Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Food Res Int ; 190: 114555, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945560

RESUMO

Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.


Assuntos
Biofilmes , Cronobacter sakazakii , Fatores de Virulência , Cronobacter sakazakii/genética , Cronobacter sakazakii/patogenicidade , Fatores de Virulência/genética , Biofilmes/crescimento & desenvolvimento , Humanos , Camundongos , Virulência/genética , Células CACO-2 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Animais , Células RAW 264.7 , Aderência Bacteriana/genética , Estresse Fisiológico/genética , Regulação Bacteriana da Expressão Gênica , Microbiologia de Alimentos
2.
Appl Environ Microbiol ; 89(7): e0050523, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37382536

RESUMO

Cronobacter sakazakii is a Gram-negative bacterium that causes infections in individuals of all ages, with neonates being the most vulnerable group. The objective of this study was to explore the function of the dnaK gene in C. sakazakii and to elucidate the impact of alterations in the protein composition regulated by dnaK on virulence and stress adaptation. Our research demonstrates the critical role of the dnaK gene in various key virulence factors, including adhesion, invasion, and acid resistance in C. sakazakii. Through the use of proteomic analysis, we discovered that deletion of the dnaK gene in C. sakazakii leads to an upregulation of protein abundance and increased levels of deamidated posttranscriptional modifications, suggesting that DnaK may play a role in maintaining proper protein activity by reducing protein deamidation in bacteria. These findings indicate that DnaK-mediated protein deamidation may be a novel mechanism for virulence and stress adaptation in C. sakazakii. These findings suggest that targeting DnaK could be a promising strategy for developing drugs to treat C. sakazakii infections. IMPORTANCE Cronobacter sakazakii can cause disease in individuals of all ages, with infections in premature infants being particularly deadly and resulting in bacterial meningitis and sepsis with a high mortality rate. Our study demonstrates that dnaK in Cronobacter sakazakii plays a critical role in virulence, adhesion, invasion, and acid resistance. Using proteomic analysis to compare protein changes in response to dnaK knockout, we found that dnaK knockout significantly upregulates the abundance of some proteins but also results in the deamidation of many proteins. Our research has identified a connection between molecular chaperones and protein deamidation, which suggests a potential future drug development strategy of targeting DnaK as a drug target.


Assuntos
Proteínas de Bactérias , Cronobacter sakazakii , Chaperonas Moleculares , Cronobacter sakazakii/patogenicidade , Cronobacter sakazakii/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Técnicas de Inativação de Genes , Proteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Adaptação Fisiológica
3.
Proc Natl Acad Sci U S A ; 119(11): e2118002119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271389

RESUMO

SignificanceYeiE has been identified as a master virulence factor of Cronobacter sakazakii. In this study, we determined the crystal structures of the regulatory domain of YeiE in complex with its physiological ligand sulfite ion (SO32-). The structure provides the basis for the molecular mechanisms for sulfite sensing and the ligand-dependent conformational changes of the regulatory domain. The genes under the control of YeiE in response to sulfite were investigated to reveal the functional roles of YeiE in the sulfite tolerance of the bacteria. We propose the molecular mechanism underlying the ability of gram-negative pathogens to defend against the innate immune response involving sulfite, thus providing a strategy to control the pathogenesis of bacteria.


Assuntos
Proteínas de Bactérias , Cronobacter sakazakii , Estresse Fisiológico , Sulfitos , Fatores de Transcrição , Fatores de Virulência , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Cronobacter sakazakii/patogenicidade , Cristalização , Ligantes , Domínios Proteicos , Sulfitos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Virulência/química , Fatores de Virulência/genética
4.
BMC Infect Dis ; 21(1): 493, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044785

RESUMO

INTRODUCTION: Cronobacter sakazakii is an opportunistic Gram-negative, rod-shaped bacterium which may be a causative agent of meningitis in premature infants and enterocolitis and bacteremia in neonates and adults. While there have been multiple cases of C. sakazakii infections, there have been no acute cholangitis cases reported in humans. CASE PRESENTATION: An 81-year-old male with a past medical history of basal cell carcinoma, alcoholic liver cirrhosis, transjugular intrahepatic portosystemic shunt procedure, complicated by staphylococcus bacteremia, pituitary tumor, glaucoma, and hypothyroidism presented to the emergency room with the complaint of diffuse and generalized 10/10 abdominal pain of 1 day's duration. There was a concern for pancreatitis, acute cholangitis, and possible cholecystitis, and the patient underwent a percutaneous cholecystostomy tube placement. Blood cultures from admission and biliary fluid cultures both grew C. sakazakii. The patient was treated with a carbapenem and clinically improved. CONCLUSIONS: The case study described a patient with multiple medical comorbidities that presented with C. sakazakii bacteremia and cholangitis. While this bacterium has been implicated in other infections, we believe this is the first time the bacteria is being documented to have caused acute cholangitis.


Assuntos
Bacteriemia/diagnóstico , Colangite/diagnóstico , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/diagnóstico , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Bacteriemia/complicações , Bacteriemia/terapia , Carbapenêmicos/uso terapêutico , Colangite/microbiologia , Colangite/terapia , Colecistostomia/métodos , Cronobacter sakazakii/patogenicidade , Drenagem/métodos , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/terapia , Humanos , Masculino , Infecções Oportunistas/diagnóstico , Infecções Oportunistas/microbiologia , Infecções Oportunistas/terapia , Reação em Cadeia da Polimerase/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
5.
Pediatr Infect Dis J ; 40(9): e346-e348, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990519

RESUMO

We report 2 infants hospitalized with Cronobacter sakazakii meningitis. Each infant had exposure to powdered infant formula at home. Both infants survived, but 1 infant had a subdural empyema drained and developed left sensorineural hearing loss. Early advanced brain imaging is recommended in infants with C. sakazakii meningitis. Reporting to state and federal public health officials may help identify outbreaks.


Assuntos
Encéfalo/diagnóstico por imagem , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/diagnóstico por imagem , Fórmulas Infantis/microbiologia , Meningites Bacterianas/diagnóstico por imagem , Saúde Pública , Antibacterianos/uso terapêutico , Encéfalo/microbiologia , Cronobacter sakazakii/genética , Surtos de Doenças/prevenção & controle , Infecções por Enterobacteriaceae/líquido cefalorraquidiano , Infecções por Enterobacteriaceae/tratamento farmacológico , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Resultado do Tratamento
6.
Virulence ; 12(1): 415-429, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33459158

RESUMO

Cronobacter sakazakii, an emerging opportunistic pathogen, is implicated in severe foodborne outbreak infections in premature and full-term infants. Generally, acid tolerance is vital for the pathogenesis of foodborne pathogens; however, its role in C. sakazakii virulence remains largely unknown. To screen out acid-tolerance determinants from transposon mutants, anovel counterselection method using gentamicin and acid was developed. Using the counterselection method and growth assay, we screened several acid-sensitive mutants and found that nlpD encodes an acid-resistance factor in C. sakazakii.  Compared to the wild-type strain, the nlpD mutant exhibited attenuated virulence in a rat model. Using macrophage THP-1 cells and a pH probe, we verified that nlpD enables bacteria to resist macrophages by resisting acidification. Finally, we confirmed that nlpD maintains C. sakazakii membrane integrity in acid using propidium iodide permeabilization assays via flow cytometry. Our results confirm that nlpD is a novel virulence factor that permits C. sakazakii to survive under acid stress conditions. Considering that NlpD is a conserved lipoprotein located in the bacterial outer membrane, NlpD could be used as a target for drug development.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cronobacter sakazakii/genética , Cronobacter sakazakii/patogenicidade , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Lipoproteínas/metabolismo , Macrófagos/microbiologia , Ácidos/farmacologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Cronobacter sakazakii/efeitos dos fármacos , Ratos , Fatores de Virulência/genética
7.
J Food Sci ; 86(2): 276-283, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33438222

RESUMO

This review considers how research in China has progressed our understanding and subsequent improved control of Cronobacter. This emergent bacterial pathogen is associated with neonatal infections through the ingestion of contaminated prepared feed. The review includes large-scale surveys of various sources of the organism, including infant formula production facilities. The analysis of over 20,000 samples is presented. Over 10,000 being from powdered infant formula and other infant foods as well as environmental sampling of production facilities, the remaining being from food, food ingredients, and human carriage. A major advance in China was adopting DNA-sequence-based methods (that is, multilocus sequence typing, clustered regularly interspaced short palindromic repeats-cas array profiling, and single-nucleotide polymorphism analysis) for the identification and genotyping of the organism. These methods have considerably advanced our understanding of the taxonomy, ecology, and virulence of this organism. In turn, this has improved source tracking of the organism both in infant formula production facilities and epidemiological investigations. Furthermore, whole-genome sequencing has revealed a range of virulence and persistence mechanisms as well as plasmid-borne multidrug resistance traits. China now has reliable and robust methods for accurate microbial source tracking of Cronobacter for use both in the food production environment and epidemiological analysis.


Assuntos
Cronobacter , Microbiologia de Alimentos/métodos , China , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cronobacter/genética , Cronobacter/isolamento & purificação , Cronobacter/patogenicidade , Cronobacter sakazakii/classificação , Cronobacter sakazakii/genética , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Genótipo , Humanos , Lactente , Alimentos Infantis/microbiologia , Fórmulas Infantis/microbiologia , Recém-Nascido , Tipagem de Sequências Multilocus , Virulência
8.
J Mol Neurosci ; 71(1): 28-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32567007

RESUMO

This study was designed to test whether the Cronobacter sakazakii infection-impaired contextual learning and memory are mediated by the activation of the complement system; subsequent activation of inflammatory signals leads to alternations in serotonin transporter (SERT). To test this, rat pups (postnatal day, PND 15) were treated with either C. sakazakii (107 CFU) or Escherichia coli OP50 (107 CFU) or Luria bertani broth (100 µL) through oral gavage and allowed to stay with their mothers until PND 24. Experimental groups' rats were allowed to explore (PNDs 31-35) and then trained in contextual learning task (PNDs 36-43). Five days after training, individuals were tested for memory retention (PNDs 49-56). Observed behavioural data showed that C. sakazakii infection impaired contextual-associative learning and memory. Furthermore, our analysis showed that C. sakazakii infection activates complement system complement anaphylatoxin (C5a) (a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1)) and mitogen-activated protein kinase kinase1 (MEKK1). Subsequently, MEKK1 induces pro-inflammatory signals possibly through apoptosis signal-regulating kinase-1 (ASK-1), c-Jun N-terminal kinase (JNK1/3) and protein kinase B gamma (AKT-3). In parallel, activated nuclear factor kappa-light-chain-enhancer B cells (NF-κB) induces interleukin-6 (IL-6) and IFNα-1, which may alter the level of serotonin transporter (SERT). Observed results suggest that impaired contextual learning and memory could be correlated with C5a-mediated NF-κß and ASK1 pathways.


Assuntos
Aprendizagem por Associação/fisiologia , Ativação do Complemento , Complemento C5a/fisiologia , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/complicações , Deficiências da Aprendizagem/etiologia , MAP Quinase Quinase Quinase 5/fisiologia , Transtornos da Memória/etiologia , NF-kappa B/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Proteína ADAMTS1/metabolismo , Animais , Animais Lactentes , Córtex Cerebral/metabolismo , Infecções por Enterobacteriaceae/imunologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Regulação da Expressão Gênica/imunologia , Inflamação , Interferon-alfa/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Deficiências da Aprendizagem/imunologia , Deficiências da Aprendizagem/microbiologia , MAP Quinase Quinase Quinase 1/metabolismo , Transtornos da Memória/imunologia , Transtornos da Memória/microbiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
9.
Antonie Van Leeuwenhoek ; 113(11): 1587-1600, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918643

RESUMO

The study reports protective role of potential probiotic cultures against infection by biofilm forming Cronobacter sakazakii in Caenorhabditis elegans model system. Among the fifteen indigenous potential probiotics, the cell free supernatant of Lactobacillus gastricus BTM7 possessed highest antimicrobial action and biofilm inhibition against C. sakazakii. The competitive exclusion assays revealed that preconditioning with probiotics resulted in increased mean life span of the nematode to 12-13 days as compared to 5-6 days when the pathogen was administered alone. Enhanced expression of the marker genes (pmk-1, daf-16 and skn-1) was observed during the administration of probiotic cultures. The highest expression of pmk-1 (2.5 folds) was observed with administration of L. gastricus BTM7. The principal component analysis on selected variables revealed that L. gastricus BTM7 has the potential to limit the infection of C. sakazakii in C. elegans and enhance the expression of key genes involved in extending life span of the worm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Cronobacter sakazakii/crescimento & desenvolvimento , Cronobacter sakazakii/patogenicidade , Lactobacillus/fisiologia , Probióticos , Animais , Caenorhabditis elegans/genética , Longevidade/genética
10.
BMC Microbiol ; 19(1): 306, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881843

RESUMO

BACKGROUND: Cronobacter sakazakii is an emerging opportunistic bacterial pathogen known to cause neonatal and pediatric infections, including meningitis, necrotizing enterocolitis, and bacteremia. Multiple disease outbreaks of C. sakazakii have been documented in the past few decades, yet little is known of its genomic diversity, adaptation, and evolution. Here, we analyzed the pan-genome characteristics and phylogenetic relationships of 237 genomes of C. sakazakii and 48 genomes of related Cronobacter species isolated from diverse sources. RESULTS: The C. sakazakii pan-genome contains 17,158 orthologous gene clusters, and approximately 19.5% of these constitute the core genome. Phylogenetic analyses reveal the presence of at least ten deep branching monophyletic lineages indicative of ancestral diversification. We detected enrichment of functions involved in proton transport and rotational mechanism in accessory genes exclusively found in human-derived strains. In environment-exclusive accessory genes, we detected enrichment for those involved in tryptophan biosynthesis and indole metabolism. However, we did not find significantly enriched gene functions for those genes exclusively found in food strains. The most frequently detected virulence genes are those that encode proteins associated with chemotaxis, enterobactin synthesis, ferrienterobactin transporter, type VI secretion system, galactose metabolism, and mannose metabolism. The genes fos which encodes resistance against fosfomycin, a broad-spectrum cell wall synthesis inhibitor, and mdf(A) which encodes a multidrug efflux transporter were found in nearly all genomes. We found that a total of 2991 genes in the pan-genome have had a history of recombination. Many of the most frequently recombined genes are associated with nutrient acquisition, metabolism and toxin production. CONCLUSIONS: Overall, our results indicate that the presence of a large accessory gene pool, ability to switch between ecological niches, a diverse suite of antibiotic resistance, virulence and niche-specific genes, and frequent recombination partly explain the remarkable adaptability of C. sakazakii within and outside the human host. These findings provide critical insights that can help define the development of effective disease surveillance and control strategies for Cronobacter-related diseases.


Assuntos
Cronobacter sakazakii/genética , Cronobacter sakazakii/patogenicidade , Genoma Bacteriano , Recombinação Genética , Genômica , Humanos , Família Multigênica , Filogenia , Especificidade da Espécie , Virulência
11.
Emerg Infect Dis ; 24(11): 2121-2124, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30334728

RESUMO

We report a case of meningitis in a neonate in China, which was caused by a novel multidrug-resistant Cronobacter sakazakii strain, sequence type 256, capsular profile K1:CA1. We identified genetic factors associated with bacterial pathogenicity and antimicrobial drug resistance in the genome and plasmids. Enhanced surveillance of this organism is warranted.


Assuntos
Cronobacter sakazakii/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Enterobacteriaceae/microbiologia , Genoma Bacteriano/genética , Meningite/diagnóstico , Antibacterianos/farmacologia , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/diagnóstico , Infecções por Enterobacteriaceae/epidemiologia , Humanos , Recém-Nascido , Meningite/epidemiologia , Meningite/microbiologia , Plasmídeos/genética
12.
Sensors (Basel) ; 18(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941806

RESUMO

Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment and skill demanding. Recently, nanoparticle- and surface-based immunoassays have increasingly been explored for pathogen detection. We investigate the functionalization of gold nanoparticles optimized for irreversible and specific binding to C. sakazakii and their use for spectroscopic detection of the pathogen. We demonstrate how 40-nm gold nanoparticles grafted with a poly(ethylene glycol) brush and functionalized with polyclonal antibodies raised against C. sakazakii can be used to specifically target C. sakazakii. The strong extinction peak of the Au nanoparticle plasmon polariton resonance in the optical range is used as a label for detection of the pathogens. Individual binding of the nanoparticles to the C. sakazakii surface is also verified by transmission electron microscopy. We show that a high degree of surface functionalization with anti-C. sakazakii optimizes the detection and leads to a detection limit as low as 10 CFU/mL within 2 h using a simple cuvette-based UV-Vis spectrometric readout that has great potential for further optimization.


Assuntos
Cronobacter sakazakii/imunologia , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Ouro/imunologia , Nanopartículas Metálicas , Animais , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Lactente , Limite de Detecção , Reação em Cadeia da Polimerase , Coelhos
13.
Biosens Bioelectron ; 109: 139-149, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29550737

RESUMO

A sensitive electrochemical immunosensing platform for the detection of Cronobacter sakazakii was developed using a graphene oxide/gold (GO/Au) composite. Transmission electron microscopy showed that the Au nanoparticles, with an average size of < 30 nm, were well dispersed on the GO surface. For the detection of C. sakazakii, a polyclonal anti-C. sakazakii antibody (IgG) was covalently immobilized to the Au nanoparticles on the surface of the GO/Au composite coated glassy carbon electrode (GCE). The electrochemical sensing performance of immunofunctionalized GCE was characterized by cyclic voltammetry and differential pulse voltammetry. Under optimized conditions, in pure culture there was a linear relationship between electrical signal and C. sakazakii levels over the range 2.0 × 102-2.0 × 107 cfu/mL (R2 = 0.999), with a detection limit of 2.0 × 101 cfu/mL. The total analytical time was 15 min per sample. The C. sakazakii electrochemical immunosensing assay was able to successfully detect 2.0 × 101 cfu/mL of C. sakazakii in artificially contaminated powdered infant formula without any enrichment or pre-enrichment steps. Furthermore, the recovery rates of the C. sakazakii electrochemical immunosensing assay following spiking of powdered infant formula with different concentrations of C. sakazakii (cfu/mL) were 82.58% at 2.0 × 101 cfu/mL, 84.86% at 2.0 × 102 cfu/mL, and 95.40% at 2.0 × 103 cfu/mL. The C. sakazakii electrochemical immunosensing assay had good selectivity, reproducibility, and reactivity compared with other Cronobacter spp. and/or pathogens belonging to other genera, indicating its significant potential in the clinical diagnosis of C. sakazakii.


Assuntos
Técnicas Biossensoriais , Cronobacter sakazakii/isolamento & purificação , Técnicas Eletroquímicas , Fórmulas Infantis/microbiologia , Anticorpos/química , Anticorpos/imunologia , Cronobacter sakazakii/imunologia , Cronobacter sakazakii/patogenicidade , Microbiologia de Alimentos , Ouro/química , Humanos , Lactente , Limite de Detecção , Nanocompostos/química
14.
Sci Rep ; 8(1): 835, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339761

RESUMO

Cronobacter sakazakii is an opportunistic pathogen that can cause meningitis and necrotizing enterocolitis in premature infants, but its virulence determinants remain largely unknown. In this study, a transposon-mediated random-mutant library of C. sakazakii was used to identify new virulence factors. Compared to wild-type bacteria, a mutant lacking CSK29544_02616 (referred to as labp) was defective in invasion into intestinal epithelial cells (by at least 1000-fold) and showed less phagocytosis by macrophages (by at least 50-fold). The lack of labp in C. sakazakii changed the profile of outer membrane proteins, decreased the production of lipopolysaccharides, and increased the production of membrane phospholipids. Bacterial physiological characteristics including surface hydrophobicity and motility were also altered in the absence of labp, presumably because of changes in the bacterial-envelope structure. To systematically determine the role of labp, ligand fishing was conducted using Labp as a bait, which revealed LpxA as a binding partner of Labp. LpxA is UDP-N-acetylglucosamine (GlcNAc) acyltransferase, the first enzyme in the pathway of lipid A biosynthesis. Labp increased the enzymatic activity of LpxA without influencing lpxA expression. Considering multifaceted roles of lipopolysaccharides in virulence regulation, Labp is a novel virulence factor that promotes the production of lipid A by LpxA in Cronobacter.


Assuntos
Aciltransferases/metabolismo , Cronobacter sakazakii/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Cronobacter sakazakii/patogenicidade , Células Epiteliais/metabolismo , Células HeLa , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Mutagênese Sítio-Dirigida , Fagocitose , Fosfolipídeos/metabolismo , Ligação Proteica , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Fatores de Virulência/genética
15.
J Dairy Sci ; 100(11): 8826-8837, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28888603

RESUMO

Cronobacter species are important foodborne pathogens causing severe infections in neonates through consumption of contaminated powdered infant formula. However, the virulence-associated factors in Cronobacter are largely unknown. In this study, the transcriptome analysis between highly virulent Cronobacter sakazakii G362 and attenuated L3101 strains was used to reveal the potential factors involved in virulence. The total transcripts were grouped into 20 clusters of orthologous group categories and summarized in 3 gene ontology categories (biological process, cellular component, and molecular function). In addition, the differentially expressed genes (DEG) between these isolates were analyzed using Volcano plots and gene ontology enrichment. The predominant DEG were flagella-associated genes such as flhD, motA, flgM, flgB, and fliC. Furthermore, the expression abundance of outer membrane protein or lipoprotein genes (ompW, slyB, blc, tolC, and lolA), potential virulence-related factors (hlyIII and hha), and regulation factors (sdiA, cheY, Bss, fliZ) was also significantly different between G362 and L3101. Interestingly, 3 hypothetical protein genes (ESA_01022, ESA_01609, and ESA_00609) were found to be expressed only in G362. Our findings provide valuable transcriptomic information about potential virulence factor genes, which will be needed in future molecular biology studies designed to understand the pathogenic mechanism of Cronobacter.


Assuntos
Cronobacter sakazakii/patogenicidade , Animais , Cronobacter sakazakii/genética , Cronobacter sakazakii/isolamento & purificação , DNA Bacteriano/genética , Microbiologia de Alimentos , Perfilação da Expressão Gênica , Humanos , Lactente , Fórmulas Infantis/microbiologia , Transcriptoma , Virulência , Fatores de Virulência/genética
17.
Microb Pathog ; 110: 359-364, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28711508

RESUMO

Cronobacter sakazakii is a well-known opportunistic pathogen responsible for necrotizing enterocolitis, meningitis and septicaemia in the premature, immunocompromised infants and neonates. This pathogen possesses various virulence factors and regulatory systems, and pmrA/pmrB regulatory system has been identified in a variety of bacterial species. The current study aims to investigate role of pmrA gene in the pathogenicity and virulence characteristics of Cronobacter sakazakii using whole genome sequencing and RNA-seq. Results demonstrated that the absence of pmrA has the potential to affect Cronobacter sakazakii on its pathogenicity, virulence and resistance abilities by regulating expression of numerous related genes, including CusB, CusC, CusR and ESA_pESA3p05434.


Assuntos
Proteínas de Bactérias/genética , Cronobacter sakazakii/genética , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Polimixinas/farmacologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/fisiologia , Composição de Bases , Cronobacter sakazakii/patogenicidade , DNA Bacteriano/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/isolamento & purificação , Virulência , Sequenciamento Completo do Genoma
18.
Microb Pathog ; 109: 280-286, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28546117

RESUMO

Cronobacter sakazakii is an opportunistic pathogen responsible for necrotizing enterocolitis, meningitis and septicaemia especially to infant and neonate, with high lethality ranging in 40%-80%. This strain is able to survive in infant milk formula and possesses capability of pathogenicity and virulence, biofilm formation, and high resistance to elevated osmotic, low pH, heat, oxidation, and desiccasion. This study is aims to investigate the molecular characteristics of Cronobacter sakazakii BAA 894, including mechanisms of its invasion and adherence, biofilm formation, unusual resistance to environmental stress employing whole genome sequencing and comparative genomics. Results in this study suggest that numerous genes and pathways, such as LysM, Cyx system, luxS, vancomycin resistance pathway, insulin resistance pathway, and sod encoding superoxide dismutase for the survival of C. sakazakii in macrophages, contribute to pathogenicity and resistance to stressful environment of C. sakazakii BAA 894.


Assuntos
Cronobacter sakazakii/genética , Cronobacter sakazakii/patogenicidade , Genoma Bacteriano/genética , Virulência/genética , Sequenciamento Completo do Genoma , Adesinas Bacterianas , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/crescimento & desenvolvimento , Cronobacter sakazakii/metabolismo , DNA Bacteriano , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Humanos , Lactente , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Macrófagos/microbiologia , Leite , Peptídeo Hidrolases/genética , Estresse Fisiológico/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Resistência a Vancomicina/genética , Resistência a Vancomicina/fisiologia , Fatores de Virulência/genética
19.
Risk Anal ; 37(12): 2360-2388, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403572

RESUMO

A probabilistic and interdisciplinary risk-benefit assessment (RBA) model integrating microbiological, nutritional, and chemical components was developed for infant milk, with the objective of predicting the health impact of different scenarios of consumption. Infant feeding is a particular concern of interest in RBA as breast milk and powder infant formula have both been associated with risks and benefits related to chemicals, bacteria, and nutrients, hence the model considers these three facets. Cronobacter sakazakii, dioxin-like polychlorinated biphenyls (dl-PCB), and docosahexaenoic acid (DHA) were three risk/benefit factors selected as key issues in microbiology, chemistry, and nutrition, respectively. The present model was probabilistic with variability and uncertainty separated using a second-order Monte Carlo simulation process. In this study, advantages and limitations of undertaking probabilistic and interdisciplinary RBA are discussed. In particular, the probabilistic technique was found to be powerful in dealing with missing data and to translate assumptions into quantitative inputs while taking uncertainty into account. In addition, separation of variability and uncertainty strengthened the interpretation of the model outputs by enabling better consideration and distinction of natural heterogeneity from lack of knowledge. Interdisciplinary RBA is necessary to give more structured conclusions and avoid contradictory messages to policymakers and also to consumers, leading to more decisive food recommendations. This assessment provides a conceptual development of the RBA methodology and is a robust basis on which to build upon.


Assuntos
Fórmulas Infantis/efeitos adversos , Fórmulas Infantis/microbiologia , Leite Humano/química , Leite Humano/microbiologia , Simulação por Computador , Cronobacter sakazakii/isolamento & purificação , Cronobacter sakazakii/patogenicidade , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/análise , Feminino , Contaminação de Alimentos/estatística & dados numéricos , Microbiologia de Alimentos/estatística & dados numéricos , Alimentos Fortificados/análise , Humanos , Lactente , Fórmulas Infantis/química , Masculino , Modelos Estatísticos , Método de Monte Carlo , Bifenilos Policlorados/toxicidade , Medição de Risco/estatística & dados numéricos , Design de Software
20.
Curr Microbiol ; 74(5): 560-565, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258294

RESUMO

Cronobacter sakazakii is an emerging pathogen causing meningitis, sepsis and necrotizing enterocolitis in neonates and immune-compromised adults. The present study describes the profiling of different virulence factors associated with C. sakazakii isolates derived from plant-based materials and environmental samples (soil, water, and vacuum dust). All the isolates exhibited ß-hemolysis and chitinase activity, and were able to utilize inositol. Among the nine virulence-associated genes, hly gene coding for hemolysin was detected in all the isolates followed by ompA (outer membrane protein); however, plasmid-borne genes were detected at a level of 60% for both cpa (cronobacter plasminogen activator) and eitA (Ferric ion transporter protein) gene, respectively. Furthermore, the isolate C. sakazakii N81 showed cytotoxicity for Caco-2 cells. The presence of the virulence determinants investigated in this study indicates the pathogenic potential of C. sakazakii with their plausible connection with clinical manifestations.


Assuntos
Cronobacter sakazakii/patogenicidade , Microbiologia Ambiental , Plantas/microbiologia , Fatores de Virulência , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cronobacter sakazakii/genética , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Perfilação da Expressão Gênica , Humanos , Característica Quantitativa Herdável , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA