Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Behav Brain Res ; 469: 115047, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38759799

RESUMO

Hyperalgesia occurs in the orofacial region of rats when estrogen levels are low, although the specific mechanism needs to be investigated further. Furthermore, oxidative stress plays an important role in the transmission of pain signals. This study aimed to explore the role of oxidative stress in orofacial hyperalgesia under low estrogen conditions. We firstly found an imbalance between oxidative and antioxidant capacity within the spinal trigeminal subnucleus caudalis (SP5C) of rats after ovariectomy (OVX), resulting in oxidative stress and then a decrease in the orofacial pain threshold. To investigate the mechanism by which oxidative stress occurs, we used virus as a tool to silence or overexpress the excitatory amino acid transporter 3 (EAAT3) gene. Further investigation revealed that the regulation of glutathione (GSH) and reactive oxygen species (ROS) can be achieved by regulating EAAT3, which in turn impacts the occurrence of oxidative stress. In summary, our findings suggest that reduced expression of EAAT3 within the SP5C of rats in the low estrogen state may decrease GSH content and increase ROS levels, resulting in oxidative stress and ultimately lead to orofacial hyperalgesia. This suggests that antioxidants could be a potential therapeutic direction for orofacial hyperalgesia under low estrogen conditions, though more research is needed to understand its mechanism.


Assuntos
Estrogênios , Transportador 3 de Aminoácido Excitatório , Dor Facial , Glutationa , Hiperalgesia , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Hiperalgesia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Feminino , Estrogênios/metabolismo , Estrogênios/farmacologia , Dor Facial/metabolismo , Glutationa/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
J Oral Biosci ; 66(2): 304-307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734177

RESUMO

BACKGROUND: The trigeminal spinal subnucleus caudalis (Sp5C), also known as the medullary dorsal horn, receives orofacial somatosensory inputs, particularly nociceptive inputs, from the trigeminal nerve. In the Sp5C, excitatory and inhibitory neurons, glutamatergic and GABAergic/glycinergic neurons, respectively, form the local circuits. The axons of the glutamatergic neurons in lamina I ascend toward the thalamic and parabrachial nuclei, and this projection is the main pathway of orofacial nociception. Additionally, the axons of the higher brain regions, including the locus coeruleus, dorsal raphe, and cerebral cortex, are sent to the Sp5C. HIGHLIGHT: Among these descending projections, this review focuses on the functional profiles of the corticotrigeminal projections to the Sp5C, along with their anatomical aspects. The primary and secondary somatosensory and insular cortices are of particular interest. CONCLUSION: Corticotrigeminal projections from the somatosensory cortex to the Sp5C play a suppressive role in nociceptive information processing, whereas recent studies have demonstrated a facilitative role of the insular cortex in nociceptive information processing at the Sp5C level.


Assuntos
Córtex Cerebral , Nociceptividade , Nociceptividade/fisiologia , Humanos , Animais , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Córtex Somatossensorial/fisiologia , Vias Neurais , Núcleo Espinal do Trigêmeo/fisiologia , Dor Facial/fisiopatologia , Dor Facial/patologia
3.
Eur J Pharmacol ; 913: 174625, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758353

RESUMO

The present study examined contribution of the transient receptor potential vanilloid 1 channel (TRPV1) to the chronic orofacial pain. Bilateral partial nerve ligation (PNL) of the mental nerve, a branch of trigeminal nerve, was performed to induce neuropathic pain. The withdrawal threshold in response to mechanical stimulation of the lower lip skin was substantially reduced after the surgery in the PNL rats while it remained unchanged in the sham rats. This reduction in the PNL rats was alleviated by pregabalin injected intraperitoneally (10 mg/kg) and intracisternally (10, 30, 100 µg). Furthermore, an intracisternal injection of AMG9810, an antagonist of TRPV1, (1.5, 5.0 µg) attenuated the reduction of withdrawal threshold. Spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) were recorded from the spinal trigeminal subnucleus caudalis (Vc) neurons in the brainstem slice, which receive the orofacial nociceptive signals. In the PNL rats, superfusion of capsaicin (0.03, 0.1 µM) enhanced their frequency without effect on the amplitude and the highest concentration (0.3 µM) increased both the frequency and amplitude. In the sham rats, only 0.3 µM capsaicin increased their frequency. Thus, capsaicin-induced facilitation of sEPSCs and mEPSCs in the PNL rats was significantly stronger than that in the sham rats. AMG9810 (0.1 µM) attenuated the capsaicin's effect. Capsaicin was ineffective on the trigeminal tract-evoked EPSCs in the PNL and sham rats. These results suggest that the chronic orofacial pain in the PNL model results from facilitation of the spontaneous excitatory synaptic transmission in the Vc region through TRPV1 at least partly.


Assuntos
Dor Crônica/patologia , Dor Facial/patologia , Neuralgia/patologia , Canais de Cátion TRPV/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Animais , Capsaicina/administração & dosagem , Capsaicina/toxicidade , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Dor Facial/induzido quimicamente , Dor Facial/tratamento farmacológico , Humanos , Masculino , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Núcleo Inferior Caudal do Nervo Trigêmeo/citologia , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos
4.
Cell Rep ; 37(5): 109936, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731609

RESUMO

Depression symptoms are often found in patients suffering from chronic pain, a phenomenon that is yet to be understood mechanistically. Here, we systematically investigate the cellular mechanisms and circuits underlying the chronic-pain-induced depression behavior. We show that the development of chronic pain is accompanied by depressive-like behaviors in a mouse model of trigeminal neuralgia. In parallel, we observe increased activity of the dopaminergic (DA) neuron in the midbrain ventral tegmental area (VTA), and inhibition of this elevated VTA DA neuron activity reverses the behavioral manifestations of depression. Further studies establish a pathway of glutamatergic projections from the spinal trigeminal subnucleus caudalis (Sp5C) to the lateral parabrachial nucleus (LPBN) and then to the VTA. These glutamatergic projections form a direct circuit that controls the development of the depression-like behavior under the state of the chronic neuropathic pain.


Assuntos
Comportamento Animal , Dor Crônica/fisiopatologia , Depressão/fisiopatologia , Núcleos Parabraquiais/fisiopatologia , Neuralgia do Trigêmeo/fisiopatologia , Área Tegmentar Ventral/fisiopatologia , Potenciais de Ação , Animais , Dor Crônica/metabolismo , Dor Crônica/psicologia , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Núcleos Parabraquiais/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/metabolismo , Neuralgia do Trigêmeo/psicologia , Área Tegmentar Ventral/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
Am J Chin Med ; 49(6): 1437-1448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34247560

RESUMO

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.


Assuntos
Monoterpenos Acíclicos/farmacologia , Glicina/metabolismo , Manejo da Dor/métodos , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
6.
J Headache Pain ; 22(1): 17, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789568

RESUMO

BACKGROUND: The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. AIM: We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. MATERIAL AND METHODS: After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. RESULTS AND CONCLUSION: Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.


Assuntos
Sumatriptana , Núcleo Inferior Caudal do Nervo Trigêmeo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dura-Máter/metabolismo , Ácido Cinurênico , Masculino , Ratos , Ratos Sprague-Dawley , Sumatriptana/farmacologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo
7.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925417

RESUMO

Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed a more discrete and heterogeneous reduction due to the basal presence in lamina III of 'patches' of higher expression, interspersed within a less immunoreactive 'matrix', which showed a more substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis. These findings may provide clues to better understand the neural mechanisms underlying allodynia in neuropathic pain syndromes.


Assuntos
Microglia/metabolismo , Neuralgia/etiologia , Corno Dorsal da Medula Espinal/metabolismo , Animais , Comportamento Animal , Proteínas de Ligação ao Cálcio/metabolismo , Densitometria , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Hiperalgesia/etiologia , Masculino , Nervo Maxilar/lesões , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Corno Dorsal da Medula Espinal/patologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/patologia
8.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825453

RESUMO

Activation of the trigeminal system causes the release of various neuropeptides, cytokines, and other immune mediators. Calcitonin gene-related peptide (CGRP), which is a potent algogenic mediator, is expressed in the peripheral sensory neurons of trigeminal ganglion (TG). It affects the inflammatory responses and pain sensitivity by modulating the activity of glial cells. The primary aim of this study was to use array analysis to investigate the effect of CGRP on the glial cells of TG in regulating nuclear factor kappa B (NF-κB) signaling genes and to further check if CGRP in the TG can affect neuron-glia activation in the spinal trigeminal nucleus caudalis. The glial cells of TG were stimulated with CGRP or Minocycline (Min) + CGRP. The effect on various genes involved in NF-κB signaling pathway was analyzed compared to no treatment control condition using a PCR array analysis. CGRP, Min + CGRP or saline was directly injected inside the TG and the effect on gene expression of Egr1, Myd88 and Akt1 and protein expression of cleaved Caspase3 (cleav Casp3) in the TG, and c-Fos and glial fibrillary acidic protein (GFAP) in the spinal section containing trigeminal nucleus caudalis was analyzed. Results showed that CGRP stimulation resulted in the modulation of several genes involved in the interleukin 1 signaling pathway and some genes of the tumor necrosis factor pathway. Minocycline pre-treatment resulted in the modulation of several genes in the glial cells, including anti-inflammatory genes, and neuronal activation markers. A mild increase in cleav Casp3 expression in TG and c-Fos and GFAP in the spinal trigeminal nucleus of CGRP injected animals was observed. These data provide evidence that glial cells can participate in neuroimmune interaction due to CGRP in the TG via NF-κB signaling pathway.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , NF-kappa B/metabolismo , Neuroglia/metabolismo , Gânglio Trigeminal/citologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Caspase 3/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Minociclina/farmacologia , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , Neuroglia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Ratos Sprague-Dawley , Transdução de Sinais/genética , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
9.
J Headache Pain ; 21(1): 101, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799798

RESUMO

BACKGROUND: Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose. METHODS: To examine the activation pattern that is caused by chemical stimulation of dura mater, we applied CFA or IS over the right parietal lobe. After 2 h and 4 h (CFA groups), or 2.5 h and 4 h (IS groups), animals were perfused, and c-Fos immunoreactive cells were counted in the caudal trigeminal nucleus. To explore every pitfall, we examined whether our surgical procedure (anesthetic drug, stereotaxic apparatus, local lidocaine) can alter the results under the same experimental settings. c-Fos labeled cells were counted in the second-order neuron area based on the somatotopic organization of the trigeminal nerve branches. RESULTS: We could not find any difference between the CFA and physiological saline group neither 2 h, nor 4 h after dural stimulation. IS caused significant difference after both time points between IS treated and control group, and between treated (right) and control (left) side. Stereotaxic frame usage had a substantial effect on the obtained results. CONCLUSIONS: Counting c-Fos immunoreactive cells based on somatotopic organization of the trigeminal nerve helped to examine the effect of chemical stimulation of dura in a more specific way. As a result, the use of IS over the parietal lobe caused activation in the area of the ophthalmic nerve. To see this effect, the use of lidocaine anesthesia is indispensable. In conclusion, application of IS on the dura mater induces short-term, more robust c-Fos activation than CFA, therefore it might offer a better approach to model acute migraine headache in rodents.


Assuntos
Dura-Máter/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Animais , Adjuvante de Freund , Cefaleia , Inflamação , Lidocaína/farmacologia , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Neurônios , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Estimulação Química , Nervo Trigêmeo
10.
J Headache Pain ; 21(1): 83, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615921

RESUMO

BACKGROUND: Purine receptors play roles in peripheral and central sensitization and are associated with migraine headache. We investigated the possibility that ATP plays a permissive role in the activation of AMPA receptors thus inducing Glu release from nerve terminals isolated from the rat trigeminal caudal nucleus (TCN). METHODS: Nerve endings isolated from the rat TCN were loaded with [3H]D-aspartic acid ([3H]D-ASP), layered into thermostated superfusion chambers, and perfused continuously with physiological medium, alone or with various test drugs. Radioactivity was measured to assess [3H]D-ASP release under different experimental conditions. RESULTS: Synaptosomal [3H]D-ASP spontaneous release was stimulated by ATP and to an even greater extent by the ATP analogue benzoylbenzoylATP (BzATP). The stimulation of [3H]D-ASP basal release by the purinergic agonists was prevented by the selective P2X7 receptor antagonist A438079. AMPA had no effect on basal [3H]D-ASP release, but the release observed when synaptosomes were exposed to AMPA plus a purinoceptor agonist exceeded that observed with ATP or BzATP alone. The selective AMPA receptor antagonist NBQX blocked this "excess" release. Co-exposure to AMPA and BzATP, each at a concentration with no release-stimulating effects, evoked a significant increase in [3H]D-ASP basal release, which was prevented by exposure to a selective AMPA antagonist. CONCLUSIONS: P2X7 receptors expressed on glutamatergic nerve terminals in the rat TCN can mediate Glu release directly and indirectly by facilitating the activation of presynaptic AMPA receptors. The high level of glial ATP that occurs during chronic pain states can promote widespread release of Glu as well as can increase the function of AMPA receptors. In this manner, ATP contributes to the AMPA receptor activation involved in the onset and maintenance of the central sensitization associated with chronic pain.


Assuntos
Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Receptores de AMPA/metabolismo , Receptores Pré-Sinápticos/metabolismo , Receptores Purinérgicos P2X7/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Agonistas do Receptor Purinérgico P2X , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Transmissão Sináptica , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
11.
J Headache Pain ; 21(1): 72, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522232

RESUMO

BACKGROUND: Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. METHODS: Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. RESULTS: CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. CONCLUSIONS: These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Núcleos Vestibulares/metabolismo , Animais , Hiperalgesia/metabolismo , Masculino , Nitroglicerina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Gânglio Trigeminal/metabolismo
12.
J Headache Pain ; 21(1): 35, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316909

RESUMO

BACKGROUND: The neurochemical background of the evolution of headache disorders, still remains partially undiscovered. Accordingly, our aim was to further explore the neurochemical profile of Complete Freund's adjuvant (CFA)-induced orofacial pain, involving finding the shift point regarding small molecule neurotransmitter concentrations changes vs. that of the previously characterized headache-related neuropeptides. The investigated neurotransmitters consisted of glutamate, γ-aminobutyric acid, noradrenalin and serotonin. Furthermore, in light of its influence on glutamatergic neurotransmission, we measured the level of kynurenic acid (KYNA) and its precursors in the kynurenine (KYN) pathway (KP) of tryptophan metabolism. METHODS: The effect of CFA was evaluated in male Sprague Dawley rats. Animals were injected with CFA (1 mg/ml, 50 µl/animal) into the right whisker pad. We applied high-performance liquid chromatography to determine the concentrations of the above-mentioned compounds from the trigeminal nucleus caudalis (TNC) and somatosensory cortex (ssCX) of rats. Furthermore, we measured some of these metabolites from the cerebrospinal fluid and plasma as well. Afterwards, we carried out permutation t-tests as post hoc analysis for pairwise comparison. RESULTS: Our results demonstrated that 24 h after CFA treatment, the level of glutamate, KYNA and that of its precursor, KYN was still elevated in the TNC, all diminishing by 48 h. In the ssCX, significant concentration increases of KYNA and serotonin were found. CONCLUSION: This is the first study assessing neurotransmitter changes in the TNC and ssCX following CFA treatment, confirming the dominant role of glutamate in early pain processing and a compensatory elevation of KYNA with anti-glutamatergic properties. Furthermore, the current findings draw attention to the limited time interval where medications can target the glutamatergic pathways.


Assuntos
Dor Facial/metabolismo , Ácido Glutâmico/metabolismo , Ácido Cinurênico/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Triptofano/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Dor Facial/induzido quimicamente , Adjuvante de Freund , Masculino , Ratos , Ratos Sprague-Dawley , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Vibrissas/efeitos dos fármacos
13.
J Oral Sci ; 62(2): 150-155, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32132330

RESUMO

The signs and symptoms of persistent temporomandibular joint (TMJ)/muscle disorder (TMJD) pain suggest the existence of a central neural dysfunction or a problem of pain amplification. The etiology of chronic TMJD is not known; however, female sex hormones have been identified as significant risk factors. Converging lines of evidence indicate that the junctional region between the trigeminal subnucleus caudalis (Vc) and the upper cervical spinal cord, termed the Vc/C1-2 region, is the primary site for the synaptic integration of sensory input from TMJ nociceptors. In this paper, the mechanisms behind the estrogen effects on the processing of nociceptive inputs by neurons in the Vc/C1-2 region reported by human and animal studies are reviewed. The Vc/C1-2 region has direct connections to endogenous pain and autonomic control pathways, which are modified by estrogen status and are suggested to be critical for somatomotor and autonomic reflex responses of TMJ-related sensory signals.


Assuntos
Estrogênios , Núcleo Inferior Caudal do Nervo Trigêmeo , Animais , Feminino , Neurônios , Dor , Ratos , Ratos Sprague-Dawley , Articulação Temporomandibular
14.
J Headache Pain ; 21(1): 4, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937253

RESUMO

BACKGROUND: According to our previous study, microglia P2X4 receptors (P2X4Rs) play a pivotal role in the central sensitization of chronic migraine (CM). However, the molecular mechanism that underlies the crosstalk between microglia P2X4Rs and neurons of the trigeminal nucleus caudalis (TNC) is not fully understood. Therefore, the aim of this study is to examine the exact P2X4Rs signalling pathway in the development of central sensitization in a CM animal model. METHODS: We used an animal model with recurrent intermittent administration of nitroglycerin (NTG), which closely mimics CM. NTG-induced basal mechanical and thermal hypersensitivity were evaluated using a von Frey filament test and an increasing-temperature hot plate apparatus (IITC). We detected P2X4Rs, brain-derived neurotrophic factor (BDNF) and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) expression profiles in the TNC. We investigated the effects of a P2X4R inhibitor (5-BDBD) and an agonist (IVM) on NTG-induced hyperalgesia and neurochemical changes as well as on the expression of p-p38-MAPK and BDNF. We also detected the effects of a tropomyosin-related kinase B (TrkB) inhibitor (ANA-12) on the CM animal model in vivo. Then, we evaluated the effect of 5-BDBD and SB203580 (a p38-MAPK inhibitors) on the release and synthesis of BDNF in BV2 microglia cells treated with 50 µM adenosine triphosphate (ATP). RESULTS: Chronic intermittent administration of NTG resulted in chronic mechanical and thermal hyperalgesia, accompanied by the upregulation of P2X4Rs and BDNF expression. 5-BDBD or ANA-12 prevented hyperalgesia induced by NTG, which was associated with a significant inhibition of the NTG-induced increase in phosphorylated extracellular regulated protein kinases (p-ERK) and calcitonin gene related peptide (CGRP) release in the TNC. Repeated administration of IVM produced sustained hyperalgesia and significantly increased the levels of p-ERK and CGRP release in the TNC. Activating P2X4Rs with ATP triggered BDNF release and increased BDNF synthesis in BV2 microglia, and these results were then reduced by 5-BDBD or SB203580. CONCLUSIONS: Our results indicated that the P2X4R contributes to the central sensitization of CM by releasing BDNF and promoting TNC neuronal hyper-excitability. Blocking microglia P2X4R-BDNF signalling may have an effect on the prevention of migraine chronification.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Sensibilização do Sistema Nervoso Central/fisiologia , Microglia/fisiologia , Transtornos de Enxaqueca/fisiopatologia , Receptores Purinérgicos P2X4/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Microglia/metabolismo , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Mol Neurobiol ; 57(1): 461-468, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31378003

RESUMO

Migraine is one of the most disabling neurological diseases worldwide; however, the mechanisms underlying migraine headache are still not fully understood and current therapies for such pain are inadequate. It has been suggested that inflammation and neuroimmune modulation in the gastrointestinal tract could play an important role in the pathogenesis of migraine headache, but how gut microbiomes contribute to migraine headache is unclear. In the present study, we investigated the effect of gut microbiota dysbiosis on migraine-like pain using broad-spectrum antibiotics and germ-free (GF) mice. We observed that antibiotics treatment-prolonged nitroglycerin (NTG)-induced acute migraine-like pain in wild-type (WT) mice and the pain prolongation was completely blocked by genetic deletion of tumor necrosis factor-alpha (TNFα) or intra-spinal trigeminal nucleus caudalis (Sp5C) injection of TNFα receptor antagonist. The antibiotics treatment extended NTG-induced TNFα upregulation in the Sp5C. Probiotics administration significantly inhibited the antibiotics-produced migraine-like pain prolongation. Furthermore, NTG-induced migraine-like pain in GF mice was markedly enhanced compared to that in WT mice and gut colonization with fecal microbiota from WT mice robustly reversed microbiota deprivation-caused pain enhancement. Together, our results suggest that gut microbiota dysbiosis contributes to chronicity of migraine-like pain by upregulating TNFα level in the trigeminal nociceptive system.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/microbiologia , Dor/genética , Dor/microbiologia , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/genética , Animais , Antibacterianos/farmacologia , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Nitroglicerina/administração & dosagem , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo
16.
Neurobiol Dis ; 134: 104624, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629892

RESUMO

BACKGROUND: Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM: To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS: Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS: Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS: The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.


Assuntos
Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Transtornos de Enxaqueca/prevenção & controle , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/enzimologia , Nitroglicerina/toxicidade , Ratos , Ratos Sprague-Dawley , Vasodilatadores/toxicidade
17.
Biochem Biophys Res Commun ; 521(4): 868-873, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31708101

RESUMO

Parkinson's disease (PD) related pain can be assigned to either nociceptive pain or neuropathic pain, in which Transient receptor potential vanilloid 1 (TRPV1) has been demonstrated to play a pivotal role. Yet little research has examined possible involvement of TRPV1 in pain in PD. Here, we show that TRPV1 is highly expressed in PD and blocking TRPV1 can alleviate pain in PD. The level of TRPV1 in 6-OHDA induced semi mice model of PD was evaluated. The effect of TRPV1 and involved serotonin (5-HT) was also examined in the model. Unilateral injection of 6-OHDA in striatum significantly decreased thermal pain threshold and induced mechanical allodynia without changes in conditioned place preference. Immunostaining revealed that great increased expression in TRPV1 in the Vc of 6-OHDA lesioned mice compared with sham mice. TRPV1 sensitization was maintained by 5-HT/5-HT3A. In 6-OHDA-lesioned mice model of PD, TRPV1 sensitization might be implicated in the maintenance of behavioral hypersensitivity by enhanced descending 5-HT pain facilitation and dorsal horn 5-HT3AR mechanism.


Assuntos
Hiperalgesia/etiologia , Doença de Parkinson/etiologia , Serotonina/metabolismo , Canais de Cátion TRPV/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Acrilamidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Oxidopamina/toxicidade , Limiar da Dor , Piperidinas/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Transdução de Sinais
18.
Acta Odontol Latinoam ; 32(2): 103-110, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664301

RESUMO

Peripheral inflammation induces plastic changes in neurons and glia which are regulated by free calcium and calcium binding proteins (CaBP). One of the mechanisms associated with the regulation of intracellular calcium is linked to ERK (Extracellular Signal-Regulated Kinase) and its phosphorylated condition (pERK). ERK phosphorylation is important for intracellular signal transduction and participates in regulating neuroplasticity and inflammatory responses. The aim of this study is to analyse the expression of two CaBPs and pERK in astrocytes and neurons in rat trigeminal subnucleus caudalis (Vc) after experimental periapical inflammation on the left mandibular first molar. At seven days post-treatment, the periapical inflammatory stimulus induces an increase in pERK expression both in S100b positive astrocytes and Calbindin D28k positive neurons, in the ipsilateral Vc with respect to the contralateral side and control group. pERK was observed coexpressing with S100b in astrocytes and in fusiform Calbindin D28k neurons in lamina I. These results could indicate that neural plasticity and pain sensitization could be maintained by ERK activation in projection neurons at 7 days after the periapical inflammation.


La inflamación periférica induce cambios plásticos en las neuronas y en la glía, los cuales están regulados por el calcio libre y las proteínas fijadoras calcio (CaBP). Uno de los mecanismos asociados con la regulación del calcio intrace-lular está vinculado con la fosforilación de la pro teína quinasa ERK. Asimismo, ERK fosforilado es importante para la trans-ducción de señales intracelulares y participa en la regulación de la neuroplasticidad y las respuestas inflamatorias. El objetivo de este estudio es analizar la expresión de dos CaBPs y pERK en astrocitos y neuronas del subnúcleo caudal del trigémino (Vc) después de una inflamación periapical experimental en el primer molar inferior izquierdo en ratas. A los siete días posteriores al tratamiento, el estímulo inflamatorio periapical induce un aumento en la expresión de pERK, en el número de astrocitos positivos para la proteína marcadora astroglial S100b y en neuronas positivas para Calbindina D28k, en el Vc ipsilateral respecto del lado contralateral y el grupo de control. Además, se observó coexpresión de pERK tanto en astrocitos S100b positivos, como en neuronas fusiformes Calbindin D28k positivas, de la lámina I. Estas observaciones podrían indicar que la neuroplasticidad y la sensibilización al dolor podrían mantenerse mediante la activación de ERK en las neuronas de proyección a los 7 días de la inflamación periapical.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação , Plasticidade Neuronal , Núcleo Inferior Caudal do Nervo Trigêmeo/fisiopatologia , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Núcleos do Trigêmeo
19.
Acta odontol. latinoam ; 32(2): 103-110, Aug. 2019. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1038166

RESUMO

Peripheral inflammation induces plastic changes in neurons and glia which are regulated by free calcium and calcium binding proteins (CaBP). One of the mechanisms associated with the regulation of intracellular calcium is linked to ERK (Extracellular Signal-Regulated Kinase) and its phosphorylated condition (pERK). ERK phosphorylation is important for intracellular signal transduction and participates in regulating neuroplasticity and inflammatory responses. The aim of this study is to analyse the expression of two CaBPs and pERK in astrocytes and neurons in rat trigeminal subnucleus caudalis (Vc) after experimental periapical inflammation on the left mandibular first molar. At seven days post-treatment, the periapical inflammatory stimulus induces an increase in pERK expression both in S100b positive astrocytes and Calbindin D28k positive neurons, in the ipsilateral Vc with respect to the contralateral side and control group. pERK was observed coexpressing with S100b in astrocytes and in fusiform Calbindin D28k neurons in lamina I. These results could indicate that neural plasticity and pain sensitization could be maintained by ERK activation in projection neurons at 7 days after the periapical inflammation.


La inflamación periférica induce cambios plásticos en las neuronas y en la glía, los cuales están regulados por el calcio libre y las proteínas fijadoras calcio (CaBP). Uno de los mecanismos asociados con la regulación del calcio intrace-lular está vinculado con la fosforilación de la pro teína quinasa ERK. Asimismo, ERK fosforilado es importante para la trans-ducción de señales intracelulares y participa en la regulación de la neuroplasticidad y las respuestas inflamatorias. El objetivo de este estudio es analizar la expresión de dos CaBPs y pERK en astrocitos y neuronas del subnúcleo caudal del trigémino (Vc) después de una inflamación periapical experimental en el primer molar inferior izquierdo en ratas. A los siete días posteriores al tratamiento, el estímulo inflamatorio periapical induce un aumento en la expresión de pERK, en el número de astrocitos positivos para la proteína marcadora astroglial S100b y en neuronas positivas para Calbindina D28k, en el Vc ipsilateral respecto del lado contralateral y el grupo de control. Además, se observó coexpresión de pERK tanto en astrocitos S100b positivos, como en neuronas fusiformes Calbindin D28k positivas, de la lámina I. Estas observaciones podrían indicar que la neuroplasticidad y la sensibilización al dolor podrían mantenerse mediante la activación de ERK en las neuronas de proyección a los 7 días de la inflamación periapical.


Assuntos
Animais , Ratos , Núcleo Inferior Caudal do Nervo Trigêmeo/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação , Plasticidade Neuronal , Núcleos do Trigêmeo , Astrócitos/fisiologia , Astrócitos/metabolismo , Ratos Sprague-Dawley , Neurônios/fisiologia , Neurônios/metabolismo
20.
J Headache Pain ; 20(1): 43, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035923

RESUMO

BACKGROUND: Migraine is a neurovascular primary headache disorder, which causes significant socioeconomic problems worldwide. The pathomechanism of disease is enigmatic, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Migraine research of recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide 1-38 (PACAP1-38) as potential pathogenic factors and possible therapeutic offensives. The goal of present study was to investigate the simultaneous expression of CGRP and precursor of PACAP1-38 (preproPACAP) in the central region of the TS in a time-dependent manner following TS activation in rats. METHODS: The right whisker pad of rats was injected with 50 µl Complete Freund's Adjuvant (CFA) or saline. A mechanical allodynia test was performed with von Frey filaments before and after treatment. Transcardial perfusion of the animals was initiated 24, 48, 72 and 120 h after injection, followed by the dissection of the nucleus trigeminus caudalis (TNC). After preparation, the samples were stored at - 80 °C until further use. The relative optical density of CGRP and preproPACAP was analyzed by Western blot. One-way ANOVA and Kruskal-Wallis followed by Tukey post hoc test were used to evaluate the data. Regression analysis was applied to explore the correlation between neuropeptides expression and hyperalgesia. RESULTS: Orofacial CFA injection resulted in significant CGRP and preproPACAP release in the TNC 24, 48, 72 and 120 h after the treatment. The level of neuropeptides reached its maximum at 72 h after CFA injection, corresponding to the peak of facial allodynia. Negative, linear correlation was detected between the expression level of neuropeptides and value of mechanonociceptive threshold. CONCLUSION: This is the first study which suggests that the expression of CGRP and preproPACAP simultaneously increases in the central region of activated TS and it influences the formation of mechanical hyperalgesia. Our results contribute to a better understanding of migraine pathogenesis and thereby to the development of more effective therapeutic approaches.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Dor Facial/metabolismo , Adjuvante de Freund/toxicidade , Transtornos de Enxaqueca/metabolismo , Fragmentos de Peptídeos/biossíntese , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Dor Facial/induzido quimicamente , Adjuvante de Freund/administração & dosagem , Expressão Gênica , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Transtornos de Enxaqueca/induzido quimicamente , Fragmentos de Peptídeos/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Ratos , Ratos Sprague-Dawley , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Vibrissas/efeitos dos fármacos , Vibrissas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA