Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
J Biotechnol ; 391: 92-98, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38880386

RESUMO

Protein engineering is crucial to improve enzymes' efficiency and robustness for industrial biocatalysis. NOV1 is a bacterial dioxygenase that holds biotechnological potential by catalyzing the one-step oxidation of the lignin-derived isoeugenol into vanillin, a popular flavoring agent used in food, cleaning products, cosmetics and pharmaceuticals. This study aims to enhance NOV1 activity and operational stability through the identification of distal hotspots, located at more than 9 Šfrom the active site using Zymspot, a tool that predicts advantageous distant mutations, streamlining protein engineering. A total of 41 variants were constructed using site-directed mutagenesis and the six most active enzyme variants were then recombined. Two variants, with two and three mutations, showed nearly a 10-fold increase in activity and up to 40-fold higher operational stability than the wild-type. Furthermore, these variants show 90-100 % immobilization efficiency in metal affinity resins, compared to approximately 60 % for the wild-type. In bioconversions where 50 mM of isoeugenol was added stepwise over 24-h cycles, the 1D2 variant produced approximately 144 mM of vanillin after six reaction cycles, corresponding to around 22 mg, indicating a 35 % molar conversion yield. This output was around 2.5 times higher than that obtained using the wild-type. Our findings highlight the efficacy of distal protein engineering in enhancing enzyme functions like activity, stability, and metal binding selectivity, thereby fulfilling the criteria for industrial biocatalysts. This study provides a novel approach to enzyme optimization that could have significant implications for various biotechnological applications.


Assuntos
Benzaldeídos , Enzimas Imobilizadas , Mutagênese Sítio-Dirigida , Mutação , Benzaldeídos/metabolismo , Benzaldeídos/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/química , Dioxigenases/genética , Dioxigenases/metabolismo , Dioxigenases/química , Eugenol/metabolismo , Eugenol/química , Eugenol/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Engenharia de Proteínas/métodos
2.
Food Res Int ; 188: 114514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823885

RESUMO

Eugenol (EU), a natural bioactive compound found in various plants, offers numerous health benefits, but its application in the food and pharmaceutical industry is limited by its high volatility, instability, and low water solubility. Therefore, this study aimed to utilize the surface coating technique to develop zein-tween-80-fucoidan (Z-T-FD) composite nanoparticles for encapsulating eugenol using a nozzle simulation chip. The physicochemical characteristics of the composite nanoparticles were examined by varying the weight ratios of Z, T, and FD. Results showed that the Z-T-FD weight ratio of 5:1:15 exhibited excellent colloidal stability under a range of conditions, including pH (2-8), salt concentrations (10-500 mmol/L), heating (80 °C), and storage (30 days). Encapsulation of EU into Z-T-FD nanoparticles (0.5:5:1:15) resulted in an encapsulation efficiency of 49.29 ± 1.00%, loading capacity of 0.46 ± 0.05%, particle size of 205.01 ± 3.25 nm, PDI of 0.179 ± 0.006, and zeta-potential of 37.12 ± 1.87 mV. Spherical structures were formed through hydrophobic interaction and hydrogen bonding, as confirmed by Fourier transform infrared spectroscopy and molecular docking. Furthermore, the EU-Z-T-FD (0.5:5:1:15) nanoparticles displayed higher in vitro antioxidant properties (with DPPH and ABTS radical scavenging properties at 75.28 ± 0.16% and 39.13 ± 1.22%, respectively), in vitro bioaccessibility (64.78 ± 1.37%), and retention rates under thermal and storage conditions for EU compared to other formulations. These findings demonstrate that the Z-T-FD nanoparticle system can effectively encapsulate, protect, and deliver eugenol, making it a promising option for applications in the food and pharmaceutical industries.


Assuntos
Eugenol , Nanopartículas , Polissacarídeos , Polissorbatos , Zeína , Polissacarídeos/química , Zeína/química , Eugenol/química , Nanopartículas/química , Polissorbatos/química , Antioxidantes/química , Tamanho da Partícula , Composição de Medicamentos , Concentração de Íons de Hidrogênio
3.
J Agric Food Chem ; 72(25): 14411-14418, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875496

RESUMO

Headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) offers an alternative analysis method for isoeugenol (an active ingredient in fish sedatives) that avoids the use of organic solvents, simplifies sample preparation, and can be fully automated. This work focuses on developing and evaluating an HS-SPME-GC-MS method for isoeugenol in aquaculture samples and testing the stability of isoeugenol itself. Because of isoeugenol's relatively low volatility, more polar SPME fiber coatings (polyacrylate and polydimethylsiloxane/divinylbenzene) had better performance and the headspace extractions took over 30 min to reach equilibrium. Additionally, it was found that isoeugenol was relatively unstable compared to a deuterated standard (d3-eugenol) in the presence of water. To address this, after the fish samples were homogenized with water, they were heated at 50 °C for 1 h prior to analysis for equilibration. By using the method developed in this work, isoeugenol's detection limits in multiple aquaculture matrices (shrimp, tilapia, and salmon) were in the low ng/g range (<15 ng/g), well below the target testing level (200 ng/g). Additionally, by adding d3-eugenol as an internal standard, excellent linearity (R2 > 0.98), accuracy (97-99% recoveries), and precision (5-13% RSDs) were all achieved.


Assuntos
Aquicultura , Eugenol , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Tilápia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Animais , Eugenol/análogos & derivados , Eugenol/química , Eugenol/análise , Peixes , Alimentos Marinhos/análise , Contaminação de Alimentos/análise
4.
AAPS PharmSciTech ; 25(5): 117, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806874

RESUMO

Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 µm well. In comparison to γ-CD and ß-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.


Assuntos
Administração Intranasal , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Eugenol , Estruturas Metalorgânicas , Pós , Estruturas Metalorgânicas/química , Pós/química , Humanos , Eugenol/química , Eugenol/administração & dosagem , Eugenol/farmacologia , Administração Intranasal/métodos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , gama-Ciclodextrinas/química , Estabilidade de Medicamentos , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Ciclodextrinas/química , Cavidade Nasal/metabolismo
5.
Chem Biol Interact ; 396: 111039, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719171

RESUMO

In this work, two neolignans - dehydrodieugenol (1) and dehydrodieugenol B (2) - were isolated from leaves of Ocotea cymbarum (H. B. K.) Ness. (Lauraceae). When tested against two human breast cancer cell lines (MCF7 and MDA-MB-231), compound 1 was inactive (IC50 > 500 µM) whereas compound 2 displayed IC50 values of 169 and 174 µM, respectively. To evaluate, for the first time in the literature, the synergic cytotoxic effects of compounds 1 and 2 with ion Cu2+, both cell lines were incubated with equimolar solutions of these neolignans and Cu(ClO4)2·6H2O. Obtained results revealed no differences in cytotoxicity upon the co-administration of compound 2 and Cu2+. However, the combination of compound 1 and Cu2+ increases the cytotoxicity against MCF7 and MDA-MB-231 cells, with IC50 values of 165 and 204 µM, respectively. The activity of compound 1 and Cu2+ in MCF7 spheroids regarding the causes/effects considering the tumoral microenvironment were accessed using fluorescence staining and imaging by fluorescence microscopy. This analysis enabled the observation of a higher red filter fluorescence intensity in the quiescence zone and the necrotic core, indicating a greater presence of dead cells, suggesting that the combination permeates the spheroid. Finally, using ICP-MS analysis, the intracellular copper disbalance caused by mixing compound 1 and Cu2+ was determined quantitatively. The findings showcased a 50-fold surge in the concentration of Cu2+ compared with untreated cells (p > 0.0001) - 18.7 ng of Cu2+/mg of proteins and 0.37 ng of Cu2+/mg of protein, respectively. Conversely, the concentration of Cu2+ in cells treated with compound 1 was similar to values of the negative control group (0.29 ng of Cu2+/mg of protein). This alteration allowed us to infer that compound 1 combined with Cu2+ induces cell death through copper homeostasis dysregulation.


Assuntos
Neoplasias da Mama , Cobre , Humanos , Cobre/química , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Morte Celular/efeitos dos fármacos , Eugenol/análogos & derivados , Eugenol/farmacologia , Eugenol/química , Folhas de Planta/química , Células MCF-7 , Lignanas/farmacologia , Lignanas/química
6.
Int J Biol Macromol ; 271(Pt 2): 132619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795896

RESUMO

The amelioration of refractory diabetic ulcers presents a formidable conundrum on a global scale, attributable to the elevated peril of contagion and protracted convalescence durations. Within the purlieus of this reparative epoch, the deployment of efficacious wound coverings endowed with both angiogenesis and antibacterial attributes is of paramount significance. Hydrogel wound dressings are distinguished by their elevated biocompatibility, adhesive tenacity, and innate regenerative capacity. Eugenol, a substance distilled from the blossoms of the lilac, serves as a precursor to metformin and is known to impede the genesis of reactive oxygen species. Although its antibacterial effects have been extensively chronicled, the angiogenic ramifications of eugenol within the context of wound remediation remain under-investigated. This research aimed to evaluate the effectiveness of eugenol-infused hydrogel as a wound dressing material. In this context, polyurethane gelatin (PG) was combined with eugenol at concentrations of 0.5% and 1%, creating PG-eugenol hydrogel mixtures with specific mass ratios for both in vivo and in vitro assessments. The in vivo studies indicated that hydrogels infused with eugenol expedited diabetic wound healing by fostering angiogenesis. Enhanced healing was noted, attributed to improved antibacterial and angiogenic properties, increased cell proliferation, tissue regeneration, and re-epithelialization. The in vitro analyses revealed that eugenol-enriched hydrogels stimulated the growth of fibroblasts (HFF-1) and human umbilical vein endothelial cells (HUVECs) and exhibited antibacterial characteristics. This investigation confirms the potential of eugenol-laden hydrogels in effectively treating diabetic wound defects.


Assuntos
Antibacterianos , Bandagens , Eugenol , Gelatina , Neovascularização Fisiológica , Poliuretanos , Cicatrização , Eugenol/farmacologia , Eugenol/química , Eugenol/uso terapêutico , Cicatrização/efeitos dos fármacos , Poliuretanos/química , Antibacterianos/farmacologia , Antibacterianos/química , Gelatina/química , Animais , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Humanos , Diabetes Mellitus Experimental/complicações , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Angiogênese
7.
Int J Biol Macromol ; 271(Pt 2): 132663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797291

RESUMO

This study investigated the release of aromatic compounds with distinct functional groups within bilayer microcapsules. Bilayer microcapsules of four distinctive core materials (benzyl alcohol, eugenol, cinnamaldehyde, and benzoic acid) were synthesized via freeze-drying. Chitosan (CS) and sodium alginate (ALG) were used as wall materials. CS concentration, using orthogonal experiments with the loading ratio as a metric. Under optimal conditions, three other types of microcapsules (cinnamic aldehyde, benzoic acid, and benzyl alcohol) were obtained. The four types of microcapsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA), and their sustained release characteristics were evaluated. The optimal conditions were: CS dosage, 1.2 %; CS-to-eugenol mass ratio, 1:2; and CS-to-ALG mass ratio, 1:1. By comparing the IR spectra of the four types of microcapsules, wall material, and core material, the core materials were revealed to be encapsulated within the wall material. SEM results revealed that the granular protuberances on the surface of the microcapsules were closely aligned and persistent when magnified 2000×. The TEM results indicated that all four microcapsules had a spherical and bilayer structure. The thermal stability and sustained release results showed that the four microcapsules were more resilient and less volatile than the four core materials. The release conformed to first-order kinetics, and the release ratios of the four microcapsules were as follows: benzyl alcohol microcapsules Ëƒ eugenol microcapsules Ëƒ cinnamaldehyde microcapsules Ëƒ benzoic acid microcapsules. The prepared bilayer microcapsules encapsulated four different core materials with good sustained release properties.


Assuntos
Alginatos , Cápsulas , Quitosana , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Quitosana/química , Alginatos/química , Preparações de Ação Retardada/química , Eugenol/química , Ácido Benzoico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Acroleína/química , Acroleína/análogos & derivados , Portadores de Fármacos/química , Termogravimetria
8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2680-2688, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812168

RESUMO

Methyleugenol is one of the main active constituents in the volatile oil of the traditional Chinese medicine Asari Radix et Rhizoma. It possesses various pharmacological effects such as analgesic, anesthetic, and anti-inflammatory properties. In biosynthesis, the initial precursor phenylalanine is finally converted into methyleugenol through a series of intermediate compounds including coniferyl acid, courmaryl acid, caffeic acid, ferulic acid/ferulic-CoA, coniferyl aldehyde, conferyl alcohol, cnfiferyl acetate, and eugenol/isoeugenol, which are produced through catalysis of a large number of enzymes. Eugenol O-methyltransferase(EOMT) is one of the key enzymes in the biosynthesis pathway, capable of methylating eugenol on the para-site hydroxyl group of the benzene ring, thereby generating methyleugenol. Here, an(iso)eugenol O-methyltransferase(IEMT) gene was cloned for the first time from Asarum siebo-ldii, holding an open reading frame that consisted of 1 113 bp and encoded a protein containing 370 amino acid residues. Bioinformatics analysis results showed that this protein was equipped with the characteristic structural domains of methyltransferases such as S-adenosylmethionine(SAM) binding sites and dimerization domains. The prokaryotic expression recombinant plasmid pET28a(+)-AsIEMT was constructed, and the candidate protein was induced and purified. In vitro enzyme assays confirmed that AsIEMT had dual functions. The enzyme could catalyze the production either of methyleugenol from eugenol or of methylisoeugenol from isoeugenol, although the latter was more prevalent. When isoeugenol was used as the substrate, the kinetics parameters K_m and V_(max) of catalytic reaction were(0.90±0.06) mmol·L~(-1) and(1.32±0.04)nmol·s~(-1)·mg~(-1), respectively. This study expanded our understandings of critical enzyme genes involved in phenylpropanoid metabolic pathways, and would facilitate the elucidation of quality formation mechanisms of the TCM Asari Radix et Rhizoma.


Assuntos
Asarum , Eugenol , Metiltransferases , Metiltransferases/genética , Metiltransferases/química , Metiltransferases/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Eugenol/química , Asarum/genética , Asarum/química , Asarum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Filogenia , Sequência de Aminoácidos , Clonagem Molecular
9.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771934

RESUMO

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Assuntos
Carica , Colletotrichum , Eugenol , Fungicidas Industriais , Simulação de Acoplamento Molecular , Doenças das Plantas , Triazóis , Colletotrichum/efeitos dos fármacos , Eugenol/farmacologia , Eugenol/química , Carica/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Relação Estrutura-Atividade , Desenho de Fármacos , Proteínas Fúngicas/química , Estrutura Molecular
10.
Anal Chim Acta ; 1310: 342723, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811138

RESUMO

BACKGROUND: Eugenol compounds (EUGs), which share chemical similarities with eugenol, belong to a group of phenolic compounds primarily found in clove oil. They are highly valued by fish dealers due to their exceptional anesthetic properties, playing a crucial role in reducing disease incidence and mortality during the transportation of live fish. Despite their widespread use, the safety of EUGs remains a contentious topic, raising concerns about the safety of aquatic products. This underscores the need for efficient and sensitive analytical methods for detecting EUGs. RESULTS: Nanomaterial-based ratiometric fluorescence immunoassay has gained increasing attention due to its integration of the immunoassay's excellent specificity and compatibility for high-throughput analysis, coupled with the exceptional sensitivity and anti-interference capabilities of ratiometric fluorescence assays. In this study, we developed a sensitive ratiometric fluorescence immunoassay for screening five EUGs. This method employs a broad-specificity monoclonal antibody (mAb) as a recognition reagent, selective for five EUGs. It leverages the horseradish peroxidase (HRP)-triggered formation of fluorescent 2,3-diaminophenazine (DAP) and the quenching of fluorescent gold clusters (Au NCs) for detection. The assay's detection limits for eugenol, isoeugenol, eugenol methyl eugenol, methyl isoeugenol, and acetyl isoeugenol in tilapia fish and shrimp were found to be 9.8/19.5 µg/kg, 0.11/0.22 µg/kg, 19/36 Tilapia ng/kg, 8/16 ng/kg, and 3.0/6.1 µg/kg, respectively. Furthermore, when testing spiked Tilapia fish and shrimp samples, recoveries ranging from 84.1 to 111.9 %, with the coefficients of variation staying below 7.1 % was achieved. SIGNIFICANCE: This work introduces an easy-to-use, broad-specificity, and highly sensitive method for the screening of five EUGs at a pg/mL level, which not only provides a high-throughput strategy for screening eugenol-type fish anesthetics in aquatic products, but also can serve as a benchmark for developing immunoassays for other small molecular pollutants, rendering potent technological support for guarding food safety and human health.


Assuntos
Eugenol , Ouro , Nanopartículas Metálicas , Eugenol/análise , Eugenol/análogos & derivados , Eugenol/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Imunoensaio/métodos , Limite de Detecção
11.
Int J Biol Macromol ; 267(Pt 2): 131495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614180

RESUMO

Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the ß-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.


Assuntos
Emulsões , Eugenol , Embalagem de Alimentos , Mananas , Eugenol/química , Eugenol/farmacologia , Mananas/química , Emulsões/química , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana
12.
Discov Med ; 36(183): 739-752, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665023

RESUMO

BACKGROUND: Eugenol exhibits broad-spectrum antibacterial and anti-inflammatory properties. However, cytotoxicity at high concentrations limits the full utilization of eugenol-based drug complexes. Formulations of multidrug-loaded eugenol-based nanoemulsions have reduced cytotoxicity; however, it remains crucial to understand how these eugenol complexes interact with primary human carrier proteins to design and develop therapeutic alternatives. Consequently, this study primarily aims to investigate the impact on Human Serum Albumin (HSA) when it interacts with eugenol-based complexes loaded with first-line anti-tuberculosis drugs. METHODS: This study used various spectroscopic such as UV-visible spectroscopy, Fluorescence spectroscopy, Fourier-transform infrared spectroscopy and computational methods such as molecular docking and 100 ns molecular simulation to understand the impact of eugenol-based first-line anti-tuberculosis drug-loaded nanoemulsions on HSA structure. RESULTS: The binding of the HSA protein and eugenol-based complexes was studied using UV-visible spectroscopic analysis. Minor changes in the fluorophores of the protein further confirmed binding upon interaction with the complexes. The Fourier-transform infrared spectra showed no significant changes in protein structure upon interaction with eugenol-based multidrug-loaded nanoemulsions, suggesting that this complex is safe for internal administration. Unlike eugenol or first-line anti-tuberculosis alone, molecular docking revealed the strength of the binding interactions between the complexes and the protein through hydrogen bonds. The docked complexes were subjected to a 100 ns molecular dynamics simulation, which strongly supported the conclusion that the structure and stability of the protein were not compromised by the interaction. CONCLUSIONS: From the results we could comprehend that the eugenol (EUG)-drug complex showed greater stability in HSA protein structure when compared to HSA interacting with isoniazid (INH), rifampicin (RIF), pyrazinamide (PYR), or ethambutol (ETH) alone or with EUG alone. Thus, inferring the potential of EUG-based drug-loaded formulations for a safer and efficient therapeutic use.


Assuntos
Antituberculosos , Emulsões , Eugenol , Simulação de Acoplamento Molecular , Albumina Sérica Humana , Eugenol/química , Eugenol/farmacologia , Humanos , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ligação Proteica
13.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685252

RESUMO

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Assuntos
Monoterpenos Acíclicos , Eucaliptol , Eugenol , Monoterpenos , Monoterpenos/farmacologia , Monoterpenos/química , Animais , Eugenol/farmacologia , Eugenol/química , Eucaliptol/farmacologia , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Pediculus/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Timol/farmacologia , Timol/química , Micelas , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Nanopartículas/química , Infestações por Piolhos/tratamento farmacológico
14.
ACS Appl Mater Interfaces ; 16(17): 21595-21609, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635857

RESUMO

A microneedle transdermal drug delivery system simultaneously avoids systemic toxicity of oral administration and low efficiency of traditional transdermal administration, which is of great significance for acne vulgaris therapy. Herein, eugenol-loaded hyaluronic acid-based dissolving microneedles (E@P-EO-HA MNs) with antibacterial and anti-inflammatory activities are developed for acne vulgaris therapy via eugenol transdermal delivery integrated with photothermal therapy. E@P-EO-HA MNs are pyramid-shaped with a sharp tip and a hollow cavity structure, which possess sufficient mechanical strength to penetrate the stratum corneum of the skin and achieve transdermal delivery, in addition to excellent in vivo biocompatibility. Significantly, E@P-EO-HA MNs show effective photothermal therapy to destroy sebaceous glands and achieve antibacterial activity against deep-seated Propionibacterium acnes (P. acnes) under near-infrared-light irradiation. Moreover, cavity-loaded eugenol is released from rapidly dissolved microneedle bodies to play a sustained antibacterial and anti-inflammatory therapy on the P. acnes infectious wound. E@P-EO-HA MNs based on a synergistic therapeutic strategy combining photothermal therapy and eugenol transdermal administration can significantly alleviate inflammatory response and ultimately facilitate the repair of acne vulgaris. Overall, E@P-EO-HA MNs are expected to be clinically applied as a functional minimally invasive transdermal delivery strategy for superficial skin diseases therapy in skin tissue engineering.


Assuntos
Acne Vulgar , Administração Cutânea , Antibacterianos , Eugenol , Ácido Hialurônico , Agulhas , Terapia Fototérmica , Propionibacterium acnes , Acne Vulgar/terapia , Acne Vulgar/tratamento farmacológico , Eugenol/química , Eugenol/farmacologia , Ácido Hialurônico/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Camundongos , Sistemas de Liberação de Medicamentos , Humanos , Pele
15.
ACS Appl Bio Mater ; 7(3): 1643-1655, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38366996

RESUMO

Pathogens and pests pose significant threats to global crop productivity and plant immunity, necessitating urgent measures from researchers to prevent pathogen contamination and pest damage to crops. A natural plant-based antibacterial agent, eugenol (EUG), has demonstrated excellent antimicrobial and insect repellent capabilities, but the characteristics of volatilization and poor dissolution limit the practical application. The nanoization of pesticide formulations holds promise in the development of highly effective pesticides for antibacterial and insecticidal purposes. Herein, a eugenol-loaded nano delivery system (EUG@CMC-PGMA-CS) was synthesized using glycidyl methacrylate (GMA) as a functional monomer to connect carrier core structure carboxymethyl cellulose (CMC) with shell structure chitosan (CS), and EUG was encapsulated within the carrier. EUG@CMC-PGMA-CS demonstrated excellent leaf affinity, with minimum contact angles (CAs) of 37.83 and 70.52° on hydrophilic and hydrophobic vegetable leaf surfaces, respectively. Moreover, the maximum liquid holding capacity (LHC) of EUG@CMC-PGMA-CS on both hydrophilic and hydrophobic vegetable leaf surfaces demonstrates a noteworthy 55.24% enhancement compared to the LHC of pure EUG. The in vitro release curve of EUG@CMC-PGMA-CS exhibited an initial burst followed by stable sustained release. It is with satisfaction that the nano delivery system demonstrated exceptional antibacterial properties against S. aureus and satisfactory insecticidal efficacy against Spodoptera litura. The development of this eugenol-loaded nano delivery system holds significant potential for enhanced antibacterial and insect repellents in agriculture, paving the way for the application of volatile bioactive substances.


Assuntos
Eugenol , Repelentes de Insetos , Eugenol/farmacologia , Eugenol/química , Carboximetilcelulose Sódica/química , Sistemas de Liberação de Fármacos por Nanopartículas , Staphylococcus aureus , Antibacterianos/farmacologia
16.
Dalton Trans ; 53(6): 2826-2832, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230617

RESUMO

Bacterial infections are a big challenge in clinical treatment, making it urgent to develop innovative antibacterial systems and therapies to combat bacterial infections. In this study, we developed a novel MOF-based synergistic antibacterial system (Eu@B-UiO-66/Zn) by loading a natural antibacterial substance (eugenol) with hierarchically porous MOF B-UiO-66 as a carrier and further complexing it with divalent zinc ions. Results indicate that the system achieved a controlled release of eugenol under pH responsive stimulation, with the complexation ability of eugenol and Zn2+ ions as a switch. Due to the destruction of a coordination bond between eugenol and Zn2+ ions by an acidic medium, the release of eugenol loaded in Eu@B-UiO-66/Zn reached 80% at pH 5.8, which was significantly higher than that under pH 8.0 (51%). Moreover, the inhibitory effect of Eu@B-UiO-66/Zn against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h was 96.4% and 99.7%, respectively, owing to the synergistic antibacterial effect of eugenol and Zn2+ ions, which was significantly stronger than free eugenol and Eu@B-UiO-66. We hope that this strategy for constructing responsive MOF-based antibacterial carriers could have potential possibilities for the application of MOF materials in antibacterial fields.


Assuntos
Infecções Bacterianas , Estruturas Metalorgânicas , Ácidos Ftálicos , Humanos , Estruturas Metalorgânicas/química , Eugenol/farmacologia , Eugenol/química , Eugenol/uso terapêutico , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Infecções Bacterianas/tratamento farmacológico , Íons/farmacologia , Concentração de Íons de Hidrogênio
17.
Colloids Surf B Biointerfaces ; 234: 113749, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241893

RESUMO

Exploring the natural, safe, and effective antimicrobial is one of the preferable ways to control foodborne bacteria. In this work, novel oil-in-water nanoemulsions were formulated with sophorolipids and eugenol without any co-surfactant using a self-assembling strategy. These nanoemulsions showed high stability with sizes less than 200 nm when exposure to low concentrations of salt ions, various pH values (5.0, 7.0, 10.0), storage temperature and time. The synergistic antibacterial effects against both Gram-negative Escherichia coli and Gram-positive Bacillus cereus were determined with a minimum inhibitory concentration (MIC) value of 0.5 mg/mL and 0.125 mg/mL, respectively. Further microscopy (SEM, TEM, LCSM) examination and ATP/Na+-K+-ATPase assay results showed that the morphological changes, intensive cell membrane permeability, leakage of ATP, and decreased Na+-K+-ATPase contributed to the antibacterial effects. Moreover, the bonding mechanism between nanoemulsions and cell membranes were further evaluated by FTIR and ITC using a DPPC vesicle model, which demonstrated that the nanoemulsions adsorbed on the surface of bilayer, interacted with the hydrophobic chains of DPPC membrane mainly through the hydrophobic interaction, and altered the structural integrity of the lipid bilayer. These results not only provide a facile green strategy for fabricating stable nanoemulsions, but also highlight a new perspective for stabilizing essential oils for their widely application in food industry.


Assuntos
Eugenol , Óleos Voláteis , Ácidos Oleicos , Eugenol/farmacologia , Eugenol/química , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/química , Adenosina Trifosfatases , Trifosfato de Adenosina , Emulsões/química
18.
Int J Biol Macromol ; 259(Pt 2): 129230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184054

RESUMO

The ultrasonically processed Eugenol (EU) and Carvacrol (CAR) nanoemulsions (NE) were successfully optimized via response surface methodology (RSM) to achieve broad spectrum antimicrobial efficacy. These NE were prepared using 2 % (w/w) purity gum ultra (i.e., succinylated starch), 10 % (v/v) oil phase, 80 % (800 W) sonication power, and 10 min of processing time as determined via RSM. The second order Polynomial method was suitable to RSM with a co-efficient of determination >0.90 and a narrow polydispersity index (PDI) ranging 0.12-0.19. NE had small droplet sizes (135.5-160 nm) and low volatility at high temperatures. The EU & CAR entrapment and heat stability (300 °C) confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Further, the volatility of EU & CAR NE was 18.18 ± 0.13 % and 12.29 ± 0.11 % respectively, being lower than that of bulk/unencapsulated EU & CAR (i.e., 23.48 ± 0.38 % and 19.11 ± 0.08 %) after 2 h at 90 °C. Interestingly, both EU & CAR NE showed sustained release behaviour till 48 h. Their digest could inhibit Salmonella typhimurium (S. typhimurium) via membrane disruption and access to cellular machinery as evident from SEM images. Furthermore, in-vivo bio-accessibility of EU & CAR in mice serum was up to 80 %. These cost-effective and short-processed EU/CAR NE have the potential as green preservatives for food industry.


Assuntos
Anti-Infecciosos , Cimenos , Eugenol , Animais , Camundongos , Eugenol/farmacologia , Eugenol/química , Salmonella typhimurium , Amido/química , Anti-Infecciosos/farmacologia , Emulsões
19.
Toxicon ; 238: 107607, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191032

RESUMO

The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.


Assuntos
Eugenol , Óleos Voláteis , Humanos , Eugenol/farmacologia , Eugenol/química , Eugenol/uso terapêutico , Óleos Voláteis/farmacologia , Compostos Fitoquímicos , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia
20.
Food Chem ; 439: 138080, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070237

RESUMO

Size and monodispersity of solid particles are essential to their structuring behaviors at biphasic interfaces. However, delicate control over biomolecular nanoparticle sizes is challenging. In this study, we prepared monodisperse rice protein (RP) nanoparticles by neutralizing RP solutions (pH 12.0) using combined treatments of cationic exchange resins (CERs) and HCl. CERs absorbed Na+ by releasing H+ without producing salt during neutralization. By compromising the usages of CERs and HCl when preparing RPs, the generation of NaCl can be delicately tailored, leading to controllable nanoparticle sizes from 20 nm to 30 nm. By mixing these nanoparticles with eugenol in an aqueous solution, the nanoparticles accommodated eugenol in their cores due to inward diffusion. Furthermore, such eugenol-contained nanoparticles with different sizes demonstrated tunable releases of eugenol due to size-dependent capillary forces, which can be harnessed for suppression of microbial growth on fruit with prolonged effective eugenol concentration.


Assuntos
Eugenol , Nanopartículas , Eugenol/química , Preparações de Ação Retardada/química , Cloreto de Sódio , Água/química , Nanopartículas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA