Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Proteomics ; 294: 105072, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218428

RESUMO

Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive­oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive­oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.


Assuntos
Cicloexenos , Glycine max , Proteômica , Terpenos , Proteômica/métodos , Actinas/metabolismo , Raízes de Plantas/metabolismo , Estresse Salino , Peroxidases/análise , Peroxidases/metabolismo , Peroxidases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Nucleares/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas Quinases/metabolismo , Dinaminas/análise , Dinaminas/metabolismo , Dinaminas/farmacologia , Hidrolases/análise , Hidrolases/metabolismo , Hidrolases/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Oxigênio/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
J Transl Med ; 21(1): 711, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817199

RESUMO

BACKGROUND: Extracellular matrix stiffness is emerging as a crucial mechanical cue that drives the progression of various diseases, such as cancer, fibrosis, and inflammation. The matrix stiffness of the nucleus pulposus (NP) tissues increase gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In addition, mitochondrial dynamics play a key role in various cellular functions. An in-depth investigation of the pathogenesis of IDD can provide new insights for the development of effective therapies. In this study, we aim to investigate the effects of matrix stiffness on mitochondrial dynamics in IDD. METHODS: To build the gradient stiffness model, NP cells were cultured on polystyrene plates with different stiffness. Western blot analysis, and immunofluorescence staining were used to detect the expression of mitochondrial dynamics-related proteins. Flow cytometry was used to detect the mitochondrial membrane potential and intracellular Ca2+ levels. Apoptosis related proteins, ROS level, and TUNEL staining were performed to assess the effect of substrate stiffness on NP cells. RESULTS: Stiff substrate increased phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 by activating extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, which promoted mitochondrial fission and apoptosis in NP cells. Furthermore, Piezo1 activation was involved in the regulation of the post-translational modifications of Drp1 and mitochondrial fission caused by matrix stiffness. Inhibition of Piezo1 and ERK1/2 can effectively reduce stiffness-induced ROS elevation and apoptosis in NP cells. CONCLUSIONS: Our results revealed that stiff substrate causes Piezo1 activation and Ca2+ influx, results in ERK1/2 activation and phosphorylation of Drp1 at S616, and finally leads to mitochondrial fission and apoptosis in NP cells. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for treating IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/patologia , Dinâmica Mitocondrial , Mecanotransdução Celular , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Dinaminas/metabolismo , Dinaminas/farmacologia , Disco Intervertebral/patologia
3.
Vascul Pharmacol ; 151: 107194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442283

RESUMO

Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder, involving the remodelling of the small pulmonary arteries. Underlying this remodelling is the hyper-proliferation of pulmonary arterial smooth muscle cells within the medial layers of these arteries and their encroachment on the lumen. Previous studies have demonstrated an association between excessive mitochondrial fragmentation, a consequence of increased expression and post-translational activation of the mitochondrial fission protein dynamin-related protein 1 (DRP1), and pathological proliferation in PASMCs derived from PAH patients. However, the impact of prostacyclin mimetics, widely used in the treatment of PAH, on this pathological mitochondrial fragmentation remains unexplored. We hypothesise that these agents, which are known to attenuate the proliferative phenotype of PAH PASMCs, do so in part by inhibiting mitochondrial fragmentation. In this study, we confirmed the previously reported increase in DRP1-mediated mitochondrial hyper-fragmentation in PAH PASMCs. We then showed that the prostacyclin mimetic treprostinil signals via either the Gs-coupled IP or EP2 receptor to inhibit mitochondrial fragmentation and the associated hyper-proliferation in a manner analogous to the DRP1 inhibitor Mdivi-1. We also showed that treprostinil recruits either the IP or EP2 receptor to activate PKA and induce the phosphorylation of DRP1 at the inhibitory residue S637 and inhibit that at the stimulatory residue S616, both of which are suggestive of reduced DRP1 fission activity. Like treprostinil, MRE-269, an IP receptor agonist, and butaprost, an EP2 receptor agonist, attenuated DRP1-mediated mitochondrial fragmentation through PKA. We conclude that prostacyclin mimetics produce their anti-proliferative effects on PAH PASMCs in part by inhibiting DRP1-mediated mitochondrial fragmentation.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Proliferação de Células , Dinaminas/metabolismo , Dinaminas/farmacologia , Artéria Pulmonar/metabolismo , Dinâmica Mitocondrial
4.
J Transl Med ; 21(1): 328, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198593

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most prevalent and fatal oral cancers. Mitochondria-targeting therapies represent promising strategies against various cancers, but their applications in treating OSCC are limited. Alantolactone (ALT) possesses anticancer properties and also regulates mitochondrial events. In this study, we explored the effects of ALT on OSCC and the related mechanisms. METHODS: The OSCC cells were treated with varying concentrations and duration of ALT and N-Acetyl-L-cysteine (NAC). The cell viability and colony formation were assessed. The apoptotic rate was evaluated by flow cytometry with Annexin V-FITC/PI double staining. We used DCFH-DA and flow cytometry to detect reactive oxygen species (ROS) production and DAF-FM DA to investigate reactive nitrogen species (RNS) level. Mitochondrial function was reflected by mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP levels. KEGG enrichment analyses determined the mitochondrial-related hub genes involved in OSCC progression. Dynamin-related protein 1 (Drp1) overexpression plasmids were further transfected into the cells to analyze the role of Drp1 in OSCC progression. Immunohistochemistry staining and western blot verified the expression of the protein. RESULTS: ALT exerted anti-proliferative and pro-apoptosis effects on OSCC cells. Mechanistically, ALT elicited cell injury by promoting ROS production, mitochondrial membrane depolarization, and ATP depletion, which were reversed by NAC. Bioinformatics analysis showed that Drp1 played a crucial role in OSCC progression. OSCC patients with low Drp1 expression had a higher survival rate. The OSCC cancer tissues presented higher phosphorylated-Drp1 and Drp1 levels than the normal tissues. The results further showed that ALT suppressed Drp1 phosphorylation in OSCC cells. Moreover, Drp1 overexpression abolished the reduced Drp1 phosphorylation by ALT and promoted the cell viability of ALT-treated cells. Drp1 overexpression also reversed the mitochondrial dysfunction induced by ALT, with decreased ROS production, and increased mitochondrial membrane potential and ATP level. CONCLUSIONS: ALT inhibited proliferation and promoted apoptosis of oral squamous cell carcinoma cells via impairment of mitochondrial homeostasis and regulation of Drp1. The results provide a solid basis for ALT as a therapeutic candidate for treating OSCC, with Drp1 being a novel therapeutic target in treating OSCC.


Assuntos
Dinaminas , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Trifosfato de Adenosina/metabolismo , Apoptose , Linhagem Celular Tumoral , Regulação para Baixo , Dinaminas/metabolismo , Dinaminas/farmacologia , Dinaminas/uso terapêutico , Mitocôndrias/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
5.
Chin Med J (Engl) ; 136(6): 719-731, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805606

RESUMO

BACKGROUND: Sirtuin-3 (Sirt3) has been documented to protect against mitochondrial dysfunction and apoptosis. Honokiol (HKL) is a Sirt3 pharmacological activator with reported neuroprotective effects in multiple neurological disorders. The present study aimed to explore the neuroprotective effects of HKL and the role of Sirt3 following intracerebral hemorrhage (ICH). METHODS: An in vivo ICH model in rats was established by injecting autologous blood into the right basal ganglia. PC12 cells were stimulated with hemin. For the in vivo investigation, the modified Neurological Severity Scores and the Morris water maze test were performed to assess neurological deficits. Hematoxylin-Eosin and Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining were employed to evaluate the histopathology and apoptosis. Immunohistochemical staining was used to investigate the expression of Sirt3. Adenosine triphosphate (ATP) levels were quantified to assess mitochondrial dysfunction. Cell counting kit-8, lactate dehydrogenase assay, and flow cytometry were used to analyze cell vitality and apoptosis in vitro. Immunofluorescence staining was performed to observe mitochondrial morphology and dynamin-related protein 1 (Drp1) localization to mitochondria. Western blot was applied to quantify the expression of Sirt3, Bax, Bcl-2, cleaved-caspase-3, Drp1, phosphorylation of Drp1 at serine-616, and phosphorylation of Drp1 at serine-637 in vivo and in vitro. RESULTS: HKL treatment alleviated neurological deficits, attenuated the histopathological damage and cell apoptosis, and restored the decreased ATP levels in ICH rats. HKL improved cell survival rate, reduced cell apoptosis, and inhibited mitochondrial fission in PC12 cells. Moreover, both in vivo and in vitro models showed increased phosphorylation of Drp1 at Ser616, and reduced phosphorylation of Drp1 at Ser637. Meanwhile, immunofluorescence co-localization analysis revealed that hemin increased the overlap of Drp1 and mitochondria in PC12 cells. The phosphorylation and mitochondrial translocation of Drp1 were effectively reversed by HKL treatment. Importantly, the selective Sirt3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine suppressed these effects. CONCLUSION: Our findings demonstrated that HKL ameliorated ICH-induced apoptosis and mitochondrial fission by Sirt3, suggesting that HKL has immense prospects for the treatment of ICH.


Assuntos
Fármacos Neuroprotetores , Sirtuína 3 , Ratos , Animais , Sirtuína 3/metabolismo , Dinâmica Mitocondrial , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hemina/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Apoptose , Serina/farmacologia , Dinaminas/metabolismo , Dinaminas/farmacologia
6.
Mol Plant Microbe Interact ; 36(4): 201-207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653183

RESUMO

In eukaryotes, dynamins and dynamin-related proteins (DRPs) are high-molecular weight GTPases responsible for mechanochemical fission of organelles or membranes. Of the six DRP subfamilies in Arabidopsis thaliana, AtDRP1 and AtDRP2 family members serve as endocytic accessory proteins in clathrin-mediated endocytosis. Most studies have focused on AtDRP1A and AtDRP2B as critical modulators of plant pattern-triggered immunity (PTI) against pathogenic, flagellated Pseudomonas syringae pv. tomato DC3000 bacteria and immune signaling in response to the bacterial flagellin peptide flg22. Much less is known about AtDRP2A, the closely related paralog of AtDRP2B. AtDRP2A and AtDRP2B are the only classical, or bona fide, dynamins in Arabidopsis, based on their evolutionary conserved domain structure with mammalian dynamins functioning in endocytosis. AtDRP2B but not AtDRP2A is required for robust ligand-induced endocytosis of the receptor kinase FLAGELLIN SENSING2 for dampening of early flg22 signaling. Here, we utilized Arabidopsis drp2a null mutants to identify AtDRP2A as a positive contributor to effective PTI against P. syringae pv. tomato DC3000 bacteria, consistent with reduced PATHOGEN RELATED1 (PR1) messenger RNA accumulation. We provide evidence that AtDRP2A is a novel modulator of late flg22 signaling, contributing positively to PR1 gene induction but negatively to polyglucan callose deposition. AtDRP2A has no apparent roles in flg22-elicited mitogen-activated protein kinase defense marker gene induction. In summary, this study adds the evolutionary conserved dynamin AtDRP2A to a small group of vesicular trafficking proteins with roles as non-canonical contributors in immune responses, likely due to modulating one or both the localization and activity of multiple different proteins with distinct contributions to immune signaling. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pseudomonas syringae/fisiologia , Flagelina , Bactérias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Dinaminas/farmacologia , Imunidade Vegetal , Regulação da Expressão Gênica de Plantas
7.
Eur J Med Chem ; 247: 115001, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36577213

RESUMO

Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 µM; R-isomer EC50 = 3.44 µM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 µM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 µM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 µM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 µM, respectively).


Assuntos
Dinamina I , Dinaminas , Dinamina I/química , Dinamina I/metabolismo , Dinaminas/farmacologia , Carbazóis/farmacologia , GTP Fosfo-Hidrolases , Actinas , Clatrina/metabolismo , Clatrina/farmacologia , Endocitose
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(9): 1191-1199, 2022 Sep 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36411702

RESUMO

OBJECTIVES: Methotrexate (MTX) is the most common therapeutic agent that may have the risk of drug-induced liver injury. Its pathogenic mechanism is related to oxidative stress caused by mitochondrial dysfunction. Superoxide dismutase (SOD), including manganese-containing SOD (Mn-SOD), can exert its effect of anti-oxidative stress by scavenging superoxide free radicals. Accordingly, this study is performed to explore the underlying molecular mechanism via observing whether Mn-SOD could affect the damage of MTX to hepatocytes. METHODS: Human hepatocyte cell line L-02 was cultured in vitro and divided into 4 groups, including a blank group with the addition of the same volume of serum-free medium, a MTX group (40 µg/well MTX drug-treatment), a MTX+NC group (40 µg/well MTX drug-treatment+blank plasmid), and a MTX+SOD group (40 µg/well MTX drug-treatment+Mn-SOD plasmid). The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and microRNA-122 (miR-122) in the supernatant of cell culture were respectively detected by automatic biochemical analytical instrument and real-time RT-PCR to evaluate the degree of hepatocyte damage in each group. MitoSOX fluorescent probe was used to label intracellular superoxide in each group, and cell apoptosis was detected by flow cytometry. Meanwhile, the contents of glycogen synthase kinase-3 beta (GSK-3ß), hemeoxygenase-1 (HO-1), mitochondrial fission-mediated protein of dynamin-related protein 1 (Drp1), and Mn-SOD were detected by Western blotting. RESULTS: Compared with the blank group, the levels of ALT, AST, and miR-122 in the supernatant of hepatocyte culture of the MTX group and MTX+NC group were significantly elevated (all P <0.05), and that in the MTX+SOD group were significantly decreased ( P <0.05) and equivalent to that in the blank group. MitoSOX staining revealed that the MTX group and MTX+NC had the most abundant superoxide; and the amount was significantly reduced in the MTX+SOD group, without a significant difference when compared with the blank group. Furthermore, the results of flow cytometry indicated that compared with the blank group, the MTX group and MTX+NC group showed significantly increased cell apoptosis ( P <0.05); while there was obviously reduced cell apoptosis in the MTX+SOD group than that in the MTX group and MTX+NC group ( P <0.05). According to the results of Western blotting, the blank group and MTX+SOD group had higher expressions of Mn-SOD, p-GSK-3ß, and HO-1; while the MTX group and MTX+NC group exhibited remarkably lower levels of Mn-SOD, p-GSK-3ß, and HO-1 than those in the blank group ( P <0.05). Besides, a completely opposite trend was found in the expression of Drp1, which was highly expressed in the MTX group and MTX+NC group, but lowly expressed in the blank group and the MTX+SOD group. CONCLUSIONS: MTX may induce hepatocyte damage, and one of the mechanisms may be due to the decrease of intracellular Mn-SOD level, which can cause the accumulation of superoxide, affect the levels of HO-1 and Drp1 through GSK-3ß leading to mitochondrial damage and cell apoptosis. High expression of Mn-SOD intracellularly through exogenous introduction can scavenge drug-produced superoxide, affect HO-1 and Drp1 levels through GSK-3ß, activate mitochondria, protect cells against damage from oxidative stress, and inhibit hepatocyte apoptosis eventually. So exogenous introduction of SOD may be a potential therapeutic approach to block or reverse MTX-related hepatocyte injury.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Dinaminas/metabolismo , Dinaminas/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Metotrexato/efeitos adversos , MicroRNAs/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Superóxidos/farmacologia
9.
ChemMedChem ; 17(24): e202200400, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36351775

RESUMO

The Bis-T series of compounds comprise some of the most potent inhibitors of dynamin GTPase activity yet reported, e. g., (2E,2'E)-N,N'-(propane-1,3-diyl)bis(2-cyano-3-(3,4-dihydroxyphenyl)acrylamide) (2), Bis-T-22. The catechol moieties are believed to limit cell permeability, rendering these compounds largely inactive in cells. To solve this problem, a prodrug strategy was envisaged and eight ester analogues were synthesised. The shortest and bulkiest esters (acetate and butyl/tert-butyl) were found to be insoluble under physiological conditions, whilst the remaining five were soluble and stable under these conditions. These five were analysed for plasma stability and half-lives ranged from ∼2.3 min (propionic ester 4), increasing with size and bulk, to greater than 24 hr (dimethyl carbamate 10). Similar profiles where observed with the rate of formation of Bis-T-22 with half-lives ranging from ∼25 mins (propionic ester 4). Propionic ester 4 was chosen to undergo further testing and was found to inhibit endocytosis in a dose-dependent manner with IC50 ∼8 µM, suggesting this compound is able to effectively cross the cell membrane where it is rapidly hydrolysed to the desired Bis-T-22 parent compound.


Assuntos
Pró-Fármacos , Pró-Fármacos/farmacologia , Dinaminas/farmacologia , Ésteres/farmacologia , Endocitose
10.
Curr Oncol Rep ; 24(12): 1751-1763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181612

RESUMO

PURPOSE OF REVIEW: This study is aimed at reviewing the recent progress in Drp1 inhibition as a novel approach for reducing doxorubicin-induced cardiotoxicity and for improving cancer treatment. RECENT FINDINGS: Anthracyclines (e.g. doxorubicin) are one of the most common and effective chemotherapeutic agents to treat a variety of cancers. However, the clinical usage of doxorubicin has been hampered by its severe cardiotoxic side effects leading to heart failure. Mitochondrial dysfunction is one of the major aetiologies of doxorubicin-induced cardiotoxicity. The morphology of mitochondria is highly dynamic, governed by two opposing processes known as fusion and fission, collectively known as mitochondrial dynamics. An imbalance in mitochondrial dynamics is often reported in tumourigenesis which can lead to adaptive and acquired resistance to chemotherapy. Drp1 is a key mitochondrial fission regulator, and emerging evidence has demonstrated that Drp1-mediated mitochondrial fission is upregulated in both cancer cells to their survival advantage and injured heart tissue in the setting of doxorubicin-induced cardiotoxicity. Effective treatment to prevent and mitigate doxorubicin-induced cardiotoxicity is currently not available. Recent advances in cardio-oncology have highlighted that Drp1 inhibition holds great potential as a targeted mitochondrial therapy for doxorubicin-induced cardiotoxicity.


Assuntos
Proteínas Mitocondriais , Neoplasias , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Cardiotoxicidade/prevenção & controle , Dinaminas/metabolismo , Dinaminas/farmacologia , Mitocôndrias/metabolismo , Doxorrubicina/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
11.
Reprod Toxicol ; 113: 18-29, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952901

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is one of the most used plasticizers which have contaminated environment widely, and its extensive use causes female reproductive injury. Melatonin has a substantial protective effect against female reproductive toxicity. This study was undertaken to investigate the influence of melatonin on DEHP-induced damage of human granulosa cells (GCs) in vitro and explore the potential mechanisms. Here, we found that melatonin treatment alleviated DEHP-induced human GCs apoptosis and improved mitochondrial function via inhibiting dynamin-related protein 1 (Drp1) mediated mitochondrial fission. Melatonin inhibited the expression, activation and oligomerization of Drp1, which decreased translocation of Drp1 to mitochondria in DEHP-exposed human GCs. Inhibition of mitochondrial fission reduced intracellular reactive oxygen species (ROS) production, sustained mitochondrial membrane potential and decreased cytochrome c release. Further research showed that AMPK-PGC-1α signal pathway was involved in the inhibition of melatonin on Drp1 expression and activation. Melatonin treatment promoted AMPK activation suppressed by DEHP, and activated AMPK recovered the balance of Drp1 phosphorylation at Ser616 and Ser637 sites and enhanced PGC-1α expression. Moreover, PGC-1α could prevent mitochondrial fission by decreasing Drp1 expression directly via binding to its promoter. In contrast, blocking of AMPK or PGC-1α with specific inhibitor negated the protective effects of melatonin on mitochondrial homeostasis and GCs apoptosis. In summary, our results indicated the protective effects of melatonin on improving mitochondrial function and attenuating cells injury in DEHP-exposed human GCs. Melatonin treatment may be a promising therapeutic approach against DEHP-induced reproductive disorder.


Assuntos
Dietilexilftalato , Melatonina , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Citocromos c/metabolismo , Citocromos c/farmacologia , Dietilexilftalato/toxicidade , Dinaminas/metabolismo , Dinaminas/farmacologia , Feminino , Células da Granulosa/metabolismo , Humanos , Melatonina/farmacologia , Dinâmica Mitocondrial , Ácidos Ftálicos , Plastificantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo
12.
Genetics ; 222(1)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35916724

RESUMO

Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Mitofagia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dinaminas/genética , Dinaminas/farmacologia , Humanos , Mitofagia/fisiologia , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
13.
J Cardiovasc Pharmacol ; 80(4): 600-608, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881898

RESUMO

ABSTRACT: Sepsis leads to the damage of multiple organs, and thereby adversely affects the cardiovascular system. At present, no effective method has been found to treat myocardial injury caused by sepsis. Although Puerarin was reported to attenuate lipopolysaccharide (LPS)-induced mitochondrial injury in H9C2 cells, the effects of Puerarin in sepsis-induced myocardial injury remain unclear. In this study, H9C2 cells were stimulated with LPS, CCK-8 assays were performed to assess cell viability, and flow cytometry and TUNEL staining were used to assess cell apoptosis. Levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and enzyme activity were investigated using commercial kits. Reactive oxygen species (ROS) levels in H9C2 cells were detected by flow cytometry. Autophagosomes in the mitochondria of H9C2 cells were observed by transmission electron microscope, and protein expression was assessed by western blotting. Furthermore, in vivo experiments were applied to test the function of Puerarin in sepsis. We found that Puerarin significantly reversed LPS-induced decreases in H9C2 cell viability by inhibiting apoptosis. The ROS levels in H9C2 cells were significantly upregulated by LPS, but that effect was markedly reduced by Puerarin. In addition, Puerarin attenuated LPS-induced mitochondrial injury in H9C2 cells by regulating dynamin-related protein 1 (Drp1) and mitofusin 1 (MFN1). LPS decreased enzyme activity and reduced the levels of ADP, ALP, and AMP in mitochondria; however, those effects were reversed by Puerarin. Puerarin and Torin1 reversed LPS-induced inhibition of autophagy in the mitochondria of H9C2 cells via mediation of p62, LC3B, Pink1, and Parkin. Puerarin notably inhibited the progression of sepsis in vivo . Puerarin inhibited LPS-induced H9C2 cell injury by inducing mitochondrial autophagy, which acts as a mechanism for preventing myocardial injury caused by sepsis.


Assuntos
Isoflavonas , Sepse , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose , Autofagia , Dinaminas/metabolismo , Dinaminas/farmacologia , Humanos , Isoflavonas/farmacologia , Lipopolissacarídeos , Mitocôndrias , Miócitos Cardíacos , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
14.
Sci Total Environ ; 842: 156854, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750168

RESUMO

Silica nanoparticles (SiNPs) are among the most abundantly produced nanosized particles in the global market, and their potential toxicity has aroused a great concern. Increasing epidemiological investigations and experimental evidence revealed the threaten of SiNPs exposure to cardiovascular system. The myocardial toxicity caused by SiNPs was gradually demonstrated, nevertheless, the underlying mechanisms remain unclear. In view of mitochondria serving as the centrality in the prominent of cardiovascular disease, we investigated the role of mitochondria and related mechanisms in SiNPs-induced adverse effects on cardiomyocytes. As a result, SiNPs were found in cytoplasm, accompanied with morphological alterations in mitochondria, such as cristae fracture or disappearance, vacuolation. The induction of mitochondrial dysfunction by SiNPs was confirmed, as indicated by the excessive reactive oxygen species (ROS) formation, and blockage of cellular respiratory and ATP production. Concomitantly, SiNPs activated mitochondria-mediated apoptotic signaling in view of the up-regulated BAX, increased Caspase-9 cleavage and declined Bcl-2, ultimately resulting in myocardial apoptosis. It was noteworthy that SiNPs disturbed mitochondrial dynamics toward fission phenotype, which was supported by the dysregulated fission/fusion regulators. Especially, DRP1 and its phosphorylated level at s616 (p-DRP1s616) were up-regulated, whilst its phosphorylated level at s637 (p-DRP1s637) and PKA phosphorylation were down-regulated in SiNPs-treated cardiomyocytes in a dose-dependent manner. More importantly, the mechanistic investigations revealed PKA-DRP1-mediated mitochondrial fission was responsible for SiNPs-induced cardiomyocyte apoptosis through the mitochondria-mediated apoptotic way. This study firstly demonstrated the disturbance of mitochondrial dynamics played a crucial role in cardiomyocyte apoptosis caused by SiNPs, attributing to PKA-DRP1-mitochondrial fission signaling.


Assuntos
Dinâmica Mitocondrial , Nanopartículas , Apoptose , Dinaminas/genética , Dinaminas/farmacologia , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade
15.
Curr Pharm Biotechnol ; 23(13): 1612-1622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35331106

RESUMO

BACKGROUND: Atherosclerosis (AS) remains prevalent despite hyperlipidemia-lowering therapies. Although multiple functions of miR-199b-5p have been implicated in cancers, its role in endothelial apoptosis and AS remains unclear. This study aimed to examine the role of miR-199b-5p in mitochondrial dynamics and endothelial apoptosis. METHODS: Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were subjected to other treatments, followed by a series analysis. We found that ox-LDL-treated HUVECs were associated with miR-199b-5p downregulation, increased reactive oxygen species level, reduced adenosine triphosphate (ATP) production, mitochondrial fission, and apoptosis, whereas enhanced miR-199b-5p expression or applied mitochondrial division inhibitor 1 (Mdivi-1) markedly reversed these changes. RESULTS: Mechanistically, A-kinase anchoring protein 1 (AKAP1) was confirmed as a downstream target of miR-199b-5p by dual-luciferase activity reporter assay. AKAP1 overexpression reversed the anti-apoptotic effects of miR-199b-5p through the enhanced interaction of AKAP1 and dynamin protein 1 (DRP1) in ox-LDL-treated HUVECs. Moreover, miR-199b-5p downregulation, AKAP1 upregulation, and excessive mitochondrial fission were verified in human coronary AS endothelial tissues. CONCLUSION: The miR-199b-5p-dependent regulation of AKAP1/DRP1 is required to inhibit hyperlipidemia- induced mitochondrial fission and endothelial injury and may be a promising therapeutic target for AS.


Assuntos
Aterosclerose , MicroRNAs , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Apoptose , Aterosclerose/metabolismo , Dinamina I/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Dinaminas/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas LDL/farmacologia , Luciferases/metabolismo , Luciferases/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Dinâmica Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
17.
Histol Histopathol ; 37(6): 505-512, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199329

RESUMO

Mitochondria are energy-producing organelles, and neurons are high energy consumption cells. Therefore, mitochondrial dysfunction is a critical factor in neurodegenerative processes. Mitochondrial division inhibitor-1 (Mdivi-1) is a small chemical inhibitor of mitochondrial division dynamin, which plays multiple roles in mitochondrial dynamics, mitochondrial autophagy, ATP production, the immune response, and Ca²âº homeostasis. Mdivi-1 inhibition of excessive mitochondrial fission exerted cytoprotective effects in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Mdivi-1 changed the mRNA expression of the electron transport chain (ETC) and reduced Ca²âº overload against neuronal injury. Elucidation of the molecular mechanism of Mdivi-1 in neurodegenerative diseases will help evaluate its therapeutic potential and promote its application in clinical studies. The present article focused on the multiple effects of Mdivi-1 on mitochondrial function and its potential therapeutic effects in neurodegenerative diseases.


Assuntos
Dinâmica Mitocondrial , Doenças Neurodegenerativas , Humanos , Cálcio , Dinaminas/metabolismo , Dinaminas/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
18.
Crit Care Med ; 50(6): e504-e515, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35067534

RESUMO

OBJECTIVES: Recent publications have shown that mitochondrial dynamics can govern the quality and quantity of extracellular mitochondria subsequently impacting immune phenotypes. This study aims to determine if pathologic mitochondrial fission mediated by Drp1/Fis1 interaction impacts extracellular mitochondrial content and macrophage function in sepsis-induced immunoparalysis. DESIGN: Laboratory investigation. SETTING: University laboratory. SUBJECTS: C57BL/6 and BALB/C mice. INTERVENTIONS: Using in vitro and murine models of endotoxin tolerance (ET), we evaluated changes in Drp1/Fis1-dependent pathologic fission and simultaneously measured the quantity and quality of extracellular mitochondria. Next, by priming mouse macrophages with isolated healthy mitochondria (MC) and damaged mitochondria, we determined if damaged extracellular mitochondria are capable of inducing tolerance to subsequent endotoxin challenge. Finally, we determined if inhibition of Drp1/Fis1-mediated pathologic fission abrogates release of damaged extracellular mitochondria and improves macrophage response to subsequent endotoxin challenge. MEASUREMENTS AND MAIN RESULTS: When compared with naïve macrophages (NMs), endotoxin-tolerant macrophages (ETM) demonstrated Drp1/Fis1-dependent mitochondrial dysfunction and higher levels of damaged extracellular mitochondria (Mitotracker-Green + events/50 µL: ETM = 2.42 × 106 ± 4,391 vs NM = 5.69 × 105 ± 2,478; p < 0.001). Exposure of NMs to damaged extracellular mitochondria (MH) induced cross-tolerance to subsequent endotoxin challenge, whereas MC had minimal effect (tumor necrosis factor [TNF]-α [pg/mL]: NM = 668 ± 3, NM + MH = 221 ± 15, and NM + Mc = 881 ± 15; p < 0.0001). Inhibiting Drp1/Fis1-dependent mitochondrial fission using heptapeptide (P110), a selective inhibitor of Drp1/Fis1 interaction, improved extracellular mitochondrial function (extracellular mitochondrial membrane potential, JC-1 [R/G] ETM = 7 ± 0.5 vs ETM + P110 = 19 ± 2.0; p < 0.001) and subsequently improved immune response in ETMs (TNF-α [pg/mL]; ETM = 149 ± 1 vs ETM + P110 = 1,150 ± 4; p < 0.0001). Similarly, P110-treated endotoxin tolerant mice had lower amounts of damaged extracellular mitochondria in plasma (represented by higher extracellular mitochondrial membrane potential, TMRM/MT-G: endotoxin tolerant [ET] = 0.04 ± 0.02 vs ET + P110 = 0.21 ± 0.02; p = 0.03) and improved immune response to subsequent endotoxin treatment as well as cecal ligation and puncture. CONCLUSIONS: Inhibition of Drp1/Fis1-dependent mitochondrial fragmentation improved macrophage function and immune response in both in vitro and in vivo models of ET. This benefit is mediated, at least in part, by decreasing the release of damaged extracellular mitochondria, which contributes to endotoxin cross-tolerance. Altogether, these data suggest that alterations in mitochondrial dynamics may play an important role in sepsis-induced immunoparalysis.


Assuntos
Dinaminas/metabolismo , Sepse , Animais , Dinaminas/genética , Dinaminas/farmacologia , Tolerância à Endotoxina , Endotoxinas , Humanos , Macrófagos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais , Sepse/patologia
19.
J Cardiovasc Pharmacol ; 79(4): 568-576, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983916

RESUMO

ABSTRACT: Glucagon-like peptide 1 (GLP-1) analogs improve glycemic control in diabetes and protect the heart against ischemia-reperfusion injury. However, the mechanisms underlying this protection remain unclear. Mitochondria are essential for myocyte homeostasis. Therefore, we herein examined the effects of a GLP-1 analog on mitochondria after the hypoxia-reoxygenation of rat neonatal cultured cardiomyocytes. Cardiomyocytes were subjected to hypoxia for 5 hours followed by reoxygenation for 30 minutes in the presence or absence of exendin-4 (50 nmol/L), a GLP-1 analog. Hypoxia-reoxygenation increased lactate dehydrogenase and caspase-3 activities, indicators of lethal myocyte injury and apoptosis, respectively, and exendin-4 attenuated these increases. The content of ATP in myocytes decreased after hypoxia-reoxygenation but was preserved by exendin-4. The membrane potential and shape of mitochondria were assessed using a fluorescent probe. Exendin-4 attenuated the hypoxia-reoxygenation-induced disruption of the mitochondrial membrane potential and shortening. Mitochondrial quality control-related factors, such as optic atrophy protein 1, mitofusin 2, dynamin-related protein 1, and parkin, were examined by Western blotting. Exendin-4 significantly increased the expression of the fusion proteins, optic atrophy protein 1 and mitofusin 2, and decreased that of the mitophagy-related protein, parkin, without altering dynamin-related protein 1 expression levels. Exendin-4 also preserved Akt phosphorylation levels after hypoxia-reoxygenation, whereas wortmannin, an inhibitor of the phosphoinositide 3-kinase-Akt pathway, blunted exendin-4-induced myocyte protection and its effects on mitochondrial quality control factors. In conclusion, exendin-4 protected mitochondria by preserving the phosphorylation of Akt and fusion proteins, leading to the attenuation of hypoxia-reoxygenation-induced injury in cultured myocytes.


Assuntos
Miócitos Cardíacos , Atrofia Óptica , Animais , Apoptose , Hipóxia Celular , Células Cultivadas , Dinaminas/metabolismo , Dinaminas/farmacologia , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Atrofia Óptica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ubiquitina-Proteína Ligases/metabolismo
20.
Arch Biochem Biophys ; 685: 108284, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32014401

RESUMO

We reported previously that higher doses (150-250 µM) of silibinin enhanced fission and inhibited fusion of mitochondria, accompanying apoptosis of double-positive breast cancer cell line MCF-7 cells and triple-negative breast cancer cell line MDA-MB-231 cells. We report here three important questions yet unclarified in the previous study; 1) Whether enhanced fission of mitochondria by the treatment of silibinin leads to mitophagy, 2) Whether mitophagy positively contributes to apoptosis and 3) Whether estrogen receptor-positive (ER+) MCF-7 cells and estrogen receptor-negative (ER-) MDA-MB-231 cells are affected in a different way by silibinin treatment, since silibinin often works through ERs signaling pathway. Mitophagy driven by Pink1/Parkin signaling, plays an important role in eliminating damaged mitochondria. Indeed, increased expression of Pink1 and the recruitment of Parkin and LC3-II to mitochondria by the treatment with silibinin account for silibinin induction of mitophagy. In this study, the effects of mitochondrial division inhibitor 1 (mdivi-1) and small interfering RNA targeting dynamin-related protein 1 (DRP1) were examined to reveal the effect of mitochondrial fission on mitophagy. As expected, mdivi-1 or siRNA targeting DRP1 reversed silibinin-induced mitochondrial fission due to down-regulation in the expression of DRP1. Inhibition of mitochondrial fission by mdivi-1 prevented induction of mitophagy as well as autophagy in both MCF-7 and MDA-MB-231 cells, indicating that silibinin-induced mitochondrial fission leads to mitophagy. Inhibition of mitochondrial fission efficiently prevented silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells in our previous work, and the second point of the present study, inhibition of mitophagy by Pink1 or Parkin knockdown increased silibinin-induced apoptosis of these cells, respectively, suggesting that the mitophagy induced by silibinin treatment serves as a cytoprotective effect, resulting in reduction of apoptosis of cancer cells in both cells. In the third point, we studied whether estrogen receptors (ERs) played a role in silibinin-induced mitophagy and apoptosis in MCF-7 and MDA-MB-231 cells. ERα and ERß are not involved in silibinin-induced mitophagic process in MCF-7 and MDA-MB-231 cells. These findings demonstrated that silibinin induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis not through ERs-Pink1 or -Parkin pathway in MCF-7 and MDA-MB-231.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Silibina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Dinaminas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Biogênese de Organelas , Proteínas Quinases/genética , Quinazolinonas/farmacologia , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA