Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
mSphere ; 9(5): e0010024, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38651868

RESUMO

The cellular surface of the pathogenic filamentous fungus Aspergillus fumigatus is enveloped in a mannose layer, featuring well-established fungal-type galactomannan and O-mannose-type galactomannan. This study reports the discovery of cell wall component in A. fumigatus mycelium, which resembles N-glycan outer chains found in yeast. The glycosyltransferases involved in its biosynthesis in A. fumigatus were identified, with a focus on two key α-(1→2)-mannosyltransferases, Mnn2 and Mnn5, and two α-(1→6)-mannosyltransferases, Mnn9 and Van1. In vitro examination revealed the roles of recombinant Mnn2 and Mnn5 in transferring α-(1→2)-mannosyl residues. Proton nuclear magnetic resonance (1H-NMR) analysis of cell wall extracts from the ∆mnn2∆mnn5 strain indicated the existence of an α-(1→6)-linked mannan backbone in the A. fumigatus mycelium, with Mnn2 and Mnn5 adding α-(1→2)-mannosyl residues to this backbone. The α-(1→6)-linked mannan backbone was absent in strains where mnn9 or van1 was disrupted in the parental ∆mnn2∆mnn5 strain in A. fumigatus. Mnn9 and Van1 functioned as α-(1→6)-linked mannan polymerases in heterodimers when co-expressed in Escherichia coli, indicating their crucial role in biosynthesizing the α-(1→6)-linked mannan backbone. Disruptions of these mannosyltransferases did not affect fungal-type galactomannan biosynthesis. This study provides insights into the complexity of fungal cell wall architecture and a better understanding of mannan biosynthesis in A. fumigatus. IMPORTANCE: This study unravels the complexities of mannan biosynthesis in A. fumigatus, a key area for antifungal drug discovery. It reveals the presence of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in A. fumigatus mycelium, offering fresh insights into the fungal cell wall's design. Key enzymes, Mnn2, Mnn5, Mnn9, and Van1, are instrumental in this process, with Mnn2 and Mnn5 adding specific mannose residues and Mnn9 and Van1 assembling the α-(1→6)-linked mannan structures. Although fungal-type galactomannan's presence in the cell wall is known, the existence of an α-(1→6)-linked mannan adds a new dimension to our understanding. This intricate web of mannan biosynthesis opens avenues for further exploration and enhances our understanding of fungal cell wall dynamics, paving the way for targeted drug development.


Assuntos
Aspergillus fumigatus , Parede Celular , Mananas , Micélio , Polissacarídeos , Aspergillus fumigatus/genética , Aspergillus fumigatus/química , Aspergillus fumigatus/metabolismo , Mananas/metabolismo , Mananas/química , Parede Celular/química , Parede Celular/metabolismo , Micélio/química , Micélio/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Manosiltransferases/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactose/análogos & derivados
2.
Nat Chem Biol ; 19(5): 575-584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604564

RESUMO

C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.


Assuntos
Manosiltransferases , Triptofano , Humanos , Manosiltransferases/genética , Manosiltransferases/química , Manosiltransferases/metabolismo , Triptofano/metabolismo , Glicosilação , Peptídeos/metabolismo , Proteínas de Membrana/metabolismo
3.
Microbiology (Reading) ; 167(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676818

RESUMO

In Actinobacteria, protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation has an important role in cell envelope physiology. In S. coelicolor, defective Pmt leads to increased susceptibility to cell wall-targeting antibiotics, including vancomycin and ß-lactams, and resistance to phage ϕC31. The aim of this study was to gain a deeper understanding of the structure and function of S. coelicolor Pmt. Sequence alignments and structural bioinformatics were used to identify target sites for an alanine-scanning mutagenesis study. Mutant alleles were introduced into pmt-deficient S. coelicolor strains using an integrative plasmid and scored for their ability to complement phage resistance and antibiotic hypersusceptibility phenotypes. Twenty-three highly conserved Pmt residues were each substituted for alanine. Six mutant alleles failed to complement the pmt▬ strains in either assay. Mapping the six corresponding residues onto a homology model of the three-dimensional structure of Pmt, indicated that five are positioned close to the predicted catalytic DE motif. Further mutagenesis to produce more conservative substitutions at these six residues produced Pmts that invariably failed to complement the DT1025 pmt▬ strain, indicating that strict residue conservation was necessary to preserve function. Cell fractionation and Western blotting of strains with the non-complementing pmt alleles revealed undetectable levels of the enzyme in either the membrane fractions or whole cell lysates. Meanwhile for all of the strains that complemented the antibiotic hypersusceptibility and phage resistance phenotypes, Pmt was readily detected in the membrane fraction. These data indicate a tight correlation between the activity of Pmt and its stability or ability to localize to the membrane.


Assuntos
Manosiltransferases/química , Manosiltransferases/metabolismo , Streptomyces coelicolor/enzimologia , Alanina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Membrana Celular/metabolismo , Sequência Conservada , Manosiltransferases/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Streptomyces coelicolor/virologia
4.
Elife ; 92020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357379

RESUMO

Protein O-mannosyltransferases (PMTs) represent a conserved family of multispanning endoplasmic reticulum membrane proteins involved in glycosylation of S/T-rich protein substrates and unfolded proteins. PMTs work as dimers and contain a luminal MIR domain with a ß-trefoil fold, which is susceptive for missense mutations causing α-dystroglycanopathies in humans. Here, we analyze PMT-MIR domains by an integrated structural biology approach using X-ray crystallography and NMR spectroscopy and evaluate their role in PMT function in vivo. We determine Pmt2- and Pmt3-MIR domain structures and identify two conserved mannose-binding sites, which are consistent with general ß-trefoil carbohydrate-binding sites (α, ß), and also a unique PMT2-subfamily exposed FKR motif. We show that conserved residues in site α influence enzyme processivity of the Pmt1-Pmt2 heterodimer in vivo. Integration of the data into the context of a Pmt1-Pmt2 structure and comparison with homologous ß-trefoil - carbohydrate complexes allows for a functional description of MIR domains in protein O-mannosylation.


Assuntos
Manosiltransferases/química , Conformação Proteica , Animais , Glicosilação , Humanos , Domínios Proteicos
5.
J Biol Chem ; 295(45): 15407-15417, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32873705

RESUMO

Fungal cell walls and their biosynthetic enzymes are potential targets for novel antifungal agents. Recently, two mannosyltransferases, namely core-mannan synthases A (CmsA/Ktr4) and B (CmsB/Ktr7), were found to play roles in the core-mannan biosynthesis of fungal-type galactomannan. CmsA/Ktr4 is an α-(1→2)-mannosyltransferase responsible for α-(1→2)-mannan biosynthesis in fungal-type galactomannan, which covers the cell surface of Aspergillus fumigatus Strains with disrupted cmsA/ktr4 have been shown to exhibit strongly suppressed hyphal elongation and conidiation alongside reduced virulence in a mouse model of invasive aspergillosis, indicating that CmsA/Ktr4 is a potential novel antifungal candidate. In this study we present the 3D structures of the soluble catalytic domain of CmsA/Ktr4, as determined by X-ray crystallography at a resolution of 1.95 Å, as well as the enzyme and Mn2+/GDP complex to 1.90 Å resolution. The CmsA/Ktr4 protein not only contains a highly conserved binding pocket for the donor substrate, GDP-mannose, but also has a unique broad cleft structure formed by its N- and C-terminal regions and is expected to recognize the acceptor substrate, a mannan chain. Based on these crystal structures, we also present a 3D structural model of the enzyme-substrate complex generated using docking and molecular dynamics simulations with α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe as the model structure for the acceptor substrate. This predicted enzyme-substrate complex structure is also supported by findings from single amino acid substitution CmsA/Ktr4 mutants expressed in ΔcmsA/ktr4 A. fumigatus cells. Taken together, these results provide basic information for developing specific α-mannan biosynthesis inhibitors for use as pharmaceuticals and/or pesticides.


Assuntos
Aspergillus fumigatus/metabolismo , Parede Celular/química , Proteínas Fúngicas/metabolismo , Mananas/biossíntese , Manosiltransferases/metabolismo , Aspergillus fumigatus/citologia , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Galactose/análogos & derivados , Mananas/química , Manosiltransferases/química , Manosiltransferases/genética , Simulação de Dinâmica Molecular
6.
Biochemistry ; 59(32): 2934-2945, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786405

RESUMO

The phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential peripheral membrane glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. PimA undergoes functionally important conformational changes, including (i) α-helix-to-ß-strand and ß-strand-to-α-helix transitions and (ii) an "open-to-closed" motion between the two Rossmann-fold domains, a conformational change that is necessary to generate a catalytically competent active site. In previous work, we established that GDP-Man and GDP stabilize the enzyme and facilitate the switch to a more compact active state. To determine the structural contribution of the mannose ring in such an activation mechanism, we analyzed a series of chemical derivatives, including mannose phosphate (Man-P) and mannose pyrophosphate-ribose (Man-PP-RIB), and additional GDP derivatives, such as pyrophosphate ribose (PP-RIB) and GMP, by the combined use of X-ray crystallography, limited proteolysis, circular dichroism, isothermal titration calorimetry, and small angle X-ray scattering methods. Although the ß-phosphate is present, we found that the mannose ring, covalently attached to neither phosphate (Man-P) nor PP-RIB (Man-PP-RIB), does promote the switch to the active compact form of the enzyme. Therefore, the nucleotide moiety of GDP-Man, and not the sugar ring, facilitates the "open-to-closed" motion, with the ß-phosphate group providing the high-affinity binding to PimA. Altogether, the experimental data contribute to a better understanding of the structural determinants involved in the "open-to-closed" motion not only observed in PimA but also visualized and/or predicted in other glycosyltransfeases. In addition, the experimental data might prove to be useful for the discovery and/or development of PimA and/or glycosyltransferase inhibitors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manosiltransferases/química , Manosiltransferases/metabolismo , Movimento , Manose/metabolismo , Modelos Moleculares , Conformação Proteica
7.
J Mol Biol ; 432(16): 4658-4672, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32569746

RESUMO

Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycan-biosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half" of the six-transmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.


Assuntos
Manosiltransferases/química , Manosiltransferases/metabolismo , Polissacarídeos/metabolismo , Pyrobaculum/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Glicosilação , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Pyrobaculum/química
8.
J Biol Chem ; 295(29): 9868-9878, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32434931

RESUMO

Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-ß-strand and ß-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Simulação de Dinâmica Molecular , Mycobacterium smegmatis/enzimologia , Dobramento de Proteína , Ressonância Magnética Nuclear Biomolecular
9.
ACS Infect Dis ; 6(4): 680-686, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32073825

RESUMO

Clostridioides difficile (C. difficile) is the leading cause of antibiotic-induced bacterial colitis and life-threatening diarrhea worldwide. The commonly existing anionic polysaccharide II (PSII) is responsible for protein anchoring involved in colonization, and the gene cd2775 located in its biosynthesis gene cluster is essential for bacterial growth. Herein, we demonstrated that cd2775 encodes a novel mannosyl-1-phosphotransferase (ManPT) responsible for the phosphorylation of PSII. Unlike typical mannosyltransferases, CD2775 transfers mannose-α1-phosphate instead of mannose from guanosine 5'-diphospho-d-mannose to disaccharide acceptors, forming a unique mannose-α1-phosphate-6-glucose linkage. The enzyme was overexpressed in E. coli and purified for biochemical characterization and substrate specificity study. It is found that CD2775 possesses a strict acceptor specificity toward Glc-ß1,3-GalNAc-diphospho-lipids but extreme promiscuity toward various sugar donors. This is the first report of a ManPT in all living systems. Given its essentiality in C. difficile growth, CD2775 can be a promising target for therapeutics development.


Assuntos
Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Manosiltransferases/genética , Fosfotransferases/genética , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Manose/metabolismo , Manosiltransferases/química , Família Multigênica , Fosforilação , Fosfotransferases/química , Especificidade por Substrato
10.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835530

RESUMO

O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.


Assuntos
Manosiltransferases/química , Manosiltransferases/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Manosiltransferases/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
11.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835712

RESUMO

Mycobacteria produce two major lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), whose broad array of biological activities are tightly related to the fine details of their structure. However, the heterogeneity of these molecules in terms of internal and terminal covalent modifications and complex internal branching patterns represent significant obstacles to their structural characterization. Previously, an endo-α-(1→6)-D-mannanase from Bacillus circulans proved useful in cleaving the mannan backbone of LM and LAM, allowing the reducing end of these molecules to be identified as Manp-(1→6) [Manp-(1→2)]-Ino. Although first reported 45 years ago, no easily accessible form of this enzyme was available to the research community, a fact that may in part be explained by a lack of knowledge of its complete gene sequence. Here, we report on the successful cloning of the complete endo-α-(1→6)-D-mannanase gene from Bacillus circulans TN-31, herein referred to as emn. We further report on the successful production and purification of the glycosyl hydrolase domain of this enzyme and its use to gain further insight into its substrate specificity using synthetic mannoside acceptors as well as LM and phosphatidyl-myo-inositol mannoside precursors purified from mycobacteria.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Clonagem Molecular , Genes Bacterianos , Manosiltransferases/genética , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Manosídeos/metabolismo , Manosiltransferases/química , Manosiltransferases/isolamento & purificação , Mycobacterium smegmatis/metabolismo , Domínios Proteicos , Especificidade por Substrato
12.
Cell Host Microbe ; 26(3): 385-399.e9, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513773

RESUMO

Parasitic protists belonging to the genus Leishmania synthesize the non-canonical carbohydrate reserve, mannogen, which is composed of ß-1,2-mannan oligosaccharides. Here, we identify a class of dual-activity mannosyltransferase/phosphorylases (MTPs) that catalyze both the sugar nucleotide-dependent biosynthesis and phosphorolytic turnover of mannogen. Structural and phylogenic analysis shows that while the MTPs are structurally related to bacterial mannan phosphorylases, they constitute a distinct family of glycosyltransferases (GT108) that have likely been acquired by horizontal gene transfer from gram-positive bacteria. The seven MTPs catalyze the constitutive synthesis and turnover of mannogen. This metabolic rheostat protects obligate intracellular parasite stages from nutrient excess, and is essential for thermotolerance and parasite infectivity in the mammalian host. Our results suggest that the acquisition and expansion of the MTP family in Leishmania increased the metabolic flexibility of these protists and contributed to their capacity to colonize new host niches.


Assuntos
Glicosiltransferases/classificação , Glicosiltransferases/metabolismo , Leishmania/enzimologia , Manosiltransferases/metabolismo , Fosforilases/classificação , Fosforilases/metabolismo , Cristalografia por Raios X , Transferência Genética Horizontal , Glicosiltransferases/química , Glicosiltransferases/genética , Mananas , Manosiltransferases/química , Manosiltransferases/genética , Modelos Moleculares , Oligossacarídeos , Fosforilases/química , Fosforilases/genética , Conformação Proteica , Termotolerância , Virulência
13.
Nat Struct Mol Biol ; 26(8): 704-711, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285605

RESUMO

In eukaryotes, a nascent peptide entering the endoplasmic reticulum (ER) is scanned by two Sec61 translocon-associated large membrane machines for protein N-glycosylation and protein O-mannosylation, respectively. While the structure of the eight-protein oligosaccharyltransferase complex has been determined recently, the structures of mannosyltransferases of the PMT family, which are an integral part of ER protein homeostasis, are still unknown. Here we report cryo-EM structures of the Saccharomyces cerevisiae Pmt1-Pmt2 complex bound to a donor and an acceptor peptide at 3.2-Å resolution, showing that each subunit contains 11 transmembrane helices and a lumenal ß-trefoil fold termed the MIR domain. The structures reveal the substrate recognition model and confirm an inverting mannosyl-transferring reaction mechanism by the enzyme complex. Furthermore, we found that the transmembrane domains of Pmt1 and Pmt2 share a structural fold with the catalytic subunits of oligosaccharyltransferases, confirming a previously proposed evolutionary relationship between protein O-mannosylation and protein N-glycosylation.


Assuntos
Manosiltransferases/ultraestrutura , Complexos Multienzimáticos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , Glicosilação , Humanos , Processamento de Imagem Assistida por Computador , Manose/metabolismo , Manosiltransferases/química , Manosiltransferases/genética , Manosiltransferases/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Síndrome de Walker-Warburg/genética
14.
J Gen Appl Microbiol ; 65(5): 215-224, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842360

RESUMO

Incorporation of membrane and secretory proteins into COPII vesicles are facilitated either by the direct interaction of cargo proteins with COPII coat proteins, or by ER exit adaptor proteins which mediate the interaction of cargo proteins with COPII coat proteins. Svp26 is one of the ER exit adaptor proteins in the yeast Saccharomyces cerevisiae. The ER exit of several type II membrane proteins have been reported to be facilitated by Svp26. We demonstrate here that the efficient incorporation of Mnn4, a type II membrane protein required for mannosyl phosphate transfer to glycoprotein-linked oligosaccharides, into COPII vesicles is also dependent on the function of Svp26. We show that Mnn4 is localized to the Golgi. In addition to Mnn4, Mnn6 is known to be also required for the transfer of mannosyl phosphate to the glycans. We show, by indirect immunofluorescence, that Mnn6 localizes to the ER. As in the case with Svp26, deletion of the MNN6 gene results in the accumulation of Mnn4 in ER. In vitro COPII vesicle budding assays show that Svp26 and Mnn6 facilitate the incorporation of Mnn4 into COPII vesicles. In contrast to Svp26, which is itself efficiently captured into the COPII vesicles, Mnn6 was not incorporated into the COPII vesicles. Mnn4 and Mnn6 have the DXD motif which is often found in the many glycosyltransferases and functions to coordinate a divalent cation essential for the reaction. Alcian blue dye binding assay shows that substitution of the first D in this motif present in Mnn4 by A impairs the Mnn4 function. In contrast, amino acid substitutions in DXD motifs present in Mnn6 did not affect the function of Mnn6. These results suggest that Mnn4 may be directly involved in the mannosyl phosphate transfer reaction.


Assuntos
Retículo Endoplasmático/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos/genética , Complexo de Golgi/metabolismo , Manosiltransferases/química , Manosiltransferases/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/genética
15.
Hum Mol Genet ; 27(24): 4231-4248, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30192950

RESUMO

This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that the truncated transcripts are not translated. The two main forms hNOT-1/ALG3-1 and -4, distinguishable by alternative exon 1, encode full-length precursors that undergo a complex posttranslational processing. To specifically detect the two full-length hNOT/ALG3 proteins and their distinct derivatives and to examine their expression profiles and cellular location we generated polyclonal antibodies against diverse parts of the putative full-length proteins. We provide experimental evidence for the N-glycosylation of the two precursors. This modification seems to be a prerequisite for their sequential cleavage resulting in derivatives destined to distinct cellular compartments and links them with the N-glycosylation machinery not as its functional component but as molecules functionally dependent on its action. We present the expression profiles and subcellular location of the two full-length proteins, their N-glycosylated forms and distinct cleavage products. Furthermore, using diverse bioinformatics tools, we characterize the properties and predict the 2D and 3D structure of the two proteins and, for comparative purposes, of their Drosophila counterpart.


Assuntos
Manosiltransferases/genética , Proteínas de Membrana/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido , Biologia Computacional , Drosophila/genética , Éxons/genética , Glicosilação , Humanos , Manosiltransferases/química , Proteínas de Membrana/química , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Splicing de RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
16.
Glycobiology ; 28(10): 741-753, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939232

RESUMO

In eukaryotes, the biosynthesis of a highly conserved dolichol-linked oligosaccharide (DLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) begins on the cytoplasmic face of the endoplasmic reticulum (ER) and ends within the lumen. Two functionally distinguished heteromeric glycosyltransferase (GTase) complexes are responsible for the cytosolic DLO assembly. Alg1, a ß-1, 4 mannosyltransferase (MTase) physically interacts with Alg2 and Alg11 proteins to form the multienzyme complex which catalyzes the addition of all five mannose to generate the Man5GlcNAc2-PP-Dol intermediate. Despite the fact that Alg1 plays a central role in the formation of the multi-MTase has been confirmed, the topological information of Alg1 including the molecular mechanism of membrane association are still poorly understood. Using a combination of bioinformatics and biological approaches, we have undertaken a structural and functional study on Alg1 protein, in which the enzymatic activities of Alg1 and its variants were monitored by a complementation assay using the GALpr-ALG1 yeast strain, and further confirmed by a liquid chromatography-mass spectrometry-based in vitro quantitative assay. Computational and experimental evidence confirmed Alg1 shares structure similarity with Alg13/14 complex, which has been defined as a membrane-associated GT-B GTase. Particularly, we provide clear evidence that the N-terminal transmembrane domain including the following positively charged amino acids and an N-terminal amphiphilic-like α helix domain exposed on the protein surface strictly coordinate the Alg1 orientation on the ER membrane. This work provides detailed membrane topology of Alg1 and further reveals its biological importance at the spatial aspect in coordination of cytosolic DLO biosynthesis.


Assuntos
Membrana Celular/metabolismo , Dolicóis/biossíntese , Manosiltransferases/metabolismo , Oligossacarídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Dolicóis/química , Manosiltransferases/química , Manosiltransferases/genética , Oligossacarídeos/química , Conformação Proteica , Saccharomyces cerevisiae/citologia
17.
Cell Cycle ; 17(7): 874-880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29764287

RESUMO

Distant homology relationships among proteins with many transmembrane regions (TMs) are difficult to detect as they are clouded by the TMs' hydrophobic compositional bias and mutational divergence in connecting loops. In the case of several GPI lipid anchor biosynthesis pathway components, the hidden evolutionary signal can be revealed with dissectHMMER, a sequence similarity search tool focusing on fold-critical, high complexity sequence segments. We find that a sequence module with 10 TMs in PIG-W, described as acyl transferase, is homologous to PIG-U, a transamidase subunit without characterized molecular function, and to mannosyltransferases PIG-B, PIG-M, PIG-V and PIG-Z. We conclude that this new, membrane-embedded domain named BindGPILA functions as the unit for recognizing, binding and stabilizing the GPI lipid anchor in a modification-competent form as this appears the only functional aspect shared among all proteins. Thus, PIG-U's likely molecular function is shuttling/presenting the anchor in a productive conformation to the transamidase complex.


Assuntos
Aciltransferases/química , Membrana Celular/química , Proteínas Ligadas por GPI/química , Glicosilfosfatidilinositóis/química , Manosiltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Evolução Molecular , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Humanos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Homologia Estrutural de Proteína
18.
Hum Mol Genet ; 27(11): 1858-1878, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547901

RESUMO

This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence for its in vivo interaction with the functionally linked proteins OSBP, OSBPL9 and LRP1, the SYPL1 protein and the transcription factor CREB3. Regarding the latter, we show that the 55 kDa N-glycosylated hNOT-1/ALG3-1 molecule binds the N-glycosylated CREB3 precursor but does not interact with CREB3's proteolytic products specific to the endoplasmic reticulum and to the nucleus. The interaction between the two partners is a prerequisite for the proteolytic activation of CREB3. In case of the further binding partners, our data suggest that hNOT-1/ALG3-1 interacts with both OSBPs and with their direct targets LRP1 and VAMP/VAP-A. Moreover, our results show that various partners of hNOT-1/ALG3-1 interact with its diverse post translationally processed products destined to distinct cellular compartments. Generally, our data suggest the involvement of hNOT-1/ALG3-1 in various molecular contexts determining essential processes associated with distinct cellular machineries and related to various pathologies, such as cancer, viral infections, neuronal and immunological disorders and CDG.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Retículo Endoplasmático/genética , Manosiltransferases/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Animais , Proteínas de Transporte/genética , Defeitos Congênitos da Glicosilação/patologia , Drosophila/genética , Proteínas de Drosophila/genética , Retículo Endoplasmático/metabolismo , Humanos , Manosiltransferases/química , Proteínas de Membrana/genética , Neoplasias/genética , Neoplasias/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
FEBS J ; 285(6): 1162-1174, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29405629

RESUMO

C-mannosylation is a rare type of protein glycosylation, the functions and mechanisms of which remain unclear. Recently, we identified DPY19L3 as a C-mannosyltransferase of R-spondin1 in human cells. DPY19L3 is predicted to be a multipass transmembrane protein that localizes to the endoplasmic reticulum (ER); however, its structure is undetermined. In this study, we propose a topological structure of DPY19L3 by in silico analysis and experimental methods such as redox-sensitive luciferase assay and introduction of N-glycosylation sites, suggesting that DPY19L3 comprises 11 transmembrane regions and two re-entrant loops with the N- and C-terminal ends facing the cytoplasm and ER lumen, respectively. Furthermore, DPY19L3 has four predicted N-glycosylation sites, and we have demonstrated that DPY19L3 is N-glycosylated at Asn118 and Asn704 but not Asn319 and Asn439 , supporting our topological model. By mass spectrometry, we measured the C-mannosyltransferase activity of N-glycosylation-defective mutants of DPY19L3 and isoform2, a splice variant, which lacks the C-terminal luminal region of DPY19L3. Isoform2 does not possess C-mannosyltransferase activity, indicating the importance of the C-terminal region; however, N-glycosylations of DPY19L3 do not have any roles for its enzymatic activity. These novel findings on DPY19L3 provide important insights into the mechanism of C-mannosylation.


Assuntos
Asparagina/metabolismo , Retículo Endoplasmático/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Asparagina/química , Asparagina/genética , Sítios de Ligação/genética , Simulação por Computador , Glicosilação , Células HEK293 , Humanos , Manose/metabolismo , Manosiltransferases/química , Manosiltransferases/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Domínios Proteicos , Homologia de Sequência de Aminoácidos
20.
FASEB J ; 32(5): 2492-2506, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273674

RESUMO

Asparagine ( N)-linked glycosylation requires the ordered, stepwise synthesis of lipid-linked oligosaccharide (LLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (Glc3Man9Gn2-PDol) on the endoplasmic reticulum. The fourth and fifth steps of LLO synthesis are catalyzed by Alg2, an unusual mannosyltransferase (MTase) with two different MTase activities; Alg2 adds both an α1,3- and α1,6-mannose onto ManGlcNAc2-PDol to form the trimannosyl core Man3GlcNAc2-PDol. The biochemical properties of Alg2 are controversial and remain undefined. In this study, a liquid chromatography/mass spectrometry-based quantitative assay was established and used to analyze the MTase activities of purified yeast Alg2. Alg2-dependent Man3GlcNAc2-PDol production relied on net-neutral lipids with a propensity to form bilayers. We further showed addition of the α1,3- and α1,6-mannose can occur independently in either order but at differing rates. The conserved C-terminal EX7E motif, N-terminal cytosolic tail, and 3 G-rich loop motifs in Alg2 play crucial roles for these activities, both in vitro and in vivo. These findings provide insight into the unique bifunctionality of Alg2 during LLO synthesis and lead to a new model in which alternative, independent routes exist for Alg2 catalysis of the trimannosyl core oligosaccharide.-Li, S.-T., Wang, N., Xu, X.-X., Fujita, M., Nakanishi, H., Kitajima, T., Dean, N., Gao, X.-D. Alternative routes for synthesis of N-linked glycans by Alg2 mannosyltransferase.


Assuntos
Polissacarídeos Fúngicos/química , Bicamadas Lipídicas/química , Manosiltransferases/química , Modelos Moleculares , Oligossacarídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Polissacarídeos Fúngicos/genética , Polissacarídeos Fúngicos/metabolismo , Glicosilação , Bicamadas Lipídicas/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA