ΔeGFRSCr; r = -0.437, P = .020). ΔeGFRSCr showed no significant correlation with vancomycin pharmacokinetic in patients with body mass index ≥23. The median (interquartile range) level of KIM-1 (µg/mg) was significantly higher in the AKI group (0.006 [0.005-0.008]) than in the non-AKI group (0.004 [0.001-0.005]) (P = .039, Mann-Whitney U test), with area under the receiver operating characteristic curve (95% confidence interval) of 0.788 (0.587-0.990). Serum CysC, particularly in overweight individuals or those with obesity, along with urinary KIM-1 are important predictors of vancomycin-induced AKI. These results may aid in selecting better biomarkers than traditional SCr for detecting vancomycin-induced AKI.


Assuntos
Injúria Renal Aguda , Antibacterianos , Biomarcadores , Creatinina , Cistatina C , Receptor Celular 1 do Vírus da Hepatite A , Vancomicina , Humanos , Vancomicina/efeitos adversos , Vancomicina/farmacocinética , Vancomicina/administração & dosagem , Vancomicina/sangue , Biomarcadores/urina , Biomarcadores/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/urina , Injúria Renal Aguda/sangue , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Idoso , Receptor Celular 1 do Vírus da Hepatite A/análise , Cistatina C/sangue , Cistatina C/urina , Creatinina/sangue , Creatinina/urina , Taxa de Filtração Glomerular , Lipocalina-2/urina , Lipocalina-2/sangue , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina , Clusterina/urina , Clusterina/sangue
2.
Mol Med ; 30(1): 100, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992588

RESUMO

BACKGROUND: Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS: A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS: Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION: BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.


Assuntos
Proteínas Quinases Ativadas por AMP , Clusterina , Metilação de DNA , Diabetes Mellitus Experimental , Ferroptose , Regiões Promotoras Genéticas , Transdução de Sinais , Testículo , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Clusterina/genética , Clusterina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , DNA Metiltransferase 3A/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ferroptose/genética , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Testículo/patologia
3.
Clin Transl Sci ; 17(7): e13881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982592

RESUMO

Chondrocyte apoptosis is recognized as one of the pathological features involved in cartilage degeneration driving the onset and progression of knee osteoarthritis (OA). This study aimed to determine the molecular mechanism underlying the effect of clusterin (CLU), anti-apoptotic molecule, in human knee OA chondrocytes. Primary knee OA chondrocytes were isolated from the cartilage of knee OA patients and divided into five groups: (1) the cells treated with interleukin (IL)-1ß, (2) CLU alone, (3) a combination of IL-1ß and CLU, (4) LY294002 (PI3K inhibitor) along with IL-1ß and CLU, and (5) the untreated cells. Production of apoptotic, inflammatory, anabolic, and catabolic mediators in knee OA chondrocytes was determined after treatment for 24 h. Our in vitro study uncovered that CLU significantly suppressed the production of inflammatory mediators [nitric oxide (NO), IL6, and tumor necrosis factor (TNF)-α] and apoptotic molecule (caspase-3, CASP3). CLU significantly upregulated messenger ribonucleic acid (mRNA) expressions of anabolic factors [SRY-box transcription factor-9 (SOX9) and aggrecan (ACAN)], but significantly downregulated mRNA expressions of IL6, nuclear factor kappa-B (NF-κB), CASP3, and matrix metalloproteinase-13 (MMP13). Anti-apoptotic and anti-inflammatory effects of CLU were mediated through activating PI3K/Akt signaling pathway. The findings suggest that CLU might have beneficial effects on knee OA chondrocytes by exerting anti-apoptotic and anti-inflammatory functions via PI3K/Akt pathway, making CLU a promising target for potential therapeutic interventions in knee OA.


Assuntos
Apoptose , Condrócitos , Clusterina , Interleucina-1beta , Osteoartrite do Joelho , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Apoptose/efeitos dos fármacos , Clusterina/metabolismo , Clusterina/genética , Interleucina-1beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Masculino , Pessoa de Meia-Idade , Idoso , Inflamação/metabolismo , Inflamação/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Morfolinas/farmacologia , Cromonas/farmacologia , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Metaloproteinase 13 da Matriz/metabolismo , Mediadores da Inflamação/metabolismo , Óxido Nítrico/metabolismo
4.
Methods Mol Biol ; 2816: 145-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977596

RESUMO

Clusterin, also known as apolipoprotein J, is an ATP-independent holdase chaperone protein. Clusterin is involved in various functions including protein quality control and lipid transport. Though clusterin is secreted upon stress, the intracellular fate of clusterin after a stress response is not well understood. The protocol described here utilizes clusterin tagged to fluorescent proteins like green fluorescent protein and red fluorescent protein to understand the intracellular fate of clusterin.


Assuntos
Clusterina , Microscopia Confocal , Clusterina/metabolismo , Humanos , Microscopia Confocal/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteína Vermelha Fluorescente , Animais
5.
Neuroreport ; 35(13): 857-867, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38973492

RESUMO

Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, however, its exact mechanism remains unknown. This study aimed to evaluate whether clusterin is essential to the development of SAE during the aging process of astrocytes. In the study, septic mice were established with cecal ligation and puncture (CLP) and lipopolysaccharides were applied to astrocytes in vitro. Evan's blue dye was used in vivo to show blood-brain barrier (BBB) permeability. A morris water maze test was conducted to assess cognitive functions of the mice. Clusterin-knockout mice were used to examine the effect of clusterin on sepsis. The astrocytes were transfected with lentivirus expressing clusterin cDNA for clusterin overexpression or pYr-LV-clusterin small hairpin RNA for clusterin knockdown in vitro . The expression of clusterin, p-p53, p21, GDNF, and iNOS was detected. he CLP mice exhibited a higher clusterin expression in hippocampus tissue, aging astrocytes, lower GDNF expression and higher iNOS expression, accompanied with BBB damage and cognitive deficiency. Following clusterin knockout, this pathological process was further enhanced. In vitro , following lipopolysaccharides treatment, astrocytes exhibited increased clusterin, p-p53, p21, iNOS and decreased GDNF. Following clusterin knockdown, the cells exhibited a further increase in p-p53, p21, and iNOS and decrease in GDNF. Clusterin overexpression, however, helped inhibit astrocytes aging and neuroinflammation evidenced by decreased p-p53, p21, iNOS and increased GDNF. The present study has revealed that clusterin may exert its neuroprotective effect by preventing aging in astrocytes, suppressing the secretion of iNOS and promoting GNDF release.


Assuntos
Astrócitos , Barreira Hematoencefálica , Clusterina , Disfunção Cognitiva , Camundongos Knockout , Encefalopatia Associada a Sepse , Animais , Clusterina/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Masculino , Camundongos Endogâmicos C57BL , Senescência Celular/fisiologia , Lipopolissacarídeos , Sepse/complicações , Sepse/metabolismo , Hipocampo/metabolismo
6.
Mol Reprod Dev ; 91(7): e23764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072963

RESUMO

Clusterin (CLU), one of the main glycoproteins in mammalian semen and the male reproductive tract, plays a role in spermatogenesis and sperm maturation. Given the poor reliability of classic seminal studies in determining male-fertilizing capacity and the differences in CLU abundance between normal and abnormal spermatozoa, we investigated the potential value of mRNA-CLU levels and protein distribution in spermatozoa as markers of sperm quality and predictors of male fertility. This multicenter study included 90 patients undergoing in vitro fertilization (IVF) treatment with their partners, and a control group of 36 fertile males with normal seminograms. We assessed the relationship between IVF treatment outcomes, seminogram variables, mRNA-CLU levels by quantitative real-time-PCR and CLU distribution by immunostaining in spermatozoa. Our study reveals CLU staining in the acrosome (p = 0.002, OR 14.8, 95% CI: 2.7-79.3) and mRNA-CLU levels (p = 0.005, OR 10.85, 95% CI: 2.0-57.4) as independent risk factors for pregnancy failure, irrespective of traditional seminogram variables. Additionally, our results suggest that CLU, and specially its secreted isoform, constitutes a component of the protein pool that human spermatozoa can produce during its maturation process, exhibiting a variable abundance and distribution in spermatozoa from fertile men compared to those in patients with altered seminograms and infertile patients with normal seminograms. Our study is the first to identify mRNA-CLU levels and CLU immunostaining in the spermatozoa acrosome as independent risk factors for pregnancy failure, with distribution patterns correlating with sperm maturity and seminogram alterations.


Assuntos
Clusterina , Espermatozoides , Humanos , Clusterina/metabolismo , Clusterina/genética , Masculino , Espermatozoides/metabolismo , Adulto , Feminino , Fertilidade/fisiologia , Gravidez , Fertilização in vitro , Infertilidade Masculina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
7.
Alzheimers Res Ther ; 16(1): 169, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069622

RESUMO

BACKGROUND: Cerebral amyloid angiopathy (CAA) is characterized by amyloid-ß (Aß) deposition in cerebral vessels, leading to lobar cerebral microbleeds (CMB) and intracerebral hemorrhages (ICH). Apolipoprotein J (ApoJ) is a multifunctional chaperone related to Aß aggregation and clearance. Our study investigated the vascular impact of chronic recombinant human Apolipoprotein J (rhApoJ) treatment in a transgenic mouse model of ß-amyloidosis with prominent CAA. METHODS: Twenty-month-old APP23 C57BL/6 mice received 25 doses of rhApoJ (1 mg/kg) (n = 9) or saline (n = 8) intraperitoneally for 13 weeks, while Wild-type (WT) mice received saline (n = 13). Postmortem brains underwent T2*-weighted magnetic resonance imaging (MRI) to detect hemorrhagic lesions. Aß levels and distribution, cerebral fibrinogen leakage, brain smooth muscle actin (sma), and plasma matrix metalloproteinases and inflammatory markers were analyzed after treatments. Additionally, plasma samples from 22 patients with lobar ICH were examined to determine the clinical relevance of the preclinical findings. RESULTS: rhApoJ-treated APP23 presented fewer cortical CMBs (50-300 µm diameter) (p = 0.012) and cortical larger hemorrhages (> 300 µm) (p = 0.002) than saline-treated mice, independently of Aß brain levels. MRI-detected hemorrhagic lesions correlated with fibrinogen cerebral extravasation (p = 0.011). Additionally, rhApoJ-treated mice presented higher number of sma-positive vessels than saline-treated mice (p = 0.038). In rhApoJ-treated mice, human ApoJ was detected in plasma and in occasional leptomeningeal vessels, but not in the parenchyma, suggesting that its mechanism of action operates through the periphery. The administration of rhApoJ induced an increase in plasma Groα (p = 0.035) and MIP-1α (p = 0.035) levels, while lower MMP-12 (p = 0.046) levels, compared to the saline-treated group. In acute lobar ICH patients, MMP-12 plasma levels correlated with larger hemorrhage volume (p = 0.040) and irregular ICH shape (p = 0.036). CONCLUSIONS: Chronic rhApoJ treatment in aged APP23 mice ameliorated CAA-related neurovascular damage by reducing the occurrence of CMB. We propose that rhApoJ may prevent blood-brain barrier (BBB) leakage and CMB appearance partly through circulating MMP-12 modulation.


Assuntos
Angiopatia Amiloide Cerebral , Hemorragia Cerebral , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Angiopatia Amiloide Cerebral/tratamento farmacológico , Humanos , Hemorragia Cerebral/sangue , Camundongos , Masculino , Feminino , Peptídeos beta-Amiloides , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Idoso , Imageamento por Ressonância Magnética , Proteínas Recombinantes/administração & dosagem , Precursor de Proteína beta-Amiloide/genética , Clusterina
8.
Int Immunopharmacol ; 137: 112355, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851158

RESUMO

One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.


Assuntos
Clusterina , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Clusterina/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Microambiente Tumoral/imunologia
9.
Neurosci Lett ; 836: 137874, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38857696

RESUMO

Clusterin is a secreted glycoprotein that participates in multiple physiological processes through its chaperon function. In Alzheimer's disease, the brain functions under an increased oxidative stress condition that causes an elevation of protein oxidation, resulting in enhanced pathology. Accordingly, it is important to determine the type of human brain cells that are mostly prone to methionine oxidation in Alzheimer's disease and specifically monitoring the methionine-oxidation levels of clusterin in human and mice brains and its effect on clusterin's function. We analyzed the level of methionine sulfoxide (MetO)-clusterin in these brains, using a combination of immunoprecipitation and Western-blott analyses. Also, we determine the effect of methionine oxidation on clusterin ability to bind beta-amyloid, in vitro, using calorimetric assay. Our results show that human neurons and astrocytes of Alzheimer's disease brains are mostly affected by methionine oxidation. Moreover, MetO-clusterin levels are elevated in postmortem Alzheimer's disease human and mouse brains in comparison to controls. Finally, oxidation of methionine residues of purified clusterin reduced its binding efficiency to beta-amyloid. In conclusion, we suggest that methionine oxidation of brain-clusterin is enhanced in Alzheimer's disease and that this oxidation compromises its chaperon function, leading to exacerbation of beta-amyloid's toxicity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Encéfalo , Clusterina , Metionina , Oxirredução , Clusterina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Metionina/metabolismo , Metionina/análogos & derivados , Humanos , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Astrócitos/metabolismo , Camundongos , Neurônios/metabolismo , Ligação Proteica , Masculino , Idoso
10.
N Engl J Med ; 390(23): 2217-2219, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899702
11.
J Alzheimers Dis ; 99(4): 1261-1271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788070

RESUMO

Background: Reliable blood biomarkers are crucial for early detection and treatment evaluation of cognitive impairment, including Alzheimer's disease and other dementias. Objective: To examine whether plasma biomarkers and their combination are different between older people with mild cognitive impairment (MCI) and cognitively normal individuals, and to explore their relations with cognitive performance. Methods: This cross-sectional study included 250 older adults, including 124 participants with MCI, and 126 cognitively normal participants. Plasma brain-derived neurotrophic factor (BDNF), irisin and clusterin were measured, and BDNF/irisin ratio was calculated. Global cognition was evaluated by the Montreal Cognitive Assessment. Results: Plasma irisin levels, but not BDNF, were significantly different between MCI group and cognitively normal group. Higher irisin concentration was associated with an increased probability for MCI both before and after controlling covariates. By contrast, plasma BDNF concentration, but not irisin, was linearly correlated with cognitive performance after adjusting for covariates. Higher BDNF/irisin ratios were not only correlated with better cognitive performance, but also associated with lower risks of MCI, no matter whether we adjusted for covariates. Plasma BDNF and irisin concentrations increased with aging, whereas BDNF/irisin ratios remained stable. No significant results of clusterin were observed. Conclusions: Plasma BDNF/irisin ratio may be a reliable indicator which not only reflects the odds of the presence of MCI but also directly associates with cognitive performance.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Clusterina , Cognição , Disfunção Cognitiva , Fibronectinas , Humanos , Fator Neurotrófico Derivado do Encéfalo/sangue , Masculino , Feminino , Idoso , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Fibronectinas/sangue , Estudos Transversais , Clusterina/sangue , Cognição/fisiologia , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Testes Neuropsicológicos/estatística & dados numéricos , Envelhecimento/sangue , Testes de Estado Mental e Demência
12.
Cells ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667280

RESUMO

Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.


Assuntos
Clusterina , Neoplasias , Clusterina/metabolismo , Clusterina/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Apoptose/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
13.
Int J Biol Macromol ; 266(Pt 2): 131341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574922

RESUMO

Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.


Assuntos
Sêmen , Espermatozoides , Masculino , Humanos , Sêmen/metabolismo , Sêmen/química , Espermatozoides/metabolismo , Motilidade dos Espermatozoides , Glicoproteínas/metabolismo , Glicodelina/metabolismo , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Análise do Sêmen/métodos , Clusterina/metabolismo , Lectinas/metabolismo , Lectinas/química , Ejaculação , Ácidos Siálicos/metabolismo , Proteínas de Plasma Seminal/metabolismo , Lactoferrina/metabolismo , Apoptose
14.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673784

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Glycoprotein clusterin (CLU) has many functions such as phagocyte recruitment, complement system inhibition, apoptosis inhibition, hormone and lipid transport, as well as in the immune response. The study aimed to assess the changes in CLU concentrations and the profile and degree of CLU glycosylation between patients with severe COVID-19, convalescents, and healthy subjects (control). The profile and degree of serum CLU N-glycosylation were analyzed using lectin-ELISA with specific lectins. CLU concentrations were significantly lower and relative reactivities of CLU glycans with SNA (Sambucus nigra agglutinin) were significantly higher in severe COVID-19 patients in comparison to convalescents and the control group. The relative reactivities of CLU glycans with MAA (Maackia amurensis agglutinin), together with relative reactivity with LCA (Lens culinaris agglutinin), were also significantly higher in patients with severe COVID-19 than in convalescents and the control group, but they also significantly differed between convalescents and control. The development of acute inflammation in the course of severe COVID-19 is associated with a decrease in CLU concentration, accompanied by an increase in the expression of α2,3-linked sialic acid, and core fucose. Both of these parameters can be included as useful glycomarkers differentiating patients with severe COVID-19 from convalescents and the control group, as well as convalescents and healthy subjects.


Assuntos
Biomarcadores , COVID-19 , Clusterina , SARS-CoV-2 , Feminino , Humanos , Masculino , Biomarcadores/sangue , Clusterina/sangue , COVID-19/sangue , COVID-19/diagnóstico , Glicosilação , Lectinas/sangue
16.
Autophagy ; 20(6): 1359-1382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447939

RESUMO

Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.


Assuntos
Sobrevivência Celular , Clusterina , Mitocôndrias , Mitofagia , Neoplasias Bucais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Clusterina/metabolismo , Clusterina/genética , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Biogênese de Organelas , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Autofagia/fisiologia , Autofagia/efeitos dos fármacos
17.
Cancer Metastasis Rev ; 43(1): 379-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319453

RESUMO

Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treatment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the LGR5+ve CSC population is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert to a stem-like state in response to chemotherapy treatment which replenishes the LGR5+ve CSC population and maintains tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective target for therapeutic intervention.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Clusterina/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia
18.
Front Immunol ; 15: 1330095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333209

RESUMO

Introduction: The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods: To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum­purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size­exclusion chromatography. Results: Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion: Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.


Assuntos
Clusterina , Complemento C7 , Complemento C7/metabolismo , Proteínas do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ativação do Complemento
19.
Med Sci Monit ; 30: e942819, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389296

RESUMO

BACKGROUND Serum creatinine, the criterion standard in assessment of renal function, is not reliable for the neonatal period because of its dependence on renal immaturity and maternal creatinine levels. Thus, it is important to study other biomarkers of renal function in neonates. The present study aimed to measure the urinary concentration of renal biomarkers: calbindin, clusterin, GST-pi (glutathione-S-transferase-alpha), KIM-1 (kidney injury molecule 1), MCP-1 (monocyte chemoattractant protein-1), and B2M (beta 2-microglobulin) in healthy term neonates. MATERIAL AND METHODS In the study, we included 80 healthy term neonates - 40 females and 40 males. We collected the neonates' urine on their first day of life. Urinary concentrations of calbindin, clusterin, KIM-1, MCP-1, and B2M were assessed using an immunoassay for kidney toxicology research. Because dilution of the urine affects the concentrations of urinary biomarkers, we normalized them to the concentration of urinary creatinine (Cr) and present them as biomarker/Cr ratios. RESULTS We obtained the following values of the assessed biomarker/Cr ratios (median [Q1-Q3]): calbindin/Cr.: 197.04 (56.25-595.17), KIM-1/Cr: 0.09 (0.04-0.18), MCP-1/Cr: 0.05 (0.02-0.14), B2M/Cr: 126.12 (19.03-342.48), GST-pi/Cr in boys: 1.28 (0.46-3.77), GST-pi/Cr in girls: 8.66 (2.51-27.82), clusterin/Cr: 4.55 (1.79-12.97) ng/mg Cr. CONCLUSIONS We showed the urinary levels of calbindin, clusterin, GST-pi, KIM-1, MCP-1, B2M in white, West Slavic, healthy term neonates. We found that in there is an association between female sex and a higher urinary GST-pi excretion, but urinary excretion of calbindin, clusterin, KIM-1, MCP-1, and B2M is sex-independent. The urinary levels of the assessed biomarkers do not depend on the method of delivery.


Assuntos
Clusterina , Rim , Masculino , Recém-Nascido , Humanos , Feminino , Creatinina , Fatores Sexuais , Biomarcadores , Calbindinas
20.
Neuro Oncol ; 26(7): 1262-1279, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416702

RESUMO

BACKGROUND: Meningioma is the most common primary intracranial tumor with a high frequency of postoperative recurrence, yet the biology of the meningioma malignancy process is still obscure. METHODS: To identify potential therapeutic targets and tumor suppressors, we performed single-cell transcriptome analysis through meningioma malignancy, which included 18 samples spanning normal meninges, benign and high-grade in situ tumors, and lung metastases, for extensive transcriptome characterization. Tumor suppressor candidate gene and molecular mechanism were functionally validated at the animal model and cellular levels. RESULTS: Comprehensive analysis and validation in mice and clinical cohorts indicated clusterin (CLU) had suppressive function for meningioma tumorigenesis and malignancy by inducing mitochondria damage and triggering type 1 interferon pathway dependent on its secreted isoform, and the inhibition effect was enhanced by TNFα as TNFα also induced type 1 interferon pathway. Meanwhile, both intra- and extracellular CLU overexpression enhanced macrophage polarization towards M1 phenotype and TNFα production, thus promoting tumor killing and phagocytosis. CONCLUSIONS: CLU might be a key brake of meningioma malignance by synchronously modulating tumor cells and their microenvironment. Our work provides comprehensive insights into meningioma malignancy and a potential therapeutic strategy.


Assuntos
Clusterina , Macrófagos , Neoplasias Meníngeas , Meningioma , Clusterina/metabolismo , Clusterina/genética , Meningioma/patologia , Meningioma/metabolismo , Animais , Humanos , Camundongos , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Carcinogênese/metabolismo , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Células Tumorais Cultivadas , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA