Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 925
Filtrar
1.
JCO Precis Oncol ; 8: e2300531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723230

RESUMO

PURPOSE: Conventional surveillance methods are poorly sensitive for monitoring appendiceal cancers (AC). This study investigated the utility of circulating tumor DNA (ctDNA) in evaluating systemic therapy response and recurrence after surgery for AC. METHODS: Patients from two specialized centers who underwent tumor-informed ctDNA testing (Signatera) were evaluated to determine the association between systemic therapy and ctDNA detection. In addition, the accuracy of ctDNA detection during surveillance for the diagnosis of recurrence after complete cytoreductive surgery (CRS) for grade 2-3 ACs with peritoneal metastases (PM) was investigated. RESULTS: In this cohort of 94 patients with AC, most had grade 2-3 tumors (84.0%) and PM (84.0%). Fifty patients completed the assay in the presence of identifiable disease, among which ctDNA was detected in 4 of 7 (57.1%), 10 of 16 (62.5%), and 19 of 27 (70.4%) patients with grade 1, 2, and 3 diseases, respectively. Patients who had recently received systemic chemotherapy had ctDNA detected less frequently (7 of 16 [43.8%] v 26 of 34 [76.5%]; odds ratio, 0.22 [95% CI, 0.06 to 0.82]; P = .02). Among 36 patients with complete CRS for grade 2-3 AC-PM, 16 (44.4%) developed recurrence (median follow-up, 19.6 months). ctDNA detection was associated with shorter recurrence-free survival (median 11.3 months v not reached; hazard ratio, 14.1 [95% CI, 1.7 to 113.8]; P = .01) and showed high accuracy for the detection of recurrence (sensitivity 93.8%, specificity 85.0%). ctDNA was more sensitive than carcinoembryonic antigen (62.5%), CA19-9 (25.0%), and CA125 (18.8%) and was the only elevated biomarker in four (25%) patients with recurrence. CONCLUSION: This study revealed a reduced ctDNA detection frequency after systemic therapy and accurate recurrence assessment after CRS. These findings underscore the role of ctDNA as a predictive and prognostic biomarker for grade 2-3 AC-PM management.


Assuntos
Neoplasias do Apêndice , DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Masculino , Feminino , Neoplasias do Apêndice/genética , Neoplasias do Apêndice/sangue , Neoplasias do Apêndice/patologia , Neoplasias do Apêndice/terapia , Neoplasias do Apêndice/tratamento farmacológico , Pessoa de Meia-Idade , Idoso , Adulto , Recidiva Local de Neoplasia/sangue , Idoso de 80 Anos ou mais
2.
Lakartidningen ; 1212024 May 07.
Artigo em Sueco | MEDLINE | ID: mdl-38712636

RESUMO

To investigate the  clinical use of analyzing circulating tumor DNA in a clinical setting we present a pilot study comprising 93 patients from individuals with suspected lung cancer. The study aimed to evaluate the capability of analyzing circulating tumor DNA at the initial medical visit in order to detect genetic changes and mutations associated with lung cancer in plasma samples. Tumor DNA from plasma was extracted and analyzed with Next Generation Sequencing (NGS) and the result was compared with a matched tumor tissue collected in close connection from the same individual. Cancer-associated genetic mutations could be confirmed in about 60 percent of the plasma samples, and we observed a higher degree of conformance in patients with a more advanced disease. The results from the study provide valuable insights for an early clinical use of analyzing circulating tumor DNA in cases of suspected lung cancer, which could contribute to improving early diagnosis and treatment strategies for patients with lung cancer.


Assuntos
DNA Tumoral Circulante , Detecção Precoce de Câncer , Neoplasias Pulmonares , Mutação , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Feminino , Pessoa de Meia-Idade , Detecção Precoce de Câncer/métodos , Projetos Piloto , Masculino , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Adulto , Idoso de 80 Anos ou mais
3.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733343

RESUMO

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Assuntos
DNA Tumoral Circulante , Eletrodos , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Biópsia Líquida , Amplificação de Genes , Nanopartículas de Magnetita/química , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Ouro/química , Propriedades de Superfície , Técnicas Eletroquímicas/métodos , Reação em Cadeia da Polimerase , Feminino
4.
Cancer Cell ; 42(5): 727-731, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38701791

RESUMO

As immunotherapy makes its way into the perioperative setting, a growing number of clinical trials are expanding the evidence base for resectable non-small cell lung cancer (NSCLC) management. Identifying the optimal treatment pattern-whether it's neoadjuvant, adjuvant, or a combination of both-is a crucial next step, particularly in pinpointing which patients benefit the most. This decision-making process requires a multi-disciplinary treatment team capable of utilizing tissue and plasma genomic testing to inform therapeutic choices. Leveraging the perioperative treatment platform, it remains pivotal to integrate circulating tumor DNA (ctDNA) monitoring into clinical trial design efficiently and provide clear guidance on treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Imunoterapia/métodos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/genética , Terapia Neoadjuvante/métodos , Ensaios Clínicos como Assunto
5.
Clin Transl Med ; 14(5): e1652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741204

RESUMO

BACKGROUND: Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS: A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS: Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS: HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.


Assuntos
Carcinoma Hepatocelular , Metilação de DNA , Detecção Precoce de Câncer , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Feminino , Masculino , Metilação de DNA/genética , Pessoa de Meia-Idade , Prognóstico , Detecção Precoce de Câncer/métodos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Idoso , Adulto
6.
Front Immunol ; 15: 1355887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745646

RESUMO

Breast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer. In recent years, the widespread application of high-throughput analytical technology has made ctDNA a promising biomarker for early cancer detection, monitoring minimal residual disease, early recurrence monitoring, and predicting treatment outcomes. ctDNA-based approaches can effectively compensate for the shortcomings of traditional screening and monitoring methods, which fail to provide real-time information and prospective guidance for breast cancer diagnosis and treatment. This review summarizes the applications of ctDNA in various aspects of breast cancer, including screening, diagnosis, prognosis, treatment, and follow-up. It highlights the current research status in this field and emphasizes the potential for future large-scale clinical applications of ctDNA-based approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Feminino , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , Prognóstico
7.
Mol Biomed ; 5(1): 17, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724687

RESUMO

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Assuntos
Heterogeneidade Genética , Melanoma , Terapia de Alvo Molecular , Neoplasias Uveais , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Neoplasias Uveais/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética , Mutação , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Biópsia Líquida/métodos
8.
JCO Precis Oncol ; 8: e2300456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38691816

RESUMO

PURPOSE: Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer. METHODS: A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data. RESULTS: Personalized Signatera assays detected ctDNA ahead of clinical or radiologic relapse in 30 of the 34 patients who relapsed (patient-level sensitivity of 88.2%). Relapse was predicted with a lead interval of up to 38 months (median, 10.5 months; range, 0-38 months), and ctDNA positivity was associated with shorter relapse-free survival (P < .0001) and overall survival (P < .0001). All relapsing triple-negative patients (n = 7/23) had a ctDNA-positive test within a median of 8 months (range, 0-19 months), while the 16 nonrelapsed patients with triple-negative breast cancer remained ctDNA-negative during a median follow-up of 58 months (range, 8-99 months). The four patients who had negative tests before relapse all had hormone receptor-positive (HR+) disease and conversely, five of the 122 nonrelapsed patients (all HR+) had an occasional positive test. CONCLUSION: Serial postoperative ctDNA assessment has strong prognostic value, provides a potential window for earlier therapeutic intervention, and may enable more effective monitoring than current clinical tests such as cancer antigen 15-3. Our study provides evidence that those with serially negative ctDNA tests have superior clinical outcomes, providing reassurance to patients with breast cancer. For select cases with HR+ disease, decisions about treatment management might require serial monitoring despite the ctDNA-positive result.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/cirurgia , DNA Tumoral Circulante/sangue , Pessoa de Meia-Idade , Prognóstico , Seguimentos , Idoso , Adulto , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Estudos Retrospectivos , Idoso de 80 Anos ou mais
9.
Zhonghua Wei Chang Wai Ke Za Zhi ; 27(5): 535-544, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38778696

RESUMO

Circulating tumor DNA (ctDNA) is cell-free DNA released by tumors or circulating tumor cells, containing abundant tumor-specific information that can serve as biomarkers for cancer early screening, monitoring, prognosis, and prediction of treatment response. This is particularly attractive in the field of gastric cancer, where high-quality screening, monitoring, and prediction methods are currently lacking. Gastric cancer exhibits significant tumor heterogeneity, with large differences in genetic and epigenetic characteristics among different subgroups. Methylated ctDNA has high sensitivity and specificity, which can help clarify tumor genotyping and facilitate the formulation of precise diagnostic and therapeutic strategies. Furthermore, numerous studies have confirmed the unique advantages of methylated DNA in predicting treatment response, adjuvant therapy, and drug resistance assessment, which may be used in the future to enhance the efficacy of chemotherapy regimens and improve patient chemotherapeutic response, and even treat multidrug resistance. However, there are several challenges associated with methylated ctDNA, such as low sensitivity and specificity at single-target sites, limited association between some gastric cancer subtypes and ctDNA, off-target risks, and the lack of large-scale and high-quality clinical research evidence. This review mainly summarizes current research on the methylation status of ctDNA in gastric cancer and connects these findings to early screening, recurrence monitoring, and potential treatment opportunities for gastric cancer. With advances in technology and the deepening of interdisciplinary research, ctDNA detection will reveal more disease information and become an essential foundation for gastric cancer research and precision medicine treatment.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Metilação de DNA , Detecção Precoce de Câncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , DNA Tumoral Circulante/sangue , Detecção Precoce de Câncer/métodos , Biomarcadores Tumorais/sangue , Prognóstico , Sensibilidade e Especificidade
10.
Int J Colorectal Dis ; 39(1): 82, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809315

RESUMO

INTRODUCTION: Circulating tumour DNA (ctDNA) has emerged as a promising biomarker in various cancer types, including locally advanced rectal cancer (LARC), offering potential insights into disease progression, treatment response and recurrence. This review aims to comprehensively evaluate the utility of ctDNA as a prognostic biomarker in LARC. METHODS: PubMed, EMBASE and Web of Science were searched as part of our review. Studies investigating the utility of ctDNA in locally advanced rectal cancer (LARC) were assessed for eligibility. Quality assessment of included studies was performed using the Newcastle Ottawa Scale (NOS) risk of bias tool. Outcomes extracted included basic participant characteristics, ctDNA details and survival data. A meta-analysis was performed on eligible studies to determine pooled recurrence-free survival (RFS). RESULTS: Twenty-two studies involving 1676 participants were included in our analysis. Methodological quality categorised by the Newcastle Ottawa Scale was generally satisfactory across included studies. ctDNA detected at various time intervals was generally associated with poor outcomes across included studies. Meta-analysis demonstrated a pooled hazard ratio of 8.87 (95% CI 4.91-16.03) and 15.15 (95% CI 8.21-27.95), indicating an increased risk of recurrence with ctDNA positivity in the post-neoadjuvant and post-operative periods respectively. CONCLUSION: Our systematic review provides evidence supporting the prognostic utility of ctDNA in patients with LARC, particularly in identifying patients at higher risk of disease recurrence in the post-neoadjuvant and post-operative periods.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias Retais , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Intervalo Livre de Doença , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Estadiamento de Neoplasias , Prognóstico , Neoplasias Retais/sangue , Neoplasias Retais/genética , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Neoplasias Retais/diagnóstico
11.
JAMA Health Forum ; 5(5): e241270, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38819797

RESUMO

Importance: In a randomized clinical trial, treatment guided by tumor-informed circulating tumor (ct)DNA testing reduced adjuvant chemotherapy use without compromising recurrence-free survival in patients with stage II colon cancer. The potential effects of adopting ctDNA testing into routine patient care is unknown. Objective: To compare the total cost of patient care scenarios with and without the adoption of ctDNA testing. Design, Setting, and Participants: This budget impact analysis was conducted from the perspectives of US commercial health and Medicare Advantage payers. A decision-analytical model was populated with age-specific incidence of colon cancer, use of adjuvant chemotherapy, and use of single-agent or multiagent regimens. Total cost was estimated with the costs of ctDNA testing, drug acquisition, administration, surveillance, and adverse events. The analysis was conducted from September 2023 to January 2024. Exposures: The adoption of ctDNA testing. Main Outcomes and Measures: The incremental cost in the first year following the adoption of ctDNA testing, where testing will affect patient treatment and costs. Results: In hypothetical plans with 1 million individuals covered, 35 commercial health plan members and 102 Medicare Advantage members aged 75 years and younger were eligible for ctDNA testing. In the base case with a 50% adoption rate, total cost savings were $221 684 (equivalent to $0.02 per member per month [PMPM]) for a commercial payer and $116 720 (equivalent to $0.01 PMPM) for a Medicare Advantage payer. Cost savings were robust to variations in assumptions of all parameters in the commercial population but sensitive to variations in assumptions of adjuvant chemotherapy use rates in the Medicare Advantage population. The number needed to test to avoid 1 patient receiving adjuvant chemotherapy was 4 in the commercial population and 10 in the Medicare Advantage population. The budget-neutral cost for ctDNA testing was $16 202 for a commercial payer and $5793 for a Medicare Advantage payer. Conclusions and Relevance: Use of tumor-informed ctDNA testing to guide adjuvant chemotherapy in postsurgery patients with stage II colon cancer was projected to result in cost savings for both commercial and Medicare Advantage payers. Adoption of ctDNA testing is therefore advantageous from a budgetary perspective.


Assuntos
DNA Tumoral Circulante , Neoplasias do Colo , Medicare Part C , Humanos , Neoplasias do Colo/economia , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/sangue , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Estados Unidos , Medicare Part C/economia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Idoso , Feminino , Masculino , Orçamentos , Pessoa de Meia-Idade , Análise Custo-Benefício
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732099

RESUMO

Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Recidiva Local de Neoplasia , Humanos , Meduloblastoma/líquido cefalorraquidiano , Meduloblastoma/genética , Meduloblastoma/diagnóstico , Meduloblastoma/patologia , Meduloblastoma/diagnóstico por imagem , Biópsia Líquida/métodos , Recidiva Local de Neoplasia/líquido cefalorraquidiano , Recidiva Local de Neoplasia/genética , Adolescente , Neoplasias Cerebelares/líquido cefalorraquidiano , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Masculino , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Feminino , Progressão da Doença , Imageamento por Ressonância Magnética
13.
Pak J Pharm Sci ; 37(1): 123-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741408

RESUMO

The study aimed to investigate the effects of aspirin on patients with metastatic colorectal cancer, focusing on circulating tumor DNA levels and bone tissue. Two groups (A and B) of ten patients with osteoporosis were selected for the study. Bone tissue samples were obtained from the patients and cultured under sterile conditions. The aspirin group showed a significant decrease in circulating tumor DNA levels and an increase in bone tissue density compared to the control group. Additionally, osteoblast apoptosis was reduced, while proliferation was enhanced in the aspirin group. The protein pAkt related to the PI3K/Akt signaling pathway was upregulated in the aspirin group. These results indicate that aspirin can effectively lower circulating tumor DNA levels, promote bone tissue proliferation, inhibit apoptosis, and activate the PI3K/Akt signaling pathway, thereby influencing bone cell function. These findings provide a basis for aspirin's potential application in treating metastatic colorectal cancer and encourage further research on its mechanism and clinical use.


Assuntos
Apoptose , Aspirina , DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , Aspirina/farmacologia , Aspirina/uso terapêutico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Apoptose/efeitos dos fármacos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Idoso , Transdução de Sinais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Densidade Óssea/efeitos dos fármacos , Osteoporose/tratamento farmacológico
14.
JCO Precis Oncol ; 8: e2300330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781544

RESUMO

PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) is typically treated with agents directly or indirectly targeting the androgen receptor (AR) pathway. However, such treatment is limited by resistance mechanisms, including the development of activating mutations in the AR ligand-binding domain (AR-LBD). METHODS: This study evaluated a database of over 15,000 patients with advanced prostate cancer (PC) undergoing comprehensive circulating-tumor DNA analysis (Guardant360, Redwood City, CA) between 2014 and 2021, with associated clinical information from administrative claims (GuardantINFORM database). RESULTS: Of 15,705 patients with PC included, 54% had mCRPC at the time of their blood draw. Of those, 49% had previous treatment with an AR pathway inhibitor (ARPi). AR-LBD mutation prevalence was 15% in patients with mCRPC who were untreated with a next-generation ARPi, 22% in those after one line of ARPi therapy, and 24% in those after two lines of ARPi treatment. Next-generation ARPi treatment yielded an increase in AR L702H and T878A/S mutations after abiraterone, and an increase in AR L702H and F877L mutations after enzalutamide. AR-LBD+ patients demonstrated unique biology, including increased concurrent mutations in the cell-cycle, wingless-related integration site, homologous recombination repair, and phospho-inositide 3-kinase pathways (all P < .0005), and greater low-level (copy number <10) AR amplifications (P = .0041). AR-LBD+ patients exhibited worse overall survival (OS) relative to a matched cohort of AR-LBD- patients (50.1 v 60.7 months, unadjusted log-rank P = .013). CONCLUSION: This large database analysis demonstrates that AR-LBD mutation prevalence increases after next-generation ARPi use. AR-LBD+ tumors demonstrate unique biology (more oncogenic pathway mutations and low-level AR amplification) and reduced OS. These findings inform the development of novel therapies designed to circumvent AR-mediated therapeutic resistance.


Assuntos
DNA Tumoral Circulante , Mutação , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Receptores Androgênicos/genética , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Prevalência , Ligantes
15.
J Cancer Res Clin Oncol ; 150(5): 281, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805050

RESUMO

PURPOSE: In metastatic colorectal cancer (mCRC), RAS mutation loss may occur during the standard-of-care regimen. In this study, we aimed to investigate the temporal dynamics of the RAS gene and its clinical significance. METHODS: This was a retrospective, single-center study that included 82 patients with tissue RAS-mutant (RAS-MT) mCRC who underwent circulating tumor DNA (ctDNA) RAS monitoring between January, 2013-April, 2023. Patients were analyzed for the rate of change over time to acquired RAS mutation loss (aRAS-ML) and clinicopathological factors. The prognostic relevance of mutation loss was assessed. RESULTS: aRAS-ML was detected in 33 (40.2%) patients, 32 of whom had a mutation loss in the first ctDNA RAS assay. Patients with a RAS mutation detected in the first assay had a median time of 8 months until the second ctDNA RAS assay, with 4.5% cases newly converted to aRAS-ML; no new conversions were detected at the third assay. The aRAS-ML group exhibited more single-organ metastases in the target organ during ctDNA measurement (aRAS-ML: 84.8% vs. RAS-MT: 59.2%, p = 0.02). Of the 33 patients with aRAS-ML, seven (21.2%) received anti-epidermal growth factor receptor (EGFR) therapy, with a median progression-free survival of 8 months. Multivariate analysis revealed that persistent ctDNA RAS mutation was an independent prognostic factor for overall survival (hazard ratio: 2.7, 95% confidence interval: 1.1-6.3, p = 0.02). CONCLUSION: The rate of ctDNA mutation loss in patients with RAS-MT mCRC decreases over time. Therefore, using a ctDNA RAS assay early in treatment will assist in challenging the use of EGFR regimens.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Mutação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/sangue , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Prognóstico , Adulto , Idoso de 80 Anos ou mais , Metástase Neoplásica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Genes ras , Relevância Clínica
16.
Commun Biol ; 7(1): 657, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806596

RESUMO

Despite recent technological advancements in cell tumor DNA (ctDNA) mutation detection, challenges persist in identifying low-frequency mutations due to inadequate sensitivity and coverage of current procedures. Herein, we introduce a super-sensitivity and specificity technique for detecting ctDNA mutations, named HiCASE. The method utilizes PCR-based CRISPR, coupled with the restriction enzyme. In this work, HiCASE focuses on testing a series of EGFR mutations to provide enhanced detection technology for non-small cell lung cancer (NSCLC), enabling a detection sensitivity of 0.01% with 40 ng cell free DNA standard. When applied to a panel of 140 plasma samples from 120 NSCLC patients, HiCASE exhibits 88.1% clinical sensitivity and 100% specificity with 40 µL of plasma, higher than ddPCR and Super-ARMS assay. In addition, HiCASE can also clearly distinguish T790M/C797S mutations in different positions at a 1% variant allele frequency, offering valuable guidance for drug utilization. Indeed, the established HiCASE assay shows potential for clinical applications.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Sensibilidade e Especificidade , Análise Mutacional de DNA/métodos , Feminino , Masculino
17.
Anal Chim Acta ; 1308: 342578, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740462

RESUMO

Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.


Assuntos
DNA , Neoplasias , Biópsia Líquida/métodos , Humanos , DNA/química , Neoplasias/diagnóstico , Neoplasias/patologia , Biomarcadores Tumorais/análise , Células Neoplásicas Circulantes/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/análise , Exossomos/química
18.
PLoS One ; 19(5): e0302129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753705

RESUMO

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasias/genética , Neoplasias/sangue , Neoplasias/diagnóstico , Genômica/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Algoritmos , Reação em Cadeia da Polimerase Multiplex/métodos , Biópsia Líquida/métodos
19.
Technol Cancer Res Treat ; 23: 15330338241252706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766867

RESUMO

Objectives: In this study, stool samples were evaluated for tumor mutation analysis via a targeted next generation sequencing (NGS) approach in a small patient cohort suffering from localized rectal cancer. Introduction: Colorectal cancer (CRC) causes the second highest cancer-related death rate worldwide. Thus, improvements in disease assessment and monitoring that may facilitate treatment allocation and allow organ-sparing "watch-and-wait" treatment strategies are highly relevant for a significant number of CRC patients. Methods: Stool-based results were compared with mutation profiles derived from liquid biopsies and the gold standard procedure of tumor biopsy from the same patients. A workflow was established that enables the detection of de-novo tumor mutations in stool samples of CRC patients via ultra-sensitive cell-free tumor DNA target enrichment. Results: Notably, only a 19% overall concordance was found in mutational profiles across the compared sample specimens of stool, tumor, and liquid biopsies. Conclusion: Based on these results, the analysis of stool and liquid biopsy samples can provide important additional information on tumor heterogeneity and potentially on the assessment of minimal residual disease and clonal tumor evolution.


Assuntos
Biomarcadores Tumorais , Fezes , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias Retais , Humanos , Fezes/química , Neoplasias Retais/genética , Neoplasias Retais/patologia , Neoplasias Retais/sangue , Biomarcadores Tumorais/genética , Biópsia Líquida/métodos , Feminino , Masculino , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Pessoa de Meia-Idade , Idoso , Análise Mutacional de DNA , Heterogeneidade Genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética
20.
World J Gastroenterol ; 30(15): 2175-2178, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681986

RESUMO

With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also contains great potential.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Biópsia Líquida/métodos , Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão/métodos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA