Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.466
Filtrar
1.
Dev Cell ; 59(9): 1091-1093, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714155

RESUMO

Polar localization of proteins is important for plant growth and development. Identifying the interactors of polarized proteins provides spatial information and cell-type functions. In this issue of Developmental Cell, Wallner et al. (2024) utilize opposing polarity domain proteins to identify interactors and their functions during cell division in Arabidopsis stomata.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Polaridade Celular , Desenvolvimento Vegetal , Polaridade Celular/fisiologia , Divisão Celular/fisiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Desenvolvimento Vegetal/fisiologia
2.
Plant Sci ; 344: 112090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636812

RESUMO

Vacuoles are the largest membrane-bound organelles in plant cells, critical for development and environmental responses. Vacuolar dynamics indicate reversible changes of vacuoles in morphology, size, or numbers. In this review, we summarize current understandings of vacuolar dynamics in different types of plant cells, biological processes associated with vacuolar dynamics, and regulators controlling vacuolar dynamics. Specifically, we point out the possibility that vacuolar dynamics play key roles in cell division and differentiation, which are controlled by the nucleus. Finally, we propose three routes through which vacuolar dynamics actively participate in nucleus-controlled cellular activities.


Assuntos
Diferenciação Celular , Divisão Celular , Células Vegetais , Vacúolos , Vacúolos/metabolismo , Vacúolos/fisiologia , Divisão Celular/fisiologia , Células Vegetais/fisiologia , Núcleo Celular/fisiologia , Núcleo Celular/metabolismo
3.
Dev Cell ; 59(10): 1333-1344.e4, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38579717

RESUMO

Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.


Assuntos
Arabidopsis , Divisão Celular , Microtúbulos , Raízes de Plantas , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/citologia , Divisão Celular/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Citoesqueleto/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fenômenos Biomecânicos
4.
Nat Commun ; 14(1): 151, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631478

RESUMO

Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.


Assuntos
Anexina A1 , Polaridade Celular , Células Epiteliais , Fuso Acromático , Animais , Humanos , Camundongos , Anexina A1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Mamíferos/metabolismo , Morfogênese , Fuso Acromático/genética , Fuso Acromático/metabolismo
5.
J Biol Chem ; 299(2): 102887, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626982

RESUMO

The O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates intracellular O-GlcNAcylation modification. O-GlcNAcylation occurs on Ser/Thr residues and is important for numerous physiological processes. OGT is essential for dividing mammalian cells and is involved in many human diseases; however, many of its fundamental substrates during cell division remain unknown. Here, we focus on the effect of OGT on polo-like kinase 1 (PLK1), a mitotic master kinase that governs DNA replication, mitotic entry, chromosome segregation, and mitotic exit. We show that PLK1 interacts with OGT and is O-GlcNAcylated. By utilizing stepped collisional energy/higher-energy collisional dissociation mass spectrometry, we found a peptide fragment of PLK1 that is modified by O-GlcNAc. Further mutation analysis of PLK1 shows that the T291A mutant decreases O-GlcNAcylation. Interestingly, T291N is a uterine carcinoma mutant in The Cancer Genome Atlas. Our biochemical assays demonstrate that T291A and T291N both increase PLK1 stability. Using stable H2B-GFP cells, we found that PLK1-T291A and PLK1-T291N mutants display chromosome segregation defects and result in misaligned and lagging chromosomes. In mouse xenograft models, we demonstrate that the O-GlcNAc-deficient PLK1-T291A and PLK1-T291N mutants enhance uterine carcinoma in animals. Hence, we propose that OGT partially exerts its mitotic function through O-GlcNAcylation of PLK1, which might be one mechanism by which elevated levels of O-GlcNAc promote tumorigenesis.


Assuntos
Divisão Celular , Proteínas Serina-Treonina Quinases , Neoplasias Uterinas , Animais , Feminino , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Acilação , Divisão Celular/fisiologia , Mutação , Quinase 1 Polo-Like
6.
J Biol Chem ; 298(10): 102488, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113580

RESUMO

Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria-including streptococci, enterococci, and lactococci-of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.


Assuntos
Bacteriófagos , Parede Celular , Bactérias Gram-Positivas , Parede Celular/química , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/citologia , Polissacarídeos/química , Ramnose , Ácidos Teicoicos/química , Divisão Celular/fisiologia
7.
BMC Res Notes ; 15(1): 248, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841111

RESUMO

OBJECTIVES: While it is clear that cells need to grow before committing to division at the G1/S transition of the cell cycle, how cells sense their growth rate or size at the molecular level is unknown. It has been proposed that, in budding yeast, the dilution of the Whi5 G1/S transcriptional repressor as cells grow in G1 is the main driver of G1/S commitment. This model implies that Whi5 synthesis is substantially reduced in G1 phase. Recent work has reported that the concentration of Whi5 is size- and time-independent in G1 cells, challenging the dilution model. These results in turn imply that Whi5 must be synthesized in G1 phase, but the cell cycle dependence of WHI5 mRNA expression has not been examined in live cells. RESULTS DESCRIPTION: To address this question, we monitored single WHI5 mRNA molecules in single live cells using confocal microscopy, and quantified WHI5 mRNA copy number in G1, G1/S, and S/G2/M phase cells. We observed that WHI5 mRNA is found in very similar amount irrespective of cell cycle stage. The constant WHI5 mRNA copy number throughout G1 phase rules out alterations in mRNA abundance as a contributing factor for any putative dilution of Whi5.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Ciclinas/genética , Ciclinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
mBio ; 13(4): e0066922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35703435

RESUMO

Bacterial cell division is a complex process requiring the coordination of multiple components to allow the appropriate spatial and temporal control of septum formation and cell scission. Peptidoglycan (PG) is the major structural component of the septum, and our recent studies in the human pathogen Staphylococcus aureus have revealed a complex, multistage PG architecture that develops during septation. Penicillin-binding proteins (PBPs) are essential for the final steps of PG biosynthesis; their transpeptidase activity links the peptide side chains of nascent glycan strands. PBP1 is required for cell division in S. aureus, and here, we demonstrate that it has multiple essential functions associated with its enzymatic activity and as a regulator of division. Loss of PBP1, or just its C-terminal PASTA domains, results in cessation of division at the point of septal plate formation. The PASTA domains can bind PG and thereby potentially coordinate the cell division process. The transpeptidase activity of PBP1 is also essential, but its loss leads to a strikingly different phenotype of thickened and aberrant septa, which is phenocopied by the morphological effects of adding the PBP1-specific ß-lactam, meropenem. Together, these results lead to a model for septal PG synthesis where PBP1 enzyme activity is required for the characteristic architecture of the septum and PBP1 protein molecules enable the formation of the septal plate. IMPORTANCE Bacterial cell wall peptidoglycan is essential, and its synthesis is the target of clinically important antibiotics such as ß-lactams. ß-lactams target penicillin-binding proteins (PBPs) that assemble new peptidoglycan from its building blocks. The human pathogen Staphylococcus aureus only has two essential PBPs that can carry out all the functions necessary for growth and division. In the absence of the confounding antibiotic resistance-associated PBP PBP2A, PBP1 is required for cell division, and here, we have found that it has several essential functions, both as an enzyme and as a coordinator by binding to cell division proteins and to its peptidoglycan product, via its PASTA domains. This has led to a new model for cell division with PBP1 responsible for the synthesis of the characteristic architectural features of the septum.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação às Penicilinas , Peptidil Transferases , Infecções Estafilocócicas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus , beta-Lactamas/farmacologia
9.
J Biol Chem ; 298(4): 101795, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248530

RESUMO

Cell growth is driven by the acquisition and synthesis of both dry biomass and water mass. In this study, we examine the increase of water mass in T cell during cell growth. We found that T-cell growth is characterized by an initial phase of slow increase in cellular water, followed by a second phase of rapid increase in water content. To study the origin of the water gain, we developed a novel methodology we call cold aqua trap-isotope ratio mass spectrometry, which allows analysis of the isotope composition of intracellular water. Applying cold aqua trap-isotope ratio mass spectrometry, we discovered that glycolysis-coupled metabolism of water accounts on average for 11 fl out of the 20 fl of water gained per cell during the initial slow phase. In addition, we show that at the end of the rapid phase before initiation of cell division, a water influx occurs, increasing the cellular water mass by threefold. Thus, we conclude that activated T cells switch from metabolizing water to rapidly taking up water from the extracellular medium prior to cell division. Our work provides a method to analyze cell water content as well as insights into the ways cells regulate their water mass.


Assuntos
Divisão Celular , Linfócitos T , Água , Divisão Celular/fisiologia , Espectrometria de Massas , Linfócitos T/citologia , Linfócitos T/metabolismo , Água/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169074

RESUMO

Cells are filled with macromolecules and polymer networks that set scale-dependent viscous and elastic properties to the cytoplasm. Although the role of these parameters in molecular diffusion, reaction kinetics, and cellular biochemistry is being increasingly recognized, their contributions to the motion and positioning of larger organelles, such as mitotic spindles for cell division, remain unknown. Here, using magnetic tweezers to displace and rotate mitotic spindles in living embryos, we uncovered that the cytoplasm can impart viscoelastic reactive forces that move spindles, or passive objects with similar size, back to their original positions. These forces are independent of cytoskeletal force generators yet reach hundreds of piconewtons and scale with cytoplasm crowding. Spindle motion shears and fluidizes the cytoplasm, dissipating elastic energy and limiting spindle recoils with functional implications for asymmetric and oriented divisions. These findings suggest that bulk cytoplasm material properties may constitute important control elements for the regulation of division positioning and cellular organization.


Assuntos
Citoplasma/fisiologia , Elasticidade/fisiologia , Fuso Acromático/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Divisão Celular/fisiologia , Difusão , Cinética , Fenômenos Magnéticos , Microtúbulos , Mitose/fisiologia , Organelas , Ouriços-do-Mar , Viscosidade
11.
J Biol Chem ; 298(3): 101701, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148988

RESUMO

Increasing evidences indicate that unlimited capacity for self-renewal and pluripotency, two unique properties of embryonic stem cells (ESCs), are intrinsically linked to cell cycle control. However, the precise mechanisms coordinating cell fate decisions and cell cycle regulation remain to be fully explored. Here, using CRISPR/Cas9-mediated genome editing, we show that in ESCs, deficiency of components of the cell cycle regulatory MuvB complex Lin54 or Lin52, but not Lin9 or Lin37, triggers G2/M arrest, loss of pluripotency, and spontaneous differentiation. Further dissection of these phenotypes demonstrated that this cell cycle arrest is accompanied by the gradual activation of mesoendodermal lineage-specifying genes. Strikingly, the abnormalities observed in Lin54-null ESCs were partially but significantly rescued by ectopic coexpression of genes encoding G2/M proteins Cyclin B1 and Cdk1. Thus, our study provides new insights into the mechanisms by which the MuvB complex determines cell fate through regulation of the cell cycle machinery.


Assuntos
Proteínas de Ciclo Celular , Células-Tronco Embrionárias , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Camundongos , Fatores de Transcrição/metabolismo
12.
PLoS Pathog ; 18(1): e1010218, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041719

RESUMO

Trypanosoma brucei, the causative agent of human African trypanosomiasis, is highly motile and must be able to move in all three dimensions for reliable cell division. These characteristics make long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of important cellular events. To address this issue, we devised an imaging approach that confines cells in small volumes within cast agarose microwells that can be imaged continuously for up to 24 h. Individual T. brucei cells were imaged through multiple rounds of cell division with high spatial and temporal resolution. We developed a strategy that employs in-well "sentinel" cells to monitor potential imaging toxicity during loss-of-function experiments such as small-molecule inhibition and RNAi. Using our approach, we show that the asymmetric daughter cells produced during T. brucei division subsequently divide at different rates, with the old-flagellum daughter cell dividing first. The flagellar detachment phenotype that appears during inhibition of the Polo-like kinase homolog TbPLK occurs in a stepwise fashion, with the new flagellum initially linked by its tip to the old, attached flagellum. We probe the feasibility of a previously proposed "back-up" cytokinetic mechanism and show that cells that initiate this process do not appear to complete cell division. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.


Assuntos
Divisão Celular/fisiologia , Microscopia Intravital/métodos , Trypanosoma brucei brucei/fisiologia
13.
Sci Rep ; 12(1): 933, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042922

RESUMO

Combining single cell experiments, population dynamics and theoretical methods of membrane mechanics, we put forward that the rate of cell proliferation in E. coli colonies can be regulated by modifiers of the mechanical properties of the bacterial membrane. Bacterial proliferation was modelled as mediated by cell division through a membrane constriction divisome based on FtsZ, a mechanically competent protein at elastic interaction against membrane rigidity. Using membrane fluctuation spectroscopy in the single cells, we revealed either membrane stiffening when considering hydrophobic long chain fatty substances, or membrane softening if short-chained hydrophilic molecules are used. Membrane stiffeners caused hindered growth under normal division in the microbial cultures, as expected for membrane rigidification. Membrane softeners, however, altered regular cell division causing persistent microbes that abnormally grow as long filamentous cells proliferating apparently faster. We invoke the concept of effective growth rate under the assumption of a heterogeneous population structure composed by distinguishable individuals with different FtsZ-content leading the possible forms of cell proliferation, from regular division in two normal daughters to continuous growing filamentation and budding. The results settle altogether into a master plot that captures a universal scaling between membrane rigidity and the divisional instability mediated by FtsZ at the onset of membrane constriction.


Assuntos
Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo
14.
Dev Cell ; 57(1): 32-46.e8, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35016005

RESUMO

We test the hypothesis that glioblastoma harbors quiescent cancer stem cells that evade anti-proliferative therapies. Functional characterization of spontaneous glioblastomas from genetically engineered mice reveals essential quiescent stem-like cells that can be directly isolated from tumors. A derived quiescent cancer-stem-cell-specific gene expression signature is enriched in pre-formed patient GBM xenograft single-cell clusters that lack proliferative gene expression. A refined human 118-gene signature is preserved in quiescent single-cell populations from primary and recurrent human glioblastomas. The F3 cell-surface receptor mRNA, expressed in the conserved signature, identifies quiescent tumor cells by antibody immunohistochemistry. F3-antibody-sorted glioblastoma cells exhibit stem cell gene expression, enhance self-renewal in culture, drive tumor initiation and serial transplantation, and reconstitute tumor heterogeneity. Upon chemotherapy, the spared cancer stem cell pool becomes activated and accelerates transition to proliferation. These results help explain conventional treatment failure and lay a conceptual framework for alternative therapies.


Assuntos
Sobrevivência Celular/fisiologia , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular/genética , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/patologia , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Transcriptoma/genética
15.
Nat Commun ; 13(1): 526, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082292

RESUMO

The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression.


Assuntos
Genes cdc , Nucleossomos/metabolismo , Ligação Proteica , Sítio de Iniciação de Transcrição , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Cromatina , DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 13(1): 71, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013186

RESUMO

Filamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Hifas/metabolismo , Esporos Bacterianos/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Fenômenos Biológicos , Parede Celular , Hifas/citologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Esporos Bacterianos/genética , Streptomyces/citologia , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
17.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983838

RESUMO

Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by assemblies of cytoskeletal polymers. Here we developed a physical model for the ESCRT-III-mediated division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. By comparing the dynamics of simulations with data collected from live cell imaging experiments, we propose that this branch of life uses a previously unidentified division mechanism. Active changes in the curvature of elastic cytoskeletal filaments can lead to filament perversions and supercoiling, to drive ring constriction and deform the overlying membrane. Abscission is then completed following filament disassembly. The model was also used to explore how different adenosine triphosphate (ATP)-driven processes that govern the way the structure of the filament is changed likely impact the robustness and symmetry of the resulting division. Comparisons between midcell constriction dynamics in simulations and experiments reveal a good agreement with the process when changes in curvature are implemented at random positions along the filament, supporting this as a possible mechanism of ESCRT-III-dependent division in this system. Beyond archaea, this study pinpoints a general mechanism of cytokinesis based on dynamic coupling between a coiling filament and the membrane.


Assuntos
Archaea/fisiologia , Divisão Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Citocinese , Citoesqueleto/metabolismo , Sulfolobus acidocaldarius/fisiologia
18.
STAR Protoc ; 3(1): 101112, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35098164

RESUMO

Neurotrophic factors and their signaling cascades play important roles in synaptic growth, which can be investigated in cultured primary neurons to better control the concentrations and timing of neurotrophic factor treatment. Here, we provide a protocol detailing the preparation of cultured primary mouse neurons and the neurotrophic factor treatment. We then describe electrophysiological recording of synaptic transmission, immunocytochemistry of AMPA receptor expression, and imaging analysis of dendritic spines. This platform enables characterization of synaptic growth at functional and morphological levels. For complete details on the use and execution of this profile, please refer to Zhou et al. (2021).


Assuntos
Divisão Celular/fisiologia , Fatores de Crescimento Neural/fisiologia , Neurônios/citologia , Sinapses , Animais , Células Cultivadas , Camundongos , Neurônios/metabolismo , Receptores de AMPA/metabolismo
19.
Elife ; 102021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854811

RESUMO

Collection of high-throughput data has become prevalent in biology. Large datasets allow the use of statistical constructs such as binning and linear regression to quantify relationships between variables and hypothesize underlying biological mechanisms based on it. We discuss several such examples in relation to single-cell data and cellular growth. In particular, we show instances where what appears to be ordinary use of these statistical methods leads to incorrect conclusions such as growth being non-exponential as opposed to exponential and vice versa. We propose that the data analysis and its interpretation should be done in the context of a generative model, if possible. In this way, the statistical methods can be validated either analytically or against synthetic data generated via the use of the model, leading to a consistent method for inferring biological mechanisms from data. On applying the validated methods of data analysis to infer cellular growth on our experimental data, we find the growth of length in E. coli to be non-exponential. Our analysis shows that in the later stages of the cell cycle the growth rate is faster than exponential.


All cells ­ from bacteria to humans ­ tightly control their size as they grow and divide. Cells can also change the speed at which they grow, and the pattern of how fast a cell grows with time is called 'mode of growth'. Mode of growth can be 'linear', when cells increase their size at a constant rate, or 'exponential', when cells increase their size at a rate proportional to their current size. A cell's mode of growth influences its inner workings, so identifying how a cell grows can reveal information about how a cell will behave. Scientists can measure the size of cells as they age and identify their mode of growth using single cell imaging techniques. Unfortunately, the statistical methods available to analyze the large amounts of data generated in these experiments can lead to incorrect conclusions. Specifically, Kar et al. found that scientists had been using specific types of plots to analyze growth data that were prone to these errors, and may lead to misinterpreting exponential growth as linear and vice versa. This discrepancy can be resolved by ensuring that the plots used to determine the mode of growth are adequate for this analysis. But how can the adequacy of a plot be tested? One way to do this is to generate synthetic data from a known model, which can have a specific and known mode of growth, and using this data to test the different plots. Kar et al. developed such a 'generative model' to produce synthetic data similar to the experimental data, and used these data to determine which plots are best suited to determine growth mode. Once they had validated the best statistical methods for studying mode of growth, Kar et al. applied these methods to growth data from the bacterium Escherichia coli. This showed that these cells have a form of growth called 'super-exponential growth'. These findings identify a strategy to validate statistical methods used to analyze cell growth data. Furthermore, this strategy ­ the use of generative models to produce synthetic data to test the accuracy of statistical methods ­ could be used in other areas of biology to validate statistical approaches.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Crescimento Celular , Proliferação de Células/fisiologia , Escherichia coli/crescimento & desenvolvimento , Modelos Teóricos , Interpretação Estatística de Dados
20.
Elife ; 102021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889186

RESUMO

Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).


Assuntos
Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Urocordados/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA