Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(7): e13484, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973095

RESUMO

Peach brown rot, attributed to Monilinia fructicola, presents a significant threat to postharvest peach cultivation, causing losses of up to 80%. With an increasing number of countries, spearheaded by the European Union, imposing bans on chemical agents in fruit production, there is a growing interest in mining highly active antibacterial compounds from biological control strains for postharvest disease management. In this study, we highlight the unique ability of Streptomyces lincolnensis strain JCP1-7 to inhibit M. fructicola sporulation, despite its limited antimicrobial efficacy. Through GC-MS analysis, eucalyptol was identified as the key compound. Fumigation of diseased fruits with eucalyptol at a concentration of 0.0335 µg cm-3 demonstrated an in vivo inhibition rate against M. fructicola of 93.13%, completely suppressing spore formation. Transcriptome analysis revealed the impact of eucalyptol on multiple pathogenesis-related pathways, particularly through the inhibition of catalase 2 (Cat2) expression. Experiments with a MfCat2 knockout strain (ΔMfCat2) showed reduced pathogenicity and sensitivity to JCP1-7 and eucalyptol, suggesting MfCat2 as a potential target of JCP1-7 and eucalyptol against M. fructicola. Our findings elucidate that eucalyptol produced by S. lincolnensis JCP1-7 inhibits M. fructicola sporulation by regulating MfCat2, thereby effectively reducing postharvest peach brown rot occurrence. The use of fumigation of eucalyptol offers insights into peach brown rot management on a large scale, thus making a significant contribution to agricultural research.


Assuntos
Eucaliptol , Doenças das Plantas , Streptomyces , Eucaliptol/farmacologia , Doenças das Plantas/microbiologia , Prunus persica/microbiologia , Esporos Bacterianos/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Virulência/efeitos dos fármacos , Micrococcaceae/patogenicidade , Micrococcaceae/efeitos dos fármacos
2.
Molecules ; 29(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930942

RESUMO

Naturally occurring substances and their derivatives function as vital resources for pesticides that can be used in fields, such as insecticide production and fungicide development. As a botanical entity displaying multifaceted biological functions, wormwood has received thorough scrutiny across multiple sectors. The insect repellency potency combined with antibacterial and antifungal activities of wormwood position it as a potential candidate for prospective development into eco-friendly chemical pesticides. In this research, Wormwood essential oil was procured via ethanol water under ultrasonic scenarios and subsequently diluted with PEG 400 to formulate green chemical pesticides. The defensive efficacy of this green pesticide on plants was validated through 2 weeks of clustered plant growth experiments. Active constituents that exerted their effects were scrutinized by GC-MS. Furthermore, this green pesticide also displays efficacious effects on the prevention and management of aphids, exhibiting a dose-dependent relationship. 4-terpenol, eucalyptol, carvacrol, and L-borneol were identified by GC-MS as the predominant active constituents in this green chemical pesticide. Wormwood can be leveraged to develop green chemical pesticides, which can protect plants without contaminating the environment.


Assuntos
Inseticidas , Óleos Voláteis , Inseticidas/química , Inseticidas/farmacologia , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Cimenos/química , Cimenos/farmacologia , Química Verde/métodos , Afídeos/efeitos dos fármacos , Eucaliptol/química , Eucaliptol/farmacologia , Canfanos
3.
Life Sci ; 350: 122746, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810792

RESUMO

AIMS: Dysregulated platelet aggregation is a fatal condition in many bacterial- and virus-induced diseases. However, classical antithrombotics cannot completely prevent immunothrombosis, due to the unaddressed mechanisms towards inflammation. Thus, targeting platelet hyperactivation together with inflammation might provide new treatment options in diseases, characterized by immunothrombosis, such as COVID-19 and sepsis. The aim of this study was to investigate the antiaggregatory effect and mode of action of 1.8-cineole, a monoterpene derived from the essential oil of eucalyptus leaves, known for its anti-inflammatory proprieties. MAIN METHODS: Platelet activity was monitored by measuring the expression and release of platelet activation markers, i.e., P-selectin, CD63 and CCL5, as well as platelet aggregation, upon treatment with 1.8-cineole and stimulation with several classical stimuli and bacteria. A kinase activity assay was used to elucidate the mode of action, followed by a detailed analysis of the involvement of the adenylyl-cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway by Western blot and ELISA. KEY FINDINGS: 1.8-cineole prevented the expression and release of platelet activation markers, as well as platelet aggregation, upon induction of aggregation with classical stimuli and immunological agonists. Mechanistically, 1.8- cineole influences the activation of the AC-cAMP-PKA pathway, leading to higher cAMP levels and vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Finally, blocking the adenosine A2A receptor reversed the antithrombotic effect of 1.8-cineole. SIGNIFICANCE: Given the recognized anti-inflammatory attributes of 1.8-cineole, coupled with our findings, 1.8-cineole might emerge as a promising candidate for treating conditions marked by platelet activation and abnormal inflammation.


Assuntos
AMP Cíclico , Eucaliptol , Ativação Plaquetária , Agregação Plaquetária , Receptor A2A de Adenosina , Eucaliptol/farmacologia , Receptor A2A de Adenosina/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Humanos , AMP Cíclico/metabolismo , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Selectina-P/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Anti-Inflamatórios/farmacologia , COVID-19/metabolismo
4.
Biomed Pharmacother ; 175: 116784, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781865

RESUMO

1,8-Cineole is a bicyclic monoterpene widely distributed in the essential oils of various medicinal plants, and it exhibits significant anti-inflammatory and antioxidant activities. We aimed to investigate the therapeutic effect of 1,8-cineole on anti-Alzheimer's disease by using transgenic Caenorhabditis elegans models. Our studies demonstrated that 1,8-cineole significantly relieved Aß1-42-induced paralysis and exhibited remarkable antioxidant and anti-Aß1-42 aggregation activities in transgenic nematodes CL4176, CL2006 and CL2355. We developed a 1,8-cineole/cyclodextrin inclusion complex, displaying enhanced anti-paralysis, anti-Aß aggregation and antioxidant activities compared to 1,8-cineole. In addition, we found 1,8-cineole treatment activated the SKN-1/Nrf-2 pathway and induced autophagy in nematodes. Our results demonstrated the antioxidant and anti-Alzheimer's disease activities of 1,8-cineole, which provide a potential therapeutic approach for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais Geneticamente Modificados , Antioxidantes , Caenorhabditis elegans , Eucaliptol , Eucaliptol/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Antioxidantes/farmacologia , Peptídeos beta-Amiloides/metabolismo , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Fragmentos de Peptídeos/farmacologia , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587823

RESUMO

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Monoterpenos , Óleos Voláteis , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acroleína/farmacologia , Monoterpenos/farmacologia , Cimenos/farmacologia , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Vancomicina/farmacologia , Linezolida/farmacologia , Limoneno/farmacologia , Eucaliptol/farmacologia , Timol/farmacologia , Clindamicina/farmacologia , Humanos , Penicilinas/farmacologia , Terpenos/farmacologia , Cicloexenos/farmacologia , Infecções por Corynebacterium/microbiologia
6.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685252

RESUMO

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Assuntos
Monoterpenos Acíclicos , Eucaliptol , Eugenol , Monoterpenos , Monoterpenos/farmacologia , Monoterpenos/química , Animais , Eugenol/farmacologia , Eugenol/química , Eucaliptol/farmacologia , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Pediculus/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Timol/farmacologia , Timol/química , Micelas , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Nanopartículas/química , Infestações por Piolhos/tratamento farmacológico
7.
Inflammopharmacology ; 32(3): 1941-1959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649658

RESUMO

The monoterpene oxide, Eucalyptol (1,8-Cineole), a primary component of eucalyptus oil, has been evaluated pharmacologically for anti-inflammatory and analgesic activity. Current research aimed to evaluate Eucalyptol's anti-arthritic potential in a Complete Freund's adjuvant induced arthritis that resembles human rheumatoid arthritis. Polyarthritis developed after 0.1 mL CFA injection into the left hind footpad in rats. Oral administration of Eucalyptol at various doses (100, 200 and 400 mg/kg) significantly reduced paw edema, body weight loss, 5-LOX, PGE2 and Anti-CCP levels. Real-time PCR investigation showed significant downregulation of COX-2, TNF-α, NF-κB, IL-17, IL-6, IL-1ß and upregulation of IL-4 and IL-10 in Eucalyptol treated groups. Hemoglobin and RBCs counts significantly increased post-treatment with Eucalyptol while ESR, CRP, WBCs and platelets count significantly decreased. Eucalyptol significantly increased Superoxide Dismutase, Catalase and Glutathione levels compared to CFA-induced arthritic control however, MDA significantly decreased post-treatment. Further, radiographic and histopathological examination of the ankle joints of rodents administered Eucalyptol revealed an improvement in the structure of the joints. Piroxicam was taken as standard. Furthermore, molecular docking findings supported the anti-arthritic efficacy of Eucalyptol exhibited high binding interaction against IL-17, TNF-α, IL-4, IL-10, iNOS NF-κB, 5-LOX, and COX-2. Eucalyptol has reduced the severity of CFA induced arthritis by promoting anti-inflammatory cytokines for example IL-4, IL-10 and by inhibiting pro-inflammatory cytokines such as 5-LOX, COX-2, IL-17, NF-κB, TNF-α, IL-6 and IL-1ß. Therefore, Eucalyptol might be as a potential therapeutic agent because of its pronounced anti-oxidant and anti-arthritic activity.


Assuntos
Anti-Inflamatórios , Artrite Experimental , Ciclo-Oxigenase 2 , Eucaliptol , Interleucina-10 , Interleucina-17 , NF-kappa B , Ratos Wistar , Eucaliptol/farmacologia , Animais , NF-kappa B/metabolismo , Ratos , Ciclo-Oxigenase 2/metabolismo , Interleucina-17/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Masculino , Anti-Inflamatórios/farmacologia , Interleucina-10/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Edema/tratamento farmacológico , Adjuvante de Freund , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo
8.
Pestic Biochem Physiol ; 198: 105726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225081

RESUMO

Chlorpyrifos (Diethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl) oxy-λ5-phosphane, CPF) was extensively used organophosphorus pesticide, extensively deteriorating public problem with the enrichment in the water bodies. Eucalyptol (1,3,3-Trimethyl-2-oxabicyclo[2.2.2] octane, EUC), a colorless cyclic monoterpene oxide, has shown anti-inflammatory and anti-oxidation properties. To explore the effect of EUC on CPF-induced necroptosis in the grass carp liver cells (L8824 cells), we treated L8824 cells with 60 mM CPF and 5 µM EUC for 24 h. The results showed that CPF exposed lead to excessive accumulation of reactive oxygen species (ROS) and oxidative stress, activating the NF-κB and RIPK1 pathway, increasing the level of cell necroptosis. However, EUC treatment attenuated the toxic effects of CPF treatment on L8824 cells. In summary, the study demonstrated that CPF induced necroptosis and inflammation, and EUC treatment could decrease CPF-caused cell injury.


Assuntos
Carpas , Clorpirifos , Praguicidas , Animais , Clorpirifos/toxicidade , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Praguicidas/farmacologia , Carpas/metabolismo , Necroptose , Compostos Organofosforados/metabolismo , Estresse Oxidativo , Fígado/metabolismo
9.
Curr Drug Deliv ; 21(5): 697-708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37165499

RESUMO

The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.


Assuntos
Sistemas de Liberação de Medicamentos , Absorção Cutânea , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Pele/metabolismo , Administração Cutânea , Preparações Farmacêuticas/metabolismo , Permeabilidade
10.
J Ethnopharmacol ; 321: 117489, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012973

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea glaucescens K. (Lauraceae) is a small tree from the Mexican and Central American temperate forests, named as "Laurel". Its aromatic leaves are ordinarily consumed as condiments, but also are important in Mexican Traditional Medicine, and among the most important non wood forest products in this area. The leaves are currently used in a decoction for the relief of sadness by the Mazahua ethnic group. Interestingly, "Laurel" has a long history. It was named as "Ehecapahtli" (wind medicine) in pre-Columbian times and applied to heal maladies correlated to the Central Nervous System, among them depression, according to botanical texts written in the American Continent almost five centuries ago. AIM OF THE STUDY: Depression is the first cause of incapacity in the world, and society demands alternative treatments, including aromatherapy. We have previously demonstrated the antidepressant-like activity of L. glaucescens leaves' essential oil (LEO), as well as their monoterpenes linalool, and beta-pinene by intraperitoneal route in a mice behavioral model. Here we now examined if LEO and linalool exhibit this property and anxiolytic activity when administered to mice by inhalation. We also investigated if these effects occur by BDNF pathway activation in the brain. MATERIALS AND METHODS: The LEO was prepared by distillation with water steam and analyzed by gas chromatography-mass spectrometry (GC-MS). The monoterpenes linalool, eucalyptol and ß-pinene were identified and quantified. Antidepressant type properties were determined with the Forced Swim Test (FST) on mice previously exposed to LEO or linalool in an inhalation chamber. The spontaneous locomotor activity and the sedative effect were assessed with the Open Field Test (OFT), and the Exploratory Cylinder (EC), respectively. The anxiolytic properties were investigated with the Elevated Plus Maze Apparatus (EPM) and the Hole Board Test (HBT). All experiments were video documented. The mice were subjected to euthanasia, and the brain hippocampus and prefrontal cortex were dissected. RESULTS: The L. glaucescens essential oil (LEO) contains 31 compounds according to GC/MS, including eucalyptol, linalool and beta-pinene. The LEO has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene, as indicated by OFT and EC tests. The LEO and imipramine have antidepressant like activity in mice as revealed by the FST; however, linalool and ketamine treatments didn't modify the time of immobility. The BDNF was increased in FST in mice treated with LEO in both areas of the brain as revealed by Western blot; but did not decrease the level of corticosterone in plasma. The OFT indicated that LEO and imipramine didn't reduce the spontaneous motor activity, while linalool and ketamine caused a significant decrease. CONCLUSION: Here we report by the first time that L. glaucescens leaves essential oil has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene. This oil also maintains its antidepressant-like activity by this administration way, similarly to the previously determined intraperitoneally. Since inhalation is a common administration route for humans, our results suggest L. glaucescens essential oil deserve future investigation due to its potential application in aromatherapy.


Assuntos
Ansiolíticos , Ketamina , Lauraceae , Litsea , Óleos Voláteis , Humanos , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Óleos Voláteis/química , Fator Neurotrófico Derivado do Encéfalo , Imipramina/farmacologia , Eucaliptol/farmacologia , Ketamina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Monoterpenos/farmacologia , Comportamento Animal
11.
Environ Res ; 241: 117714, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989462

RESUMO

Cyanobacterial blooms cause serious environmental issues, and plant secondary metabolites are considered as new algaecide for controlling them. Cinnamomum camphora produces a wide spectrum of terpenoids and has 4 main chemotypes, including linalool, camphor, eucalyptol and borneol chemotype. To develop the new cyanobacterial algaecide by using suitable chemotype of Cinnamomum camphora and the main terpenoids, we analyzed the terpenoid composition in the 4 chemotype extracts, evaluated the algicidal effects of the extracts and their typical monoterpenoids on Microcystis aeruginosa, and investigated the algicidal mechanism of the stronger algicidal agents. Among the 4 chemotypes, eucalyptol and borneol chemotype extracts exhibited stronger algicidal effects. In the 4 chemotype extracts, monoterpenoids were the main compounds, of which linalool, camphor, eucalyptol and borneol were the typical components. Among the 4 typical monoterpenoids, eucalyptol and borneol showed stronger algicidal effects, which killed 78.8% and 100% M. aeruginosa cells, respectively, at 1.2 mM after 48 h. In 1.2 mM eucalyptol and borneol treatments, the reactive oxygen species levels markedly increased, and the caspase-3-like activity also raised. With prolonging the treatment time, M. aeruginosa cells gradually shrank and wrinkled, and the cell TUNEL fluorescence intensity and DNA degradation gradually enhanced, indicating that the lethal mechanism is causing apoptosis-like programmed cell death (PCD). Therefore, eucalyptol and borneol chemotype extracts and their typical monoterpenoids have the potential for developing as algaecides to control cyanobacteria through triggering apoptosis-like PCD.


Assuntos
Cinnamomum camphora , Herbicidas , Microcystis , Monoterpenos/farmacologia , Cânfora/farmacologia , Eucaliptol/farmacologia , Terpenos/farmacologia
12.
Microsc Res Tech ; 87(1): 133-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728140

RESUMO

The emergence of multidrug resistance (MDR) in bacterial pathogens is a serious public health concern. A significant therapeutic target for MDR infections is the quorum sensing-regulated bacterial pathogenicity. Determining the anti-quorum sensing abilities of certain medicinal plants against bacterial pathogens as well as the in-silico interactions of particular bioactive phytocompounds with QS and biofilm-associated proteins were the objectives of the present study. In this study, 6 medicinal plants were selected based on their ethnopharmacological usage, screened for Anti-QS activity and Artemisia annua leaf extract (AALE) demonstrated pigment inhibitory activity against Chromobacterium violaceum CV12472. Further, the methanol active fraction significantly inhibited the virulence factors (pyocyanin, pyoverdine, rhamnolipid and swarming motility) of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 at respective sub-MICs. The inhibition of biofilm was determined using a microtiter plate test and scanning electron microscopy. Biofilm formation was impaired by 70%, 72% and 74% in P. aeruginosa, C. violaceum and S. marcescens, respectively at 0.5xMIC of the extract. The phytochemical content of the extract was studied using GC-MS and 1, 8-cineole was identified as major bioactive compound. Furthermore, 1, 8-cineole was docked with quorum sensing (QS) proteins (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT). In silico docking and dynamics simulations studies suggested interactions with QS-receptors CviR', LasI, LasR, and biofilm proteins PilY1, PilT for anti-QS activity. Further, 1, 8-cineole demonstrated 66% and 51% reduction in violacein production and biofilm formation, respectively to validate the findings of computational analysis. Findings of the present investigation suggests that 1, 8-cineole plays a crucial role in the QS and biofilm inhibitory activity demonstrated by Artemisia annua extract. RESEARCH HIGHLIGHTS: Artemisia annua leaf extract (AALE) methanol fraction demonstrated broad-spectrum QS and biofilm inhibition Scanning electron microscopy (SEM) confirmed biofilm inhibition Molecular docking and simulation studies suggested positive interactions of 1,8-cineol with QS-receptors and biofilm proteins.


Assuntos
Artemisia annua , Plantas Medicinais , Percepção de Quorum , Virulência , Eucaliptol/farmacologia , Plantas Medicinais/química , Artemisia annua/metabolismo , Simulação de Acoplamento Molecular , Metanol/farmacologia , Antibacterianos/química , Biofilmes , Extratos Vegetais/farmacologia , Bactérias
13.
Toxicol Mech Methods ; 34(4): 413-422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115227

RESUMO

Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1ß), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1ß, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.


Assuntos
Gentamicinas , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Gentamicinas/toxicidade , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Eucaliptol/uso terapêutico , Caspase 3/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Rim , Estresse Oxidativo , Antioxidantes/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose
14.
Aquat Toxicol ; 264: 106739, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918148

RESUMO

The wide application of Avermectin (AVM) has caused pollution of surface water and damage to non-target organisms. A growing body of evidence supports the most prominent role of Eucalyptol (EUC) is antioxidation. To the purpose of explore the injury mechanism of Avermectin on grass carp hepatocytes and the antagonistic effect of Eucalyptol, 5.7 µM AVM and/or 20 µM EUC were used to treat grass carp hepatocytes for 24 h to establish hepatocyte exposure model. The results showed that Avermectin exposure significantly increased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) in cells, reduced the activities of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC). Also, the expressions of NLRP3 inflammasome-related genes including NLRP3, ASC, and Caspase-1, the necroptosis-related genes including RIPK1, RIPK3, and MLKL and apoptotic genes including Bax, Caspase-3, and Caspase-9 were all up-regulated. Meanwhile, the expressions of Caspase-8 and Bcl-2 were significantly decreased upon exposure to Avermectin. However, the toxicity was significantly alleviated with the treatment of EUC or N-acetyl-l-cysteine (NAC). The above results indicated that eucalyptol alleviated AVM exposure-induced apoptosis and necroptosis of grass carp hepatocytes by regulating the ROS/NLRP3 signaling pathway.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Eucaliptol/farmacologia , Carpas/metabolismo , Necroptose , Poluentes Químicos da Água/toxicidade , Apoptose , Antioxidantes/metabolismo , Hepatócitos/metabolismo
15.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005233

RESUMO

Antrodia cinnamomea is a valuable edible and medicinal mushroom with antitumor, hepatoprotective, and antiviral effects that play a role in intestinal flora regulation. Spore-inoculation submerged fermentation has become the most efficient and well-known artificial culture process for A. cinnamomea. In this study, a specific low-molecular compound named 1,8-cineole (cineole) from Cinnamomum kanehirae Hay was first reported to have remarkably promoted the asexual sporulation of A. cinnamomea in submerged fermentation (AcSmF). Then, RNA sequencing, real-time quantitative PCR, and a literature review were performed to predict the molecular regulatory mechanisms underlying the cineole-promoted sporulation of AcSmF. The available evidence supports the hypothesis that after receiving the signal of cineole through cell receptors Wsc1 and Mid2, Pkc1 promoted the expression levels of rlm1 and wetA and facilitated their transfer to the cell wall integrity (CWI) signal pathway, and wetA in turn promoted the sporulation of AcSmF. Moreover, cineole changed the membrane functional state of the A. cinnamomea cell and thus activated the heat stress response by the CWI pathway. Then, heat shock protein 90 and its chaperone Cdc37 promoted the expression of stuA and brlA, thus promoting sporulation of AcSmF. In addition, cineole promoted the expression of areA, flbA, and flbD through the transcription factor NCP1 and inhibited the expression of pkaA through the ammonium permease of MEP, finally promoting the sporulation of AcSmF. This study may improve the efficiency of the inoculum (spores) preparation of AcSmF and thereby enhance the production benefits of A. cinnamomea.


Assuntos
Antrodia , Cinnamomum , Transcriptoma , Fermentação , Eucaliptol/farmacologia
16.
Int J Biol Macromol ; 253(Pt 7): 127365, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827418

RESUMO

We have developed a biomimetic delivery system termed the Monocyte Cell Membrane-Coated 1,8-Cineole Biomimetic Delivery System (MM-CIN-BDS or BDS), which integrates diethylaminoethyl-dextran (DEAE) and monocyte cell membrane (MM). This innovative approach enhances the cellular uptake efficiency of 1,8-cineole (CIN) and facilitates targeted therapy for atherosclerosis. Our findings demonstrate the successful modification of the drug carrier with DEAE and MM, as validated by measurements of particle size, zeta potential, microscopic morphology, and western blotting analyses. Notably, cellular uptake experiments unveil a significant enhancement in cellular uptake efficiency due to DEAE modification. However, the introduction of monocyte cell membranes diminishes this effect in normal human umbilical vein endothelial cells (HUVECs), although this efficiency is notably restored in HUVECs activated with lipopolysaccharide (LPS). Through in vivo imaging investigations, we observe that the MM coating augments distribution in the spleen, brain, and atherosclerotic plaques, while concurrently diminishing distribution in the heart and kidneys. Animal studies corroborate these findings, illustrating that MM-CIN-BDS treatment curtails lipid parameters, dampens the expression of inflammatory factors and proteins, mitigates vascular tissue damage, and ultimately reduces the extent of atherosclerotic lesion areas. To encapsulate, DEAE emerges as an especially adept agent for modifying drug carriers with suboptimal cellular uptake efficiency in the realm of cardiovascular diseases. The potential therapeutic promise of MM-CIN-BDS for atherosclerosis treatment is evident from our research.


Assuntos
Aterosclerose , Monócitos , Animais , Humanos , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Dextranos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Membrana Celular , Portadores de Fármacos/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
17.
Biol Pharm Bull ; 46(10): 1371-1384, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532524

RESUMO

This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Oxigênio , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Eucaliptol/farmacologia , Eucaliptol/metabolismo , Glucose/metabolismo , Transdução de Sinais , Estresse Oxidativo , Antioxidantes/farmacologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias/metabolismo , Heme Oxigenase-1/metabolismo
18.
J Mol Med (Berl) ; 101(9): 1083-1095, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470800

RESUMO

Eucalyptol (EU) is monoterpene oxide that is the main component of the essential oil extracted from aromatic plants such as Eucalyptus globules. EU has therapeutic effects such as antibacterial, anti-inflammatory and antioxidant in chronic diseases including inflammation disorder, respiratory disease, and diabetic disease. However, the effects of EU on osteoblast differentiation and bone diseases such as osteoporosis have not been studied. The present study investigated the effects of EU on osteoblast differentiation and bone formation. EU induces mRNA and protein expression of osteogenic genes in osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts. EU also promoted alkaline phosphatase (ALP) activity and mineralization. Here, the osteoblast differentiation effect of EU is completely reversed by ERK inhibitor. These results demonstrate that osteoblast differentiation effect of EU is mediated by ERK phosphorylation. The efficacy of EU on bone formation was investigated using surgical bone loss-induced animal models. EU dose-dependently promoted bone regeneration in zebrafish caudal fin rays. In the case of ovariectomized mice, EU increased ERK phosphorylation and ameliorated bone loss of femurs. These results indicate that EU ameliorates bone loss by promoting osteoblast differentiation through ERK phosphorylation. We suggest that EU, plant-derived monoterpenoid, may be useful for preventing bone loss. KEY MESSAGES: Eucalyptol (EU) increases osteoblast differentiation in pre-osteoblasts. EU up-regulates the osteogenic genes expression via ERK phosphorylation. EU promotes bone regeneration in partially amputated zebrafish fin rays. Oral administration of EU improves ovariectomy-induced bone loss and increases ERK phosphorylation.


Assuntos
Osteogênese , Peixe-Zebra , Feminino , Camundongos , Animais , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Fosforilação , Diferenciação Celular , Osteoblastos/metabolismo
19.
Eur J Pharmacol ; 954: 175863, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37380045

RESUMO

Our previous data confirmed that 1,8-Cineole had an antihypertensive effect in animal models. However, it is unclear whether antihypertension is dependent on the protective effect of 1,8-Cineole on endothelial function and structure. At present, the purpose was to investigate the protective effects of 1,8-Cineole on vascular endothelial tissue in hypertensive rats and human umbilical vein endothelial cells (HUVECs). Our results showed that 1,8-Cineole significantly reduced the blood pressure and improved the vascular endothelial lesion, attenuated vascular oxidative stress and inflammation induced by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) in rats. Pretreatment with 1,8-Cineole was able to inhibit the increase in malondialdehyde (MDA) and reactive oxygen species (ROS) induced by L-NAME, and increased the release and expression of superoxide dismutase (SOD) and nitric oxide (NO). In addition, 1,8-Cineole also reversed the increase of autophagy-associated protein LC3Ⅱ/LC3Ⅰ and the decrease of P62 in vivo and in vitro respectively. There was a synergistic effect between PI3K agonists and drugs, while PI3K inhibitors blocked the efficacy of 1,8-Cineole. The addition of autophagy inhibitor chloroquine increases the expression of eNOS. Taken together, our results indicate that 1,8-Cineole has potential beneficial promising antihypertension depending on the integrity of vascular endothelial structure and function induced by L-NAME, and the mechanism involves ameliorating autophagy by regulating of PI3K/mTOR.


Assuntos
Hipertensão , Fosfatidilinositol 3-Quinases , Humanos , Ratos , Animais , NG-Nitroarginina Metil Éster/farmacologia , NG-Nitroarginina Metil Éster/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Eucaliptol/farmacologia , Eucaliptol/uso terapêutico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Transdução de Sinais , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo
20.
Braz J Microbiol ; 54(3): 2427-2435, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37340212

RESUMO

Staphylococcus aureus and Staphylococcus chromogenes are pathogens frequently detected in bovine mastitis. Treatment and prevention of this disease have been usually carried on with antimicrobials. However, the emergence of bacterial isolates with antimicrobial resistance has aroused interest in new therapeutic alternatives. Plant essential oils (EOs) have been largely studied as antibacterial treatments. In the present study, EOs from five plants were evaluated for their antibacterial activities against S. aureus and S. chromogenes. Bacterial isolates were obtained in a previous study of clinical cases of bovine mastitis. EOs from lemongrass, eucalyptus, lavender, peppermint, and thyme were obtained by hydrodistillation and their chemical compositions were evaluated by gas chromatography (GC). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for all EOs. The results demonstrated that citral (40.9%), myrcene (24.7%), and geraniol (1.9%) were detected in lemongrass EO; 1,8-cineole (76.9%), α-pinene (8.2%), and ledene (5.1%) in eucalyptus EO; 1,8-cineole (45.2%), camphor (18.2%), and fenchone (14.6%) in lavender EO; L-menthol (38.5%), menthofuran (16.3%), and citronellal (10.6%) in peppermint EO; and thymol (44.2%), p-cymene (24.6%) and 1,8-cineole (9.9%) in thyme EO. More effective antibacterial activities were observed only with the use of lemongrass (MIC and MBC ranging from 0.39 to 3.12 mg/mL and 0.39 to 6.35 mg/mL, respectively) and thyme (MIC and MBC ranging from 0.39 to 1.56 mg/mL and 0.39 to 3.12 mg/mL, respectively). Peppermint, lavender and eucalyptus EOs did not show bactericidal activities. In conclusion, lemongrass and thyme EOs are promising antibacterial alternatives against Staphylococcus species associated with bovine mastitis.


Assuntos
Anti-Infecciosos , Mastite Bovina , Óleos Voláteis , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Staphylococcus aureus , Eucaliptol/farmacologia , Staphylococcus , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA