Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.431
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116442, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728946

RESUMO

Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 µg/l, 50 µg/l, 100 µg/l, 500 µg/l) and its commercial counterpart compound (Omniscan®; 100 µg/l, 500 µg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 µg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 µg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.


Assuntos
Água Doce , Hydra , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Animais , Medição de Risco , Hydra/efeitos dos fármacos , Água Doce/química , Gadolínio/toxicidade , Gadolínio/análise , Itália , Teratogênicos/toxicidade , Gadolínio DTPA/toxicidade , Monitoramento Ambiental/métodos , Rios/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38703881

RESUMO

Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.


Assuntos
Sequência de Aminoácidos , Glutarredoxinas , Hydra , Animais , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/química , Hydra/genética , Hydra/metabolismo , Hydra/enzimologia , Humanos , Clonagem Molecular , Domínios Proteicos , Filogenia , Proliferação de Células
3.
Int J Dev Biol ; 68(2): 55-64, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770835

RESUMO

Understanding the evolution of body plans has been one of the major areas of investigation in developmental and evolutionary biology. Cnidaria, the sister group to bilaterians, provides an opportunity to elucidate the origin and evolution of body axes. Hydra, a freshwater cnidarian, is a useful model to study signaling pathways governing pattern formation, which are conserved up to vertebrates including humans. The transforming growth factor ß (TGF-ß) signaling pathway is one of the fundamental pathways that regulate axis formation and organogenesis during embryonic development. In this article, we discuss the TGF-ß pathway members identified in Hydra along with other cnidarians with an emphasis on bone morphogenetic proteins (BMPs) and their inhibitors. TGF-ß members, especially those involved in BMP signaling pathway, are mainly involved in maintaining the Organizer region and patterning the body axis in Hydra. Identification of other members of this pathway in Hydra and fellow cnidarians would provide insights into the evolution of body axes and pattern formation in more complex metazoans.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas , Hydra , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Hydra/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
4.
Biophys J ; 123(13): 1792-1803, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38783602

RESUMO

Hydra vulgaris, long known for its remarkable regenerative capabilities, is also a long-standing source of inspiration for models of spontaneous patterning. Recently it became clear that early patterning during Hydra regeneration is an integrated mechanochemical process whereby morphogen dynamics is influenced by tissue mechanics. One roadblock to understanding Hydra self-organization is our lack of knowledge about the mechanical properties of these organisms. In this study, we combined microfluidic developments to perform parallelized microaspiration rheological experiments and numerical simulations to characterize these mechanical properties. We found three different behaviors depending on the applied stresses: an elastic response, a viscoelastic response, and tissue rupture. Using models of deformable shells, we quantify their Young's modulus, shear viscosity, and the critical stresses required to switch between behaviors. Based on these experimental results, we propose a description of the tissue mechanics during normal regeneration. Our results provide a first step toward the development of original mechanochemical models of patterning grounded in quantitative experimental data.


Assuntos
Hydra , Regeneração , Animais , Hydra/fisiologia , Fenômenos Biomecânicos , Modelos Biológicos , Viscosidade , Módulo de Elasticidade , Estresse Mecânico , Reologia
5.
Cell Rep ; 43(6): 114264, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787721

RESUMO

Hormonal and neuronal inputs to the brain control how much animals eat. The origins of this behavior were unclear, but in this issue of Cell Reports, Giez et al.1 describe specific neurons inhibiting feeding in evolutionary ancient animals without brain.


Assuntos
Fome , Hydra , Neurônios , Animais , Neurônios/fisiologia , Hydra/fisiologia , Fome/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Animal/fisiologia , Saciação/fisiologia
6.
Cell Rep ; 43(6): 114210, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787723

RESUMO

Hunger and satiety can have an influence on decision-making, sensory processing, and motor behavior by altering the internal state of the brain. This process necessitates the integration of peripheral sensory stimuli into the central nervous system. Here, we show how animals without a central nervous system such as the cnidarian Hydra measure and integrate satiety into neuronal circuits and which specific neuronal populations are involved. We demonstrate that this simple nervous system, previously referred to as diffuse, has an endodermal subpopulation (N4) similar to the enteric nervous system (feeding-associated behavior) and an ectodermal population (N3) that performs central nervous system-like functions (physiology/motor). This view of a supposedly simple nervous system could open an important window into the origin of more complex nervous systems.


Assuntos
Sistema Nervoso Central , Sistema Nervoso Entérico , Hydra , Neurônios , Animais , Hydra/fisiologia , Neurônios/fisiologia , Sistema Nervoso Entérico/fisiologia , Sistema Nervoso Central/fisiologia , Comportamento Animal/fisiologia , Resposta de Saciedade/fisiologia
7.
Sci Total Environ ; 932: 172868, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714257

RESUMO

The use of bioplastics (e.g., polyhydroxybutyrate) emerged as a solution to help reduce plastic pollution caused by conventional plastics. Nevertheless, bioplastics share many characteristics with their conventional counterparts, such as degradation to nano-sized particles and the ability to sorb environmental pollutants, like metals. This study aimed to assess the potential impacts of the interaction of metals (cadmium - Cd, copper - Cu, and zinc - Zn) with polyhydroxybutyrate nanoplastics (PHB-NPLs; ~200 nm) on the freshwater cnidarian Hydra viridissima in terms of mortality rates, morphological alterations, and feeding behavior. The metal concentrations selected for the combined exposures corresponded to concentrations causing 20 %, 50 %, and 80 % of mortality (LC20, LC50, and LC80, respectively) and the PHB-NPLs concentrations ranged from 0.01 to 1000 µg/L. H. viridissima sensitivity to the metals, based on the LC50's, can be ordered as: Zn < Cd < Cu. Combined exposure to metals and PHB-NPLs yielded distinct outcomes concerning mortality, morphological changes, and feeding behavior, uncovering metal- and dose-specific responses. The interaction between Cd-LCx and PHB-NPLs progressed from no effect at LC20,96h to an ameliorative effect at Cd-LC50,96h. Cu-LCx revealed potential mitigation effects (LC20,96h and LC50,96h) but at Cu-LC80,96h the response shifts to a potentiating effect. For Zn-LCx, response patterns across the combinations with PHB-NPLs were like those induced by the metal alone. PHB-NPLs emerged as a key factor capable of modulating the toxicity of metals. This study highlights the context-dependent interactions between metals and PHB-NPLs in freshwater environments while supporting the need for further investigation of the underlying mechanisms and ecological consequences in forthcoming research.


Assuntos
Hydra , Nanopartículas , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Hydra/efeitos dos fármacos , Hidroxibutiratos/toxicidade , Poliésteres , Metais Pesados/toxicidade
8.
Sci Rep ; 14(1): 8553, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609434

RESUMO

The Notch-signalling pathway plays an important role in pattern formation in Hydra. Using pharmacological Notch inhibitors (DAPT and SAHM1), it has been demonstrated that HvNotch is required for head regeneration and tentacle patterning in Hydra. HvNotch is also involved in establishing the parent-bud boundary and instructing buds to develop feet and detach from the parent. To further investigate the functions of HvNotch, we successfully constructed NICD (HvNotch intracellular domain)-overexpressing and HvNotch-knockdown transgenic Hydra strains. NICD-overexpressing transgenic Hydra showed a pronounced inhibition on the expression of predicted HvNotch-target genes, suggesting a dominant negative effect of ectopic NICD. This resulted in a "Y-shaped" phenotype, which arises from the parent-bud boundary defect seen in polyps treated with DAPT. Additionally, "multiple heads", "two-headed" and "ectopic tentacles" phenotypes were observed. The HvNotch-knockdown transgenic Hydra with reduced expression of HvNotch exhibited similar, but not identical phenotypes, with the addition of a "two feet" phenotype. Furthermore, we observed regeneration defects in both, overexpression and knockdown strains. We integrated these findings into a mathematical model based on long-range gradients of signalling molecules underlying sharply defined positions of HvNotch-signalling cells at the Hydra tentacle and bud boundaries.


Assuntos
Hydra , Animais , Hydra/genética , Inibidores da Agregação Plaquetária , Transdução de Sinais , Animais Geneticamente Modificados ,
9.
Bull Environ Contam Toxicol ; 112(4): 56, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565802

RESUMO

The aim of this paper was to evaluate whether symbiotic cooperation between green hydra (Hydra viridissima) and photoautotrophic alga gives higher resistance of the preservation of DNA integrity compared to brown hydra (Hydra oligactis). Norflurazon concentrations were 0.061 or 0.61 mg/L and UV-B light 254 nm, 0.023mWcm- 2 applied separately or simultaneously. By alkaline comet assay primary DNA damage was assessed and cytotoxicity by fluorescent staining. Norflurazon at 0.61 mg L- 1 significantly increased DNA damage in brown hydras compared to the control (6.17 ± 0.6 µm, 5.2 ± 1.7% vs. 2.9 ± 0.2 µm, 1.2 ± 0.2%). Cytotoxicity was significantly elevated, being higher in brown hydras (25.7 ± 3.5% vs. 8.2 ± 0.2%). UV-B irradiation induced significant DNA damage in brown hydras (13.5 ± 1.0 µm, 4.1 ± 1.0%). Simultaneous exposure to UV-B and norflurazon led to a synergistic DNA damaging. The frequency of cytotoxicity and hedgehog nucleoids was more pronounced in brown (78.3 ± 9.4%; 56.4 ± 6.0%) than in green hydras (34.7 ± 2.5%; 24.2 ± 0.6%). Evolutionary established symbiotic cooperation proved to provide resistance against cyto/genotoxicity.


Assuntos
Hydra , Animais , Hydra/genética , Simbiose , DNA , Dano ao DNA
10.
Curr Opin Neurobiol ; 86: 102869, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552547

RESUMO

The cnidarian Hydra vulgaris is a small polyp with a nervous system of few hundred neurons belonging to a dozen cell types, organized in two nerve nets without cephalization or ganglia. Using this simple neural "chassis", Hydra can maintain a stable repertoire of behaviors, even performing complex fixed-action patterns, such as somersaulting and feeding. The ability to image the activity of Hydra's entire neural and muscle tissue has revealed that Hydra's nerve nets are divided into coactive ensembles of neurons, associated with specific movements. These ensembles can be activated by neuropeptides and interact using cross-inhibition circuits and implement integrate-to-threshold algorithms. In addition, Hydra's nervous system can self-assemble from dissociated cells in a stepwise modular architecture. Studies of Hydra and other cnidarians could enable the systematic deciphering of the neural basis of its behavior and help provide perspective on basic principles of neuroscience.


Assuntos
Hydra , Neurociências , Animais , Hydra/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia
11.
Sci Rep ; 14(1): 5083, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429381

RESUMO

The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenic Hydra and developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron's calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.


Assuntos
Hydra , Proteína Vermelha Fluorescente , Animais , Hydra/fisiologia , Cálcio , Sistema Nervoso , Animais Geneticamente Modificados
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230058, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497265

RESUMO

The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Hydra , Microbiota , Humanos , Animais , Hydra/fisiologia , Peptídeos , Bactérias , Células Epiteliais
13.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502542

RESUMO

Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.


Assuntos
Cnidários , Hydra , Animais , Opsinas/genética , Opsinas/química , Opsinas/metabolismo , Cnidários/genética , Cnidários/metabolismo , Hydra/genética , Hydra/metabolismo , Filogenia , Ritmo Circadiano/genética
14.
Elife ; 122024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407174

RESUMO

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Assuntos
Cnidários , Hydra , Animais , Rede Nervosa , Neurônios , Neuritos
15.
Dev Comp Immunol ; 155: 105139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38325499

RESUMO

Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.


Assuntos
Hydra , Piroptose , Animais , Caspases/genética , Caspases/metabolismo , Hydra/metabolismo , Gasderminas , Caspase 3/metabolismo
16.
Proc Biol Sci ; 291(2017): 20232123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378148

RESUMO

Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.


Assuntos
Hydra , Animais , Hydra/fisiologia , Boca/fisiologia , Epitélio , Fenômenos Biomecânicos , Neurônios
17.
Mol Biol Cell ; 35(3): br9, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265917

RESUMO

Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.


Assuntos
Hydra , Animais , Hydra/metabolismo , Pinocitose
18.
Sci Total Environ ; 917: 170282, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272078

RESUMO

The accumulation of increasingly smaller plastic particles in aquatic ecosystems is a prominent environmental issue and is causing a significant impact on aquatic biota. In response to this challenge, biodegradable plastics have emerged as a potential ecological alternative. Nevertheless, despite recent progress in polymer toxicology, there is still limited understanding of the ecological implications of biodegradable plastics in freshwater ecosystems. This study evaluated the toxicity of polyhydroxybutyrate nano-sized particles (PHB-NPLs) on the freshwater cnidarian Hydra viridissima assessing individual and population-level effects. Data revealed low toxicity of PHB-NPLs to H. viridissima in the short-term, as evidenced by the absence of significant malformations and mortality after the 96-h assays. In addition, hydras exhibited rapid and complete regeneration after 96 h of exposure to PHB-NPLs. Feeding assays revealed no significant alterations in prey consumption behavior in the 96-h mortality and malformations assay and the regeneration assay. However, significantly increased feeding rates were observed after long-term exposure, across all tested concentrations of PHB-NPLs. This increase may be attributed to the organisms' heightened energetic demand, stemming from prolonged activation of detoxification mechanisms. These changes may have a cascading effect within the food web, influencing community dynamics and ecosystem stability. Furthermore, a dose-dependent response on the hydras' populational growth was found, with an estimated 20 % effect concentration (EC20,8d) on this endpoint of 10.9 mg PHB-NPLs/L that suggests potential long-term impacts on the population's reproductive output and potential depression and local extinction upon long-term exposure to PHB-NPLs on H. viridissima. The obtained data emphasizes the importance of evaluating sublethal effects and supports the adoption of long-term assays when assessing the toxicity of novel polymers, providing crucial data for informed regulation to safeguard freshwater ecosystems. Future research should aim to unravel the underlying mechanisms behind these sublethal effects, as well as the impact of the generated degradation products.


Assuntos
Plásticos Biodegradáveis , Cnidários , Hydra , Poluentes Químicos da Água , Animais , Hydra/fisiologia , Ecossistema , Poli-Hidroxibutiratos , Água Doce , Polímeros , Poluentes Químicos da Água/toxicidade , Plásticos
19.
Curr Biol ; 33(24): R1304-R1306, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113845

RESUMO

Cnidarians (corals, hydras, jellyfish, sea anemones) are prey-devouring creatures with a simple nervous system, the function of which is largely unknown. A new study on the freshwater polyp Hydra has now uncovered the neuronal circuits that control its feeding behavior.


Assuntos
Antozoários , Hydra , Cifozoários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/fisiologia , Boca
20.
Curr Biol ; 33(24): 5288-5303.e6, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37995697

RESUMO

Although recent studies indicate the impact of microbes on the central nervous systems and behavior, it remains unclear how the relationship between the functionality of the nervous system, behavior, and the microbiota evolved. In this work, we analyzed the eating behavior of Hydra, a host that has a simple nervous system and a low-complexity microbiota. To identify the neuronal subpopulations involved, we used a subpopulation-specific cell ablation system and calcium imaging. The role of the microbiota was uncovered by manipulating the diversity of the natural microbiota. We show that different neuronal subpopulations are functioning together to control eating behavior. Animals with a drastically reduced microbiome had severe difficulties in mouth opening due to a significantly increased level of glutamate. This could be reversed by adding a full complement of the microbiota. In summary, we provide a mechanistic explanation of how Hydra's nervous system controls eating behavior and what role microbes play in this.


Assuntos
Hydra , Microbiota , Animais , Hydra/fisiologia , Sistema Nervoso , Comportamento Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA