Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Biochem Biophys Res Commun ; 729: 150361, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972141

RESUMO

Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.


Assuntos
Comportamento Animal , Depressão , Dipeptídeos , Animais , Feminino , Dipeptídeos/metabolismo , Camundongos , Depressão/metabolismo , Depressão/genética , Encéfalo/metabolismo , Carnosina/análogos & derivados , Carnosina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipercinese/metabolismo , Hipercinese/genética , Envelhecimento/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Histidina/deficiência
2.
J Pharmacol Exp Ther ; 390(2): 250-259, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38866563

RESUMO

Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.


Assuntos
Dependovirus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Heterozigoto , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Camundongos , Dependovirus/genética , Humanos , Masculino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hipercinese/genética , Mutação , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Locomoção/genética
3.
Mov Disord Clin Pract ; 11(6): 708-715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698576

RESUMO

BACKGROUND: Genetic syndromes of hyperkinetic movement disorders associated with epileptic encephalopathy and intellectual disability are becoming increasingly recognized. Recently, a de novo heterozygous NACC1 (nucleus accumbens-associated 1) missense variant was described in a patient cohort including one patient with a combined mitochondrial oxidative phosphorylation (OXPHOS) deficiency. OBJECTIVES: The objective is to characterize the movement disorder in affected patients with the recurrent c.892C>T NACC1 variant and study the NACC1 protein and mitochondrial function at the cellular level. METHODS: The movement disorder was analyzed on four patients with the NACC1 c.892C>T (p.Arg298Trp) variant. Studies on NACC1 protein and mitochondrial function were performed on patient-derived fibroblasts. RESULTS: All patients had a generalized hyperkinetic movement disorder with chorea and dystonia, which occurred cyclically and during sleep. Complex I was found altered, whereas the other OXPHOS enzymes and the mitochondria network seemed intact in one patient. CONCLUSIONS: The movement disorder is a prominent feature of NACC1-related disease.


Assuntos
Hipercinese , Criança , Feminino , Humanos , Masculino , Hipercinese/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação de Sentido Incorreto , Fosforilação Oxidativa , Proteínas Repressoras/genética
4.
HGG Adv ; 5(3): 100289, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38571311

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.


Assuntos
Metilação de DNA , Hiperventilação , Deficiência Intelectual , Fator de Transcrição 4 , Humanos , Fator de Transcrição 4/genética , Hiperventilação/genética , Hiperventilação/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Feminino , Masculino , Criança , Fácies , Adolescente , Epigenômica/métodos , Epigênese Genética , Hipercinese/genética , Pré-Escolar , Adulto , Adulto Jovem
5.
Am J Med Genet A ; 194(9): e63636, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38655717

RESUMO

Biallelic pathogenic variations in the zinc finger protein 142 (ZNF142) gene are associated with neurodevelopmental disorder with impaired speech and hyperkinetic movements (NEDISHM). This disorder is characterized by developmental delay, intellectual disability, speech delay, and movement disorders such as dystonia, tremor, ataxia, and chorea. Here, we report a patient who exhibited common neurological features and rarely reported brain MRI findings. Exome sequencing identified a novel biallelic variant in ZNF142 (c.3528_3529delTG; p.C1176fs*5 (NM_001105537.4)). NEDISHM was first described by Khan et al. (2019) and has been reported in 39 patients to date. Furthermore, upon reviewing our in-house data covering 750 individuals, we identified three different pathogenic ZNF142 variants. It appears that the frequency of ZNF142 alleles is not as low as initially thought, suggesting that this gene should be included in new generation sequencing panels for similar clinical scenarios. Our goal is to compile and expand upon the clinical features observed in NEDISHM, providing novel insights and presenting a new variant to the literature. We also aim to demonstrate that ZNF142 pathogenic variants should be considered in neurodevelopmental diseases.


Assuntos
Alelos , Transtornos do Neurodesenvolvimento , Criança , Humanos , Masculino , Proteínas de Ligação a DNA/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Hipercinese/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Distúrbios da Fala/genética , Distúrbios da Fala/patologia , Fatores de Transcrição/genética
6.
Neuropediatrics ; 55(4): 217-223, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442915

RESUMO

Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the breakdown of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which act as intracellular second messengers for signal transduction pathways and modulate various processes in the central nervous system. Recent discoveries that mutations in genes encoding different PDEs, including PDE10A, are responsible for rare forms of chorea in children led to the recognition of an emerging role of PDEs in the field of pediatric movement disorders. A comprehensive literature review of all reported cases of PDE10A mutations in PubMed and Web of Science was performed in English. We included eight studies, describing 31 patients harboring a PDE10A mutation and exhibiting a hyperkinetic movement disorder with onset in infancy or childhood. Mutations in both GAF-A, GAF-B regulatory domains and outside the GAF domains of the PDE10A gene have been reported to cause hyperkinetic movement disorders. In general, patients with homozygous mutations in either GAF-A domain of PDE10A present with a more severe phenotype and at an earlier age but without any extensive abnormalities of the striata compared with patients with dominant variants in GAF-B domain, indicating that dominant and recessive mutations have different pathogenic mechanisms. PDE10A plays a key role in regulating control of striato-cortical movement. Comprehension of the molecular mechanisms within the cAMP and cGMP signaling systems caused by PDE10A mutations may inform novel therapeutic strategies that could alleviate symptoms in young patients affected by these rare movement disorders.


Assuntos
Hipercinese , Mutação , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/genética , Hipercinese/genética , Criança
8.
Proc Natl Acad Sci U S A ; 119(11): e2113813119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259014

RESUMO

SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/ß4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Dipeptídeos/genética , Hipercinese/genética , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/patologia , Arginina , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Dipeptídeos/metabolismo , Suscetibilidade a Doenças , Potencial Evocado Motor , Predisposição Genética para Doença , Humanos , Fenótipo , Prolina , Sódio/metabolismo
9.
Am J Hum Genet ; 109(2): 328-344, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077668

RESUMO

Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.


Assuntos
Ansiedade/genética , Cromossomos Humanos Par 21 , Síndrome de Down/genética , Efeito Fundador , Hipercinese/genética , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Cariótipo , Aprendizagem , Masculino , Mutagênese Insercional , Tamanho do Órgão , Postura , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Ratos , Ratos Transgênicos
10.
Neurobiol Dis ; 158: 105473, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371144

RESUMO

CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington's disease and levodopa-induced dyskinesia in Parkinson's disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI's therapeutic potential.


Assuntos
Dendritos , Fatores de Troca do Nucleotídeo Guanina/genética , Neostriado/fisiopatologia , Plasticidade Neuronal , Sistema Nervoso Parassimpático/fisiopatologia , Sinapses , Animais , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Doenças dos Gânglios da Base/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Hipercinese/genética , Hipercinese/psicologia , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Polimorfismo de Nucleotídeo Único , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/fisiologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
11.
Neurosci Bull ; 37(12): 1658-1670, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309811

RESUMO

Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.


Assuntos
Hipercinese , Peixe-Zebra , Animais , Hipercinese/genética , Mutação/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/metabolismo
12.
Mol Brain ; 14(1): 61, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785025

RESUMO

The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.


Assuntos
Ansiedade/genética , Cromossomos Humanos Par 15/genética , Hipercinese/genética , Canais de Cátion TRPM/genética , Animais , Monoaminas Biogênicas/análise , Química Encefálica , Comportamento Exploratório , Estudos de Associação Genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Teste de Campo Aberto , Reflexo de Sobressalto , Teste de Desempenho do Rota-Rod , Deleção de Sequência , Interação Social , Memória Espacial , Natação , Canais de Cátion TRPM/deficiência , Transtornos da Visão/genética
13.
Psychopharmacology (Berl) ; 238(4): 1111-1120, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511450

RESUMO

RATIONALE: Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES: We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS: Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS: While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS: While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.


Assuntos
Comportamento Animal/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Substituição de Aminoácidos , Animais , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genótipo , Hipercinese/genética , Hipercinese/psicologia , Indóis/farmacologia , Masculino , Camundongos , Mutação/genética , Inibição Pré-Pulso/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Filtro Sensorial/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
14.
BMJ Case Rep ; 13(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323420

RESUMO

Hyperekplexia is an exaggerated startle to external stimuli associated with a generalised increase in tone seen in neonates with both sporadic and genetic predisposition. This is an uncommon neurological entity that is misdiagnosed as seizure. A 28-days-old infant was admitted to us with characteristic intermittent generalised tonic spasm being treated as a seizure disorder. The infant had characteristic stiffening episode, exaggerated startle and non-habituation on tapping the nose. Hyperekplexia was suspected and confirmed by genetic testing (mutation in the ß subunit of glycine was found). Initial improvement was seen with the use of clonazepam, which was not sustained. At the age of 4.5 years, the child is still having neurobehavioural issues like hyperactivity and sensory hyper-responsiveness. Usually, hyperekplexia is benign in nature. We report a case of hyperekplexia with non-sense mutation in the ß subunit of GlyR gene having abnormal neurodevelopmental findings at 4.5 years.


Assuntos
Hiperecplexia/diagnóstico , Hiperecplexia/genética , Mutação de Sentido Incorreto/genética , Receptores de Glicina/genética , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Clonazepam/uso terapêutico , Diagnóstico Diferencial , Erros de Diagnóstico , Humanos , Hiperecplexia/fisiopatologia , Hipercinese/genética , Hipercinese/fisiopatologia , Recém-Nascido , Masculino , Reflexo Anormal/genética , Reflexo de Sobressalto/genética
15.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867296

RESUMO

Stromal interaction molecule (STIM) proteins play a crucial role in store-operated calcium entry (SOCE) as endoplasmic reticulum Ca2+ sensors. In neurons, STIM2 was shown to have distinct functions from STIM1. However, its role in brain activity and behavior was not fully elucidated. The present study analyzed behavior in zebrafish (Danio rerio) that lacked stim2a. The mutant animals had no morphological abnormalities and were fertile. RNA-sequencing revealed alterations of the expression of transcription factor genes and several members of the calcium toolkit. Neuronal Ca2+ activity was measured in vivo in neurons that expressed the GCaMP5G sensor. Optic tectum neurons in stim2a-/- fish had more frequent Ca2+ signal oscillations compared with neurons in wildtype (WT) fish. We detected an increase in activity during the visual-motor response test, an increase in thigmotaxis in the open field test, and the disruption of phototaxis in the dark/light preference test in stim2a-/- mutants compared with WT. Both groups of animals reacted to glutamate and pentylenetetrazol with an increase in activity during the visual-motor response test, with no major differences between groups. Altogether, our results suggest that the hyperactive-like phenotype of stim2a-/- mutant zebrafish is caused by the dysregulation of Ca2+ homeostasis and signaling.


Assuntos
Cálcio/metabolismo , Hipercinese/genética , Neurônios/metabolismo , Molécula 2 de Interação Estromal/genética , Fatores de Transcrição/genética , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ácido Glutâmico/farmacologia , Hipercinese/metabolismo , Larva/genética , Pentilenotetrazol/farmacologia , Fenótipo , Fototaxia/efeitos dos fármacos , Análise de Sequência de RNA , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
J Neurochem ; 155(5): 522-537, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910473

RESUMO

Restless legs syndrome is a sleep-related sensorimotor neurological disease affecting up to 10% of the population. Genetic analyses have identified Myeloid Ecotropic viral Integration Site 1 (MEIS1), a transcriptional regulator, to be associated with not only the restless legs syndrome but also self-reported symptoms of insomnia and sleep. This study is to determine if Meis1 deficiency in mice can lead to restless legs syndrome-like phenotypes, and if it is the case, what the underlying mechanisms are. We used two genetic model systems, Caenorhabditis elegans and mice. Egg retention assay and fluorescent reporters were used with C. elegans. For mice, we performed behavioral tests, serum and brain iron detection, qRT-PCR, western blot, immunohistochemistry, and in vitro brain-slice recording. Our results showed that with C. elegans, the function of dop-3, an orthologue of DRD2, was diminished after the knockdown of unc-62, an ortholog of MEIS1. Additionally, unc-62 knockdown led to enhanced transcription of the orthologue of tyrosine hydroxylase, cat-2. Meis1 knockout mice were hyperactive and had a rest-phase-specific increased probability of waking. Moreover, Meis1 knockout mice had increased serum ferritin and altered striatal dopaminergic and cholinergic systems. Specifically, Meis1 knockout mice showed an increased mRNA level but decreased protein level of tyrosine hydroxylase in the striatum. Furthermore, Meis1 knockout mice had increased striatal dopamine turnover and decreased spontaneous firing regularity of striatal cholinergic interneurons. Our data suggest that Meis1 knockout mice have restless legs syndrome-like motor restlessness and changes in serum ferritin levels. The symptoms may be related to dysfunctional dopaminergic and cholinergic systems.


Assuntos
Atividade Motora/fisiologia , Proteína Meis1/deficiência , Proteína Meis1/genética , Síndrome das Pernas Inquietas/genética , Síndrome das Pernas Inquietas/metabolismo , Animais , Caenorhabditis elegans , Hipercinese/genética , Hipercinese/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
17.
Hum Mol Genet ; 29(14): 2408-2419, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588892

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.


Assuntos
Síndromes Epilépticas/genética , Hipercinese/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Epilépticas/patologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/patologia , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Metilfenidato/metabolismo , Camundongos , Camundongos Knockout , Espasmos Infantis/patologia
18.
J Med Invest ; 67(1.2): 51-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32378618

RESUMO

Spontaneously Running Tokushima Shikoku (SPORTS) rat is a hyperactive rat strain. However, the causative mutation of this phenotype has not yet been identified. To investigate the molecular basis for the unique phenotype of SPORTS rats, we examined gene-expression profiles by microarray analyses. Among adenylate kinase isozymes that maintain the homeostasis of cellular adenine nucleotide composition in the cell, only adenylate kinase 1 is highly up-regulated in both exercised and sedentary SPORTS rats compared with wild-type (WT) rats, 5.5-fold and 3.3-fold, respectively. Further comparative analyses revealed that genes involved in glucose metabolism were up-regulated in skeletal muscle tissue of exercised SPORTS rats compared with sedentary mutants, whereas genes related to extracellular matrix or region were down-regulated compared with WT rats. In brain tissue of sedentary SPORTS rats, genes associated with defense and catecholamine metabolism were highly expressed compared with WT rats. These findings suggest that genetic mutation(s) in SPORTS rat remodels metabolic demands through differentially regulating gene expression regardless of exercise. Therefore, the SPORTS rats are useful animal model not only for further examining the effects of exercise on metabolism but also for deeply studying the molecular basis how mutation affect the psychological motivation with spontaneous voluntary exercise phenotype. J. Med. Invest. 67 : 51-61, February, 2020.


Assuntos
Hipercinese/genética , Condicionamento Físico Animal , Transcriptoma , Adenilato Quinase/genética , Animais , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Músculo Esquelético/metabolismo , Mutação , Fenótipo , Ratos , Ratos Wistar
19.
Glia ; 68(10): 2040-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32187401

RESUMO

Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non-cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL (FusOL cKO). The FusOL cKO mice show increased novelty-induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate-limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the FusOL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the FusOL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Hipercinese/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Animais , Colesterol/genética , Hipercinese/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína FUS de Ligação a RNA/genética
20.
Behav Genet ; 50(3): 152-160, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048109

RESUMO

Fragile X syndrome (FXS) is a heritable mental retardation disease caused by unstable trinucleotide repeat sequences in FMR1. FXS is characterized by delayed development, hyperactivity, and autism behavior. Zebrafish is an excellent model to study FXS and the underlying function of fmr1. However, at present, fmr1 function is mainly studied via morpholinos or generated mutants using targeting induced local lesions in genomes. However, both of these methods generate off-target effects, making them suboptimal techniques for studying FXS. In this study, CRISPR/Cas9 technology was used to generate two zebrafish fmr1 mutant lines. High-throughput behavior analysis, qRT-PCR, and alcian blue staining experiments were employed to investigate fmr1 function. The fmr1 mutant line showed abnormal behavior, learning memory defects, and impaired craniofacial cartilage development. These features are similar to the human FXS phenotype, indicating that the fmr1 mutant generated in this study can be used as a new model for studying the molecular pathology of FXS. It also provides a suitable model for high-throughput screening of small molecule drugs for FXS therapeutics.


Assuntos
Anormalidades Craniofaciais/genética , Síndrome do Cromossomo X Frágil/genética , Hipercinese/genética , Transtornos da Memória/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Animais , Desenvolvimento Ósseo/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Larva/genética , Masculino , Mutação , Proteínas de Ligação a RNA/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA