Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.183
Filtrar
1.
PLoS One ; 19(5): e0302264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723038

RESUMO

CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.


Assuntos
Sistemas CRISPR-Cas , Lipossomos , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico , Animais , Ratos , RNA Longo não Codificante/genética , Sistemas CRISPR-Cas/genética , Humanos , Edição de Genes/métodos
2.
J Med Case Rep ; 18(1): 239, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725071

RESUMO

BACKGROUND: Radiation proctitis (RP) is a significant complication of pelvic radiation. Effective treatments for chronic RP are currently lacking. We report a case where chronic RP was successfully managed by metformin and butyrate (M-B) enema and suppository therapy. CASE PRESENTATION: A 70-year-old Asian male was diagnosed with prostate cancer of bilateral lobes, underwent definitive radiotherapy to the prostate of 76 Gy in 38 fractions and six months of androgen deprivation therapy. Despite a stable PSA nadir of 0.2 ng/mL for 10 months post-radiotherapy, he developed intermittent rectal bleeding, and was diagnosed as chronic RP. Symptoms persisted despite two months of oral mesalamine, mesalamine enema and hydrocortisone enema treatment. Transition to daily 2% metformin and butyrate (M-B) enema for one week led to significant improvement, followed by maintenance therapy with daily 2.0% M-B suppository for three weeks, resulting in continued reduction of rectal bleeding. Endoscopic examination and biopsy demonstrated a good therapeutic effect. CONCLUSIONS: M-B enema and suppository may be an effective treatment for chronic RP.


Assuntos
Enema , Metformina , Proctite , Neoplasias da Próstata , Lesões por Radiação , Humanos , Masculino , Proctite/tratamento farmacológico , Proctite/etiologia , Idoso , Metformina/uso terapêutico , Metformina/administração & dosagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/tratamento farmacológico , Lesões por Radiação/tratamento farmacológico , Doença Crônica , Resultado do Tratamento , Butiratos/uso terapêutico , Hemorragia Gastrointestinal/tratamento farmacológico , Hemorragia Gastrointestinal/terapia , Hemorragia Gastrointestinal/etiologia , Supositórios
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731844

RESUMO

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Próstata , Reparo de DNA por Recombinação , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Metástase Neoplásica , Proteína BRCA1/genética , Proteína BRCA1/deficiência , Ftalazinas/uso terapêutico , Ftalazinas/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Piperazinas
4.
Mol Biol Rep ; 51(1): 653, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734766

RESUMO

Prostate cancer is a malignant epithelial tumor of the prostate gland and is the most common malignant tumor of the male genitourinary system. Pharmacological therapies, including chemotherapy and androgen deprivation therapy, play a key role in the treatment of prostate cancer. However, drug resistance and side effects limit the use of these drugs and so there is a need for new drug therapies for prostate cancer patients. Flavonoids, with their wide range of sources and diverse biological activities, have attracted much attention in the field of anti-tumor drug screening. In 2016, at least 58 flavonoids were reported to have anti-prostate cancer activity. In recent years, six additional flavonoid compounds have been found to have anti-prostate cancer potential. In this review, we have collected a large amount of evidence on the anti-prostate cancer effects of these six flavonoids, including a large number of cellular experiments and a small number of preclinical animal experiments. In addition, we predicted their drug-forming properties using Schrödinger's QikProp software and ADMETlab due to the lack of in vivo pharmacokinetic data for the six compounds. In conclusion, this review has fully confirmed the anti-prostate cancer effects of these six flavonoids, summarized their mechanisms of action and predicted their druggability. It provides a reference for the further development of these compounds into anti-prostate cancer drugs.


Assuntos
Flavonoides , Neoplasias da Próstata , Masculino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Minerva Urol Nephrol ; 76(2): 141-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38742549

RESUMO

INTRODUCTION: Patients with high-risk prostate cancer (HRPCa) are prone to have worse pathological features, resulting in early biochemical recurrence after radical prostatectomy (RP). There is an urgent need to develop novel treatment strategies for this group of patients to optimize their outcomes. The purpose of this study is to perform a systematic review of the role of neoadjuvant hormonal therapy (NHT) followed by RP in HRPCa patients. EVIDENCE ACQUISITION: We performed a systematic review of the following databases, MEDLINE (PubMed), EMBASE, Cochrane Library, and clinical Trial.gov; between January 2007 and August 2023, following the PRISMA guidelines. EVIDENCE SYNTHESIS: After screening and deduplication, we included ten studies from an initial pool of 1275. The risk of bias was low in observational studies but ranged from moderate to low in controlled trials. Five studies utilized traditional androgen deprivation treatments (ADT), revealing favorable pathological outcomes but inconsistency in evaluating oncological results. Additionally, four studies focused on RP combined with androgen receptor pathway inhibitors (ARPIs) in the NHT setting, all showing primarily positive pathological outcome, with no clear evidence of an oncological benefit. Limited long-term follow-up data and a shortage of randomized controlled trials were evident among all the studies included in this review, regardless of the type of hormonal treatment used. CONCLUSIONS: Different hormonal treatments, including traditional ADT and ARPIs, yield positive pathology outcomes. Oncological evidence remains limited, echoing older findings predating ARPIs. Definitive conclusions require longer follow-ups and precise patient selection. Currently, insufficient evidence support ARPIs' superiority over conventional therapy before RP.


Assuntos
Antagonistas de Androgênios , Prostatectomia , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Masculino , Antagonistas de Androgênios/uso terapêutico , Terapia Neoadjuvante/métodos , Medição de Risco
6.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724836

RESUMO

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Assuntos
Adenocarcinoma , Antineoplásicos , Apoptose , Portadores de Fármacos , Transição Epitelial-Mesenquimal , Nanopartículas , Neoplasias da Próstata , Piranos , Ratos Wistar , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Animais , Piranos/farmacologia , Piranos/administração & dosagem , Apoptose/efeitos dos fármacos , Humanos , Ratos , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Células PC-3 , Sistemas de Liberação de Medicamentos/métodos , Policetídeos de Poliéter
7.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724835

RESUMO

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Assuntos
Docetaxel , Nanopartículas Metálicas , Neoplasias da Próstata , Radiossensibilizantes , Prata , Humanos , Docetaxel/farmacologia , Masculino , Prata/farmacologia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Caspase 3/metabolismo , Caspase 3/genética , Antineoplásicos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caderinas/metabolismo , Caderinas/genética
8.
Integr Cancer Ther ; 23: 15347354241253846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721848

RESUMO

Vikil 20 is an herbal formula produced in Ghana and is widely marketed as a product to boost immunity as well as for general well-being. However, the pharmacological effect of this herbal preparation has not been proven scientifically. Therefore, this study was aimed at investigating the antioxidative as well as the anti-prostate cancer effects of the product. To assess the antioxidative effect of Vikil 20, the DPPH and ABTS activities were investigated. The total phenolic content was investigated using the Folin-Ciocalteu method. The cytotoxic effect of Vikil 20 against prostate cancer (PC-3) cells as well as normal (RAW 264.7) cells was investigated using the MTT assay whereas its anti-metastatic effect was analyzed using the cell migration assay. The effect of Vikil 20 on cell adhesion was analyzed via the cell adhesion assay whereas its effect on TNF-α secretion was investigated using a TNF-α detection kit. Vikil 20 demonstrated significant antioxidant effects by suppressing 57.61% and 92.88% respectively of DPPH and ABTS radicals at 1000 µg/mL with total phenolic contents of 140.45 mg GAE/g. Vikil 20 suppressed the proliferation of PC-3 cells by reducing the number of viable cells to 49.5% while sparing the RAW, 264.7 cells. Further, Vikil 20 significantly suppressed both cellular migration and adhesion of prostate cancer cells. Finally, suppression of cellular migration and adhesion is associated with a reduction in TNF-α secretion by PC-3 cells. Taken together, Vikil 20 was found to possess significant antioxidant and anti-prostate cancer effects in vitro.


Assuntos
Antioxidantes , Movimento Celular , Proliferação de Células , Extratos Vegetais , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Radicais Livres/metabolismo , Extratos Vegetais/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fenóis/farmacologia
9.
Ter Arkh ; 96(3): 266-272, 2024 Apr 16.
Artigo em Russo | MEDLINE | ID: mdl-38713042

RESUMO

AIM: To investigate the antitumor effects of human placenta hydrolysate (HPH) peptides on three hormone-dependent human cell lines: prostate adenocarcinoma, breast carcinoma, and ovarian cancer by metabolic analysis of cell cultures. MATERIALS AND METHODS: The effect of HPH on tumor and control tumor cell lines was evaluated. Study stages: (A) de novo peptide sequencing by collision-induced dissociation mass spectrometry; (B) detection of peptides with anti-tumor properties; (C) expert analysis of the obtained lists of peptides. RESULTS: Dose-dependent cytotoxic effects of HPH on three tumor cell lines are shown: PC-3 (human prostate adenocarcinomas), OAW-42 (human ovarian cancer), BT-474 (human breast carcinomas), and IC50 constants (1.3-2.8 mg/ml) were obtained. The analysis of the HPH peptide fraction showed more than 70 peptides with antitumor properties in the composition of this HPH, including kinase inhibitors: mitogen-activated protein kinases, kappa-bi nuclear factor inhibitor kinase, AKT serine/threonine kinase 1, protein kinase C zeta, interleukin-1 receptor-associated kinase 4 and cyclin-dependent kinase 1. CONCLUSION: The results of the study indicate not only the oncological safety of the HPH used in therapy but also the mild antitumor effects of this HPH at high concentrations.


Assuntos
Neoplasias da Mama , Placenta , Neoplasias da Próstata , Humanos , Feminino , Placenta/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Gravidez , Neoplasias da Próstata/tratamento farmacológico , Masculino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Células PC-3 , Hidrolisados de Proteína/farmacologia , Relação Dose-Resposta a Droga
10.
Arch Esp Urol ; 77(3): 242-248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38715164

RESUMO

OBJECTIVE: To retrospectively analyse the effects of cinobufotalin capsule combined with zoledronic acid on pain symptoms and clinical efficacy of prostate cancer patients with bone metastases. METHODS: Patients with prostate cancer with bone metastasis admitted to our hospital from January 2021 to December 2022 were selected as study subjects. They were divided into the control group (treated with zoledronic acid) and the combined group (cinobufotalin capsules were added on the control group basis) according to different recorded treatment methods. The efficacies of the two groups after matching, lumbar L1-4 bone mineral density (BMD), serum calcium, serum phosphorus, visual analogue scale (VAS) score and Karnofsky performance status (KPS) score before and after treatment were compared, and adverse reactions were statistically analysed. RESULTS: A total of 102 patients were included in the study, encompassing 52 patients in the combined group and 50 patients in the control group. After 1:1 preference score matching, 64 patients were included in the two groups. No significant difference in baseline data was found between the two groups (p > 0.05). The total effective rate of the combination group was higher than that of the control group (p < 0.05). No significant differences in L1-4 bone mineral density, serum calcium and phosphorus, VAS score and KPS score were observed between the two groups prior to treatment (p > 0.05). After treatment, the L1-4 bone mineral density (BMD) and KPS score of the combined group decreased to less than those of the control group, the VAS score was lower than that of the control group, and the serum calcium and phosphorus level increased but less than that of the control group (p < 0.05). No significant difference in adverse reactions was found between the two groups (p > 0.05). CONCLUSIONS: Cinobufotalin capsule combined with zoledronic acid had ideal efficacy in the treatment of prostate cancer in patients with bone metastasis. This approach could improve their bone density and quality of life, improve their calcium and phosphorus metabolism, reduce their pain symptoms and provide increased safety. It may have an important guiding role in formulating future clinical treatment plans for patients with prostate cancer and bone metastasis.


Assuntos
Conservadores da Densidade Óssea , Neoplasias Ósseas , Bufanolídeos , Neoplasias da Próstata , Ácido Zoledrônico , Humanos , Masculino , Ácido Zoledrônico/uso terapêutico , Ácido Zoledrônico/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/complicações , Estudos Retrospectivos , Idoso , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/administração & dosagem , Neoplasias Ósseas/secundário , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/complicações , Bufanolídeos/uso terapêutico , Bufanolídeos/administração & dosagem , Pessoa de Meia-Idade , Resultado do Tratamento , Cápsulas , Quimioterapia Combinada , Dor do Câncer/tratamento farmacológico
11.
Aust J Gen Pract ; 53(5): 291-300, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38697060

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most common malignancy after skin cancer in men in Australia. Its management varies according to tumour stage. Due to the significant dependence on androgen receptor signalling, agents that interfere with this pathway (most commonly medical castration in the form of androgen deprivation therapy [ADT]) are the mainstay treatment of advanced disease. OBJECTIVE: This review provides a contemporary update on ADT, with further discussion of emerging novel therapies for primary care. DISCUSSION: ADT is currently indicated for the treatment of metastatic prostate cancer, disease recurrence following attempted local curative therapy, as well as combined use with radiotherapy for intermediate/high-risk disease. There has been rapid development of new pharmaceuticals targeting the androgen receptor. These are reviewed historically with an emphasis placed on emerging therapies, their common side effects, and how to manage them in the general practice setting.


Assuntos
Antagonistas de Androgênios , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Austrália
12.
South Med J ; 117(5): 245-253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701845

RESUMO

Androgen deprivation therapy is the cornerstone of systemic management for prostate cancer but is associated with multiple adverse effects that must be considered during treatment. These effects occur because of the profound hypogonadism that is induced from lack of testosterone or due to the medications used in the treatment or in combination with androgen receptor signaling inhibitors. This article critically reviews the associations between androgen deprivation therapy, androgen receptor signaling inhibitors, and cardiovascular complications such as prolonged QT interval, atrial fibrillation, heart failure, atherosclerosis, coronary heart disease, venous thromboembolism, and peripheral arterial occlusive disease. These unfavorable outcomes reinforce the need for regular cardiovascular screening of patients undergoing androgen deprivation for the management of prostate cancer.


Assuntos
Antagonistas de Androgênios , Doenças Cardiovasculares , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antagonistas de Receptores de Andrógenos/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Hipogonadismo/tratamento farmacológico , Hipogonadismo/fisiopatologia
13.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711614

RESUMO

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Assuntos
Cobre , Doxorrubicina , Grafite , Estruturas Metalorgânicas , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Linhagem Celular Tumoral , Cobre/química , Cobre/farmacologia , Grafite/química , Grafite/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Nus , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Front Immunol ; 15: 1395047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694500

RESUMO

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Assuntos
Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Humanos , Senescência Celular/efeitos dos fármacos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Animais
15.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732504

RESUMO

Prostate cancer, accounting for 375,304 deaths in 2020, is the second most prevalent cancer in men worldwide. While many treatments exist for prostate cancer, novel therapeutic agents with higher efficacy are needed to target aggressive and hormone-resistant forms of prostate cancer, while sparing healthy cells. Plant-derived chemotherapy drugs such as docetaxel and paclitaxel have been established to treat cancers including prostate cancer. Carnosic acid (CA), a phenolic diterpene found in the herb rosemary (Rosmarinus officinalis) has been shown to have anticancer properties but its effects in prostate cancer and its mechanisms of action have not been examined. CA dose-dependently inhibited PC-3 and LNCaP prostate cancer cell survival and proliferation (IC50: 64, 21 µM, respectively). Furthermore, CA decreased phosphorylation/activation of Akt, mTOR, and p70 S6K. A notable increase in phosphorylation/activation of AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) and its upstream regulator sestrin-2 was seen with CA treatment. Our data indicate that CA inhibits AKT-mTORC1-p70S6K and activates Sestrin-2-AMPK signaling leading to a decrease in survival and proliferation. The use of inhibitors and small RNA interference (siRNA) approaches should be employed, in future studies, to elucidate the mechanisms involved in carnosic acid's inhibitory effects of prostate cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Abietanos , Proliferação de Células , Sobrevivência Celular , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Abietanos/farmacologia , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células PC-3
16.
Prostate ; 84(9): 814-822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558458

RESUMO

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Assuntos
Antagonistas de Androgênios , Benzamidas , Transportadores de Ácidos Monocarboxílicos , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Simportadores , Masculino , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Linhagem Celular Tumoral , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Nitrilas/farmacologia , Simportadores/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Benzamidas/farmacologia
17.
J Pathol ; 263(2): 242-256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578195

RESUMO

There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Proteína p300 Associada a E1A , Receptores Androgênicos , Transdução de Sinais , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas que Contêm Bromodomínio , Proteína de Ligação a CREB
18.
Prostate ; 84(9): 877-887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605532

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS: Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS: SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated ß-galactosidase (SA-ß-Gal) staining. CONCLUSIONS: Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.


Assuntos
Apoptose , Senescência Celular , Histona Desmetilases com o Domínio Jumonji , Neoplasias de Próstata Resistentes à Castração , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Associadas a Fase S , Transdução de Sinais , Humanos , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/genética , Masculino , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Células PC-3 , Proteínas Nucleares , Proteínas Repressoras
19.
Ann Palliat Med ; 13(2): 428-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38584476

RESUMO

BACKGROUND: Many of the drugs used for the treatment and alleviation of symptoms in cancer patients are known to inhibit or induce cytochrome P450 (CYP). Therefore, it is important to pay attention to the drug interactions of opioid analgesics that are metabolized by CYPs, because for example when using oxycodone metabolized by CYP3A4, it is possible that the effect will be attenuated or enhanced by the concomitant use of drugs that induce or inhibit CYP3A4. Aprepitant, an antiemetic drug used in many patients receiving anticancer drugs, is known as a moderate competitive inhibitor of CYP3A4. We experienced a case of respiratory depression caused by opioids, which was suspected to be caused by a drug interaction with antiemetics especially aprepitant. CASE DESCRIPTION: The patient was a 72-year-old man. He had been treated with continuous oxycodone infusion for perianal pain associated with the rectal invasion of prostate cancer. No comorbidities other than renal dysfunction were observed. Oxycodone treatment was started at 48 mg/day, and was increased to 108 mg/day, and then the pain decreased. Once the pain was controlled, chemotherapy was planned. Antiemetics (dexamethasone, palonosetron, and aprepitant) were administered before anticancer drug administration. Approximately 3 hours after antiemetics administration and before the administration of the anticancer drugs, a ward nurse noticed that oversedation and respiratory depression had occurred. When the patient was called, he immediately woke up and was able to talk normally, so the anticancer drugs were administered as scheduled. About 2 hours after the nurse noticed oversedation, the attending physician reduced the dose of oxycodone infusion to 48 mg/day. After that, his drowsiness persisted, but his respiratory condition improved. Despite reducing the dose of oxycodone to less than half, the pain remained stable at numeric rating scale (NRS) 0-1, without the use of a rescue dose. The patient was discharged from the hospital 36 days after the administration of anticancer drugs, without any problems. CONCLUSIONS: The cause of respiratory depression in this case was thought to be a combination of factors, including drug interactions between oxycodone and antiemetics, and oxycodone accumulation due to renal dysfunction.


Assuntos
Antieméticos , Antineoplásicos , Nefropatias , Neoplasias da Próstata , Insuficiência Respiratória , Masculino , Humanos , Idoso , Antieméticos/uso terapêutico , Aprepitanto/uso terapêutico , Analgésicos Opioides/efeitos adversos , Oxicodona/efeitos adversos , Citocromo P-450 CYP3A/uso terapêutico , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Antineoplásicos/efeitos adversos , Interações Medicamentosas , Neoplasias da Próstata/tratamento farmacológico , Dor/tratamento farmacológico , Insuficiência Respiratória/induzido quimicamente , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico
20.
Can J Urol ; 31(2): 11820-11825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38642459

RESUMO

INTRODUCTION: Risk of cardiovascular disease is higher among men with prostate cancer than men without, and prostate cancer treatments (especially those that are hormonally based) are associated with increased cardiovascular risk. MATERIALS AND METHODS: An 11-member panel of urologic, medical, and radiation oncologists (along with a men's health specialist and an endocrinologist/preventive cardiologist) met to discuss current practices and challenges in the management of cardiovascular risk in prostate cancer patients who are taking androgen deprivation therapies (ADT) including LHRH analogues, alone and in combination with androgen-targeted therapies (ATTs). RESULTS: The panel developed an assessment algorithm to categorize patients by risk and deploy a risk-adapted management strategy, in collaboration with other healthcare providers (the patient's healthcare "village"), with the goal of preventing as well as reducing cardiovascular events. The panel also developed a patient questionnaire for cardiovascular risk as well as a checklist to ensure that all aspects of cardiovascular disease risk reduction are completed and monitored. CONCLUSIONS: Prostate cancer patients receiving ADT with or without ATT need to be more zealously assessed for prevention and aggressively managed to reduce cardiovascular events. This can and should include participation from the entire multidisciplinary healthcare team.


Assuntos
Doenças Cardiovasculares , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/efeitos adversos , Androgênios , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA