Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Methods Enzymol ; 667: 183-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525542

RESUMO

Pseudokinase domains are found throughout the kingdoms of life and serve myriad roles in cell signaling. These domains, which resemble protein kinases but are catalytically-deficient, have been described principally as protein interaction domains. Broadly, pseudokinases have been reported to function as: allosteric regulators of conventional enzymes; scaffolds to nucleate assembly and/or localization of signaling complexes; molecular switches; or competitors of signaling complex assembly. From detailed structural and biochemical studies of individual pseudokinases, a picture of how they mediate protein interactions is beginning to emerge. Many such studies have relied on recombinant protein production in insect cells, where endogenous chaperones and modifying enzymes favor bona fide folding of pseudokinases. Here, we describe methods for co-expression of pseudokinases and their interactors in insect cells, as exemplified by the MLKL pseudokinase, which is the terminal effector in the necroptosis cell death pathway, and its upstream regulator kinase RIPK3. These methods are broadly applicable to co-expression of other pseudokinases with their interaction partners from bacmids using the baculovirus-insect cell expression system.


Assuntos
Baculoviridae , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Insetos , Necroptose , Fosforilação , Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Nat Commun ; 12(1): 6783, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811356

RESUMO

The ancestral origins of the lytic cell death mode, necroptosis, lie in host defense. However, the dysregulation of necroptosis in inflammatory diseases has led to widespread interest in targeting the pathway therapeutically. This mode of cell death is executed by the terminal effector, the MLKL pseudokinase, which is licensed to kill following phosphorylation by its upstream regulator, RIPK3 kinase. The precise molecular details underlying MLKL activation are still emerging and, intriguingly, appear to mechanistically-diverge between species. Here, we report the structure of the human RIPK3 kinase domain alone and in complex with the MLKL pseudokinase. These structures reveal how human RIPK3 structurally differs from its mouse counterpart, and how human RIPK3 maintains MLKL in an inactive conformation prior to induction of necroptosis. Residues within the RIPK3:MLKL C-lobe interface are crucial to complex assembly and necroptotic signaling in human cells, thereby rationalizing the strict species specificity governing RIPK3 activation of MLKL.


Assuntos
Morte Celular/fisiologia , Necroptose/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular/genética , Células HT29 , Humanos , Camundongos , Necroptose/genética , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Recombinantes , Transdução de Sinais
3.
Biomed Pharmacother ; 142: 112082, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449307

RESUMO

RIPK1 is a protein kinase that simultaneously regulates inflammation, apoptosis, and necroptosis. It is thought that RIPK1 has separate functions through its scaffold structure and kinase domains. Moreover, different post-translational modifications in RIPK1 play distinct or even opposing roles. Under different conditions, in different cells and species, and/or upon exposure to different stimuli, infections, and substrates, RIPK1 activation can lead to diverse results. Despite continuous research, many of the conclusions that have been drawn regarding the complex interactions of RIPK1 are controversial. This review is based on an examination and analysis of recent studies on the RIPK1 structure, post-translational modifications, and activation conditions, which can affect its functions. Finally, because of the diverse functions of RIPK1 and their relevance to the pathogenesis of many diseases, we briefly introduce the roles of RIPK1 in inflammatory and autoimmune diseases and the prospects of its use in future diagnostics and treatments.


Assuntos
Inflamação/patologia , Processamento de Proteína Pós-Traducional , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose/fisiologia , Doenças Autoimunes/fisiopatologia , Humanos , Necroptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/química
4.
Fish Shellfish Immunol ; 115: 142-149, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34147612

RESUMO

Both the activation and attenuation of MAVS/IFN signaling are critical for host defensing against viral infection and thus lead to an elaborate regulation of MAVS-mediated signaling. However, the regulatory mechanisms concerning MAVS/IFN signaling in teleost fish are not well understood. RIPK3 has been identified as a key regulator of necroptosis, apoptosis, and inflammatory signaling in human and mammals. Here we report the identification of the RIPK3 homologue from black carp Mylopharyngodon piceus (bcRIPK3) and describe its role in regulating MAVS/IFN signaling. qPCR results demonstrated that bcRIPK3 was transcriptionally activated in response to poly (I:C) or LPS stimulation. Immunoblot assay and immunofluorescent staining assay showed that bcRIPK3 was a cytosolic protein with molecular weights of 47 kDa. Like its mammalian counterparts, bcRIPK3 exhibited a conserved function in inducing cell death. The reporter assay and plaque assay showed that overexpression of bcRIPK3 restricted bcMAVS-activated transcription of the interferon promoters of black carp and zebrafish, and suppressed bcMAVS-mediated antiviral activity. Notably, EPC cells co-expressing bcRIPK3, bcRIPK1 and bcMAVS presented much attenuated antiviral activity than the cells co-expressing bcRIPK3 and bcMAVS; and the subsequent co-IP assay identified the interaction between bcRIPK3 and bcRIPK1. Our findings collectively elucidate for the first time in teleost that black carp RIPK3 interacts with RIPK1 to inhibit MAVS-mediated antiviral signaling.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica/veterinária , Filogenia , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária
5.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790016

RESUMO

Receptor-interacting protein kinases 3 (RIPK3), a central node in necroptosis, polymerizes in response to the upstream signals and then activates its downstream mediator to induce cell death. The active polymeric form of RIPK3 has been indicated as the form of amyloid fibrils assembled via its RIP homotypic interaction motif (RHIM). In this study, we combine cryogenic electron microscopy and solid-state NMR to determine the amyloid fibril structure of RIPK3 RHIM-containing C-terminal domain (CTD). The structure reveals a single protofilament composed of the RHIM domain. RHIM forms three ß-strands (referred to as strands 1 through 3) folding into an S shape, a distinct fold from that in complex with RIPK1. The consensus tetrapeptide VQVG of RHIM forms strand 2, which zips up strands 1 and 3 via heterozipper-like interfaces. Notably, the RIPK3-CTD fibril, as a physiological fibril, exhibits distinctive assembly compared with pathological fibrils. It has an exceptionally small fibril core and twists in both handedness with the smallest pitch known so far. These traits may contribute to a favorable spatial arrangement of RIPK3 kinase domain for efficient phosphorylation.


Assuntos
Amiloide/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Motivos de Aminoácidos , Amiloide/metabolismo , Microscopia Crioeletrônica , Humanos , Necroptose , Fosforilação , Domínios Proteicos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
Nat Commun ; 12(1): 2211, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850121

RESUMO

Phosphorylation of the MLKL pseudokinase by the RIPK3 kinase leads to MLKL oligomerization, translocation to, and permeabilization of, the plasma membrane to induce necroptotic cell death. The precise choreography of MLKL activation remains incompletely understood. Here, we report Monobodies, synthetic binding proteins, that bind the pseudokinase domain of MLKL within human cells and their crystal structures in complex with the human MLKL pseudokinase domain. While Monobody-32 constitutively binds the MLKL hinge region, Monobody-27 binds MLKL via an epitope that overlaps the RIPK3 binding site and is only exposed after phosphorylated MLKL disengages from RIPK3 following necroptotic stimulation. The crystal structures identified two distinct conformations of the MLKL pseudokinase domain, supporting the idea that a conformational transition accompanies MLKL disengagement from RIPK3. These studies provide further evidence that MLKL undergoes a large conformational change upon activation, and identify MLKL disengagement from RIPK3 as a key regulatory step in the necroptosis pathway.


Assuntos
Morte Celular/fisiologia , Necroptose/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Sítios de Ligação , Membrana Celular , Cristalografia por Raios X , Células HT29 , Humanos , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Recombinantes , Alinhamento de Sequência , Células U937
7.
Nat Commun ; 12(1): 1627, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712586

RESUMO

RIPK3 amyloid complex plays crucial roles during TNF-induced necroptosis and in response to immune defense in both human and mouse. Here, we have structurally characterized mouse RIPK3 homogeneous self-assembly using solid-state NMR, revealing a well-ordered N-shaped amyloid core structure featured with 3 parallel in-register ß-sheets. This structure differs from previously published human RIPK1/RIPK3 hetero-amyloid complex structure, which adopted a serpentine fold. Functional studies indicate both RIPK1-RIPK3 binding and RIPK3 amyloid formation are essential but not sufficient for TNF-induced necroptosis. The structural integrity of RIPK3 fibril with three ß-strands is necessary for signaling. Molecular dynamics simulations with a mouse RIPK1/RIPK3 model indicate that the hetero-amyloid is less stable when adopting the RIPK3 fibril conformation, suggesting a structural transformation of RIPK3 from RIPK1-RIPK3 binding to RIPK3 amyloid formation. This structural transformation would provide the missing link connecting RIPK1-RIPK3 binding to RIPK3 homo-oligomer formation in the signal transduction.


Assuntos
Amiloide/metabolismo , Amiloide/ultraestrutura , Necroptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Benzotiazóis , Sobrevivência Celular , Drosophila , Herpesviridae , Humanos , Camundongos , Simulação de Dinâmica Molecular , Necroptose/genética , Conformação Proteica , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução de Sinais
8.
Nat Commun ; 12(1): 819, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547302

RESUMO

Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/química , Caspase 8/química , Proteína de Domínio de Morte Associada a Fas/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Domínio Catalítico , Clonagem Molecular , Microscopia Crioeletrônica , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/química , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Morte Celular Regulada/genética , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Nature ; 587(7832): 133-138, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32968279

RESUMO

Cell death in human diseases is often a consequence of disrupted cellular homeostasis. If cell death is prevented without restoring cellular homeostasis, it may lead to a persistent dysfunctional and pathological state. Although mechanisms of cell death have been thoroughly investigated1-3, it remains unclear how homeostasis can be restored after inhibition of cell death. Here we identify TRADD4-6, an adaptor protein, as a direct regulator of both cellular homeostasis and apoptosis. TRADD modulates cellular homeostasis by inhibiting K63-linked ubiquitination of beclin 1 mediated by TRAF2, cIAP1 and cIAP2, thereby reducing autophagy. TRADD deficiency inhibits RIPK1-dependent extrinsic apoptosis and proteasomal stress-induced intrinsic apoptosis. We also show that the small molecules ICCB-19 and Apt-1 bind to a pocket on the N-terminal TRAF2-binding domain of TRADD (TRADD-N), which interacts with the C-terminal domain (TRADD-C) and TRAF2 to modulate the ubiquitination of RIPK1 and beclin 1. Inhibition of TRADD by ICCB-19 or Apt-1 blocks apoptosis and restores cellular homeostasis by activating autophagy in cells with accumulated mutant tau, α-synuclein, or huntingtin. Treatment with Apt-1 restored proteostasis and inhibited cell death in a mouse model of proteinopathy induced by mutant tau(P301S). We conclude that pharmacological targeting of TRADD may represent a promising strategy for inhibiting cell death and restoring homeostasis to treat human diseases.


Assuntos
Apoptose/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Receptor de TNF/antagonistas & inibidores , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/metabolismo , Bortezomib/antagonistas & inibidores , Bortezomib/farmacologia , Linhagem Celular , Humanos , Proteína Huntingtina/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Masculino , Camundongos , Modelos Moleculares , Emaranhados Neurofibrilares/metabolismo , Proteoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/química , Proteína de Domínio de Morte Associada a Receptor de TNF/deficiência , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitinação , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
10.
Eur J Med Chem ; 201: 112337, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659605

RESUMO

With the aim to develop new chemical tools based on simplified natural metabolites to help deciphering the molecular mechanism of necroptosis, simplified benzazole fragments including 2-aminobenzimidazole and the 2-aminobenzothiazole analogs were prepared during the synthesis of the marine benzosceptrin B. Conpounds inhibiting the RIPK1 protein kinase were discovered. A library of 54 synthetic analogs were prepared and evaluated through a phenotypic screen using the inhibition of the necrotic cell death induced by TNF-α in human Jurkat T cells deficient for the FADD protein. This article reports the design, synthesis and biological evaluation of a series of 2-aminobenzazoles on the necroptotic cell death through the inhibition of RIPK1 protein kinase. The 2-aminobenzimidazole and 2-aminobenzothiazole platforms presented herein can serve as novel chemical tools to study the molecular regulation of necroptosis and further develop lead drug candidates for chronic pathologies involving necroptosis.


Assuntos
Imidazóis/farmacologia , Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Sítios de Ligação , Desenho de Fármacos , Proteína de Domínio de Morte Associada a Fas/deficiência , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Células Jurkat , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirróis/síntese química , Pirróis/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Relação Estrutura-Atividade
11.
Nat Commun ; 11(1): 3060, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561735

RESUMO

The MLKL pseudokinase is the terminal effector in the necroptosis cell death pathway. Phosphorylation by its upstream regulator, RIPK3, triggers MLKL's conversion from a dormant cytoplasmic protein into oligomers that translocate to, and permeabilize, the plasma membrane to kill cells. The precise mechanisms underlying these processes are incompletely understood, and were proposed to differ between mouse and human cells. Here, we examine the divergence of activation mechanisms among nine vertebrate MLKL orthologues, revealing remarkable specificity of mouse and human RIPK3 for MLKL orthologues. Pig MLKL can restore necroptotic signaling in human cells; while horse and pig, but not rat, MLKL can reconstitute the mouse pathway. This selectivity can be rationalized from the distinct conformations observed in the crystal structures of horse and rat MLKL pseudokinase domains. These studies identify important differences in necroptotic signaling between species, and suggest that, more broadly, divergent regulatory mechanisms may exist among orthologous pseudoenzymes.


Assuntos
Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Animais , Galinhas , Cristalografia por Raios X , Citoplasma/enzimologia , Células HEK293 , Cavalos , Humanos , Camundongos , Necroptose , Necrose/metabolismo , Fosforilação , Conformação Proteica , Ratos , Transdução de Sinais , Smegmamorpha , Suínos , Células U937 , Xenopus
12.
FEBS Lett ; 594(14): 2294-2302, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412649

RESUMO

Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) is a central protein in necroptosis with great potential as a target for treating necroptosis-associated diseases, such as Crohn's disease. However, blockade of RIPK3 kinase activity leads to unexpected RIPK3-initiated apoptosis. Herein, we found that PP2, a known SRC inhibitor, inhibits TNF-α-induced necroptosis without initiating apoptosis. Further investigation showed that PP2 acts as an inhibitor of not only SRC but also RIPK3. PP2 does not disturb the integrity of the RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) necroptosome or the autophosphorylation of RIPK3 at T231/S232 but disrupts RIPK3 oligomerization, thereby impairing the phosphorylation and oligomerization of MLKL. These results demonstrate the essential role of RIPK3 oligomerization in necroptosis and suggest a potential RIPK3 oligomerization-targeting strategy for therapeutic development.


Assuntos
Apoptose , Necroptose/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Quinases da Família src/antagonistas & inibidores
13.
Trends Cell Biol ; 30(3): 189-200, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31959328

RESUMO

The serine/threonine kinase RIPK1 has emerged as a crucial component of the inflammatory response activated downstream of several immune receptors, where it paradoxically functions as a scaffold to protect the cell from death or instead as an active kinase to promote the killing of the cell. While RIPK1 kinase-dependent cell death has revealed its physiological importance in the context of microbial infection, aberrant activation of RIPK1 is also demonstrated to promote cell death-driven inflammatory pathologies, highlighting the importance of fundamentally understanding proper RIPK1 regulation. Recent advances in the field demonstrated the crucial role of phosphorylation in the fine-tuning of RIPK1 activation and, additionally, question the exact mechanism by which RIPK1 enzymatic activity transmits the death signal.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular , Humanos , Modelos Biológicos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Ubiquitinação
14.
Nat Microbiol ; 5(2): 331-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844296

RESUMO

Viruses manipulate cellular signalling by inducing the degradation of crucial signal transducers, usually via the ubiquitin-proteasome pathway. Here, we show that the murine cytomegalovirus (Murid herpesvirus 1) M45 protein induces the degradation of two cellular signalling proteins, the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) essential modulator (NEMO) and the receptor-interacting protein kinase 1 (RIPK1), via a different mechanism: it induces their sequestration as insoluble protein aggregates and subsequently facilitates their degradation by autophagy. Aggregation of target proteins requires a distinct sequence motif in M45, which we termed 'induced protein aggregation motif'. In a second step, M45 recruits the retromer component vacuolar protein sorting 26B (VPS26B) and the microtubule-associated protein light chain 3 (LC3)-interacting adaptor protein TBC1D5 to facilitate degradation of aggregates by selective autophagy. The induced protein aggregation motif is conserved in M45-homologous proteins of several human herpesviruses, including herpes simplex virus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, but is only partially conserved in the human cytomegalovirus UL45 protein. We further show that the HSV-1 ICP6 protein induces RIPK1 aggregation and degradation in a similar fashion to M45. These data suggest that induced protein aggregation combined with selective autophagy of aggregates (aggrephagy) represents a conserved viral immune-evasion mechanism.


Assuntos
Herpesviridae/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Células Cultivadas , Células HEK293 , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Muromegalovirus/imunologia , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidade , Agregados Proteicos/imunologia , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/imunologia , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
15.
Int J Mol Med ; 44(3): 771-786, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31198981

RESUMO

Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor­interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3­dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3­mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3­mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.


Assuntos
Suscetibilidade a Doenças , Herança Multifatorial , Necroptose/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Biomarcadores , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Necroptose/efeitos dos fármacos , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Nat Commun ; 10(1): 1729, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988283

RESUMO

RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.


Assuntos
Apoptose , Modelos Imunológicos , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Caspase 8/genética , Caspase 8/metabolismo , Caspase 8/fisiologia , Linhagem Celular , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Imunidade/fisiologia , Camundongos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina/química , Serina/metabolismo , Yersinia , Yersiniose/imunologia
17.
Trends Biochem Sci ; 44(1): 53-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509860

RESUMO

The recent implication of the cell death pathway, necroptosis, in innate immunity and a range of human pathologies has led to intense interest in the underlying molecular mechanism. Unlike the better-understood apoptosis pathway, necroptosis is a caspase-independent pathway that leads to cell lysis and release of immunogens downstream of death receptor and Toll-like receptor (TLR) ligation. Here we review the role of recent structural studies of the core machinery of the pathway, the protein kinases receptor-interacting protein kinase (RIPK)1 and RIPK3, and the terminal effector, the pseudokinase mixed lineage kinase domain-like protein (MLKL), in shaping our mechanistic understanding of necroptotic signaling. Structural studies have played a key role in establishing models that describe MLKL's transition from a dormant monomer to a killer oligomer and revealing important interspecies differences.


Assuntos
Morte Celular , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Humanos , Conformação Proteica , Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química
18.
J Med Chem ; 61(24): 11398-11414, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30480444

RESUMO

We herein report the structural optimization and structure-activity relationship studies of 5-(2,3-dihydro-1 H-indol-5-yl)-7 H-pyrrolo[2,3- d]pyrimidin-4-amine derivatives as a new class of receptor-interacting protein kinase 1 (RIPK1) inhibitors. Among all obtained RIPK1 inhibitors, 1-(5-{4-amino-7-ethyl-7 H-pyrrolo[2,3- d]pyrimidin-5-yl}-2,3-dihydro-1 H-indol-1-yl)-2-[3-(trifluoromethoxy)phenyl]ethan-1-one (22b) is the most active one. This compound potently inhibited RIPK1 with a binding affinity ( KD) of 0.004 µM and an enzymatic IC50 value of 0.011 µM and also showed good kinase selectivity. It could efficiently protect cells from necroptosis and attenuate the necrotic cell death of vascular endothelial cells induced by tumor cells both in vitro and in vivo. Importantly, compound 22b exhibited excellent antimetastasis activity in the experimental B16 melanoma lung metastasis model. It also displayed favorable pharmacokinetic properties. Collectively, 22b could be a promising agent for preventing tumor metastasis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/secundário , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/química , Relação Dose-Resposta a Droga , Células HT29 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Melanoma/patologia , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Physiol Biochem ; 51(1): 46-62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30439713

RESUMO

BACKGROUND/AIMS: This study was developed to investigate a potential therapeutic method for myocardial ischemia/reperfusion injury involving the promotion of miR-24-3p expression. METHODS: Microarray analysis was used to screen differentially expressed genes in a myocardial ischemia/reperfusion (I/R) injury mouse model. Gene set enrichment analysis was utilized to determine vital signaling pathways. Targeting verification was conducted with a luciferase reporter assay. Myocardial I/R injury was developed in mice, and the expression levels of RIPK1 and miR-24-3p were investigated by qRT-PCR and Western blot. Hemodynamic parameters and the activity of serum myocardial enzymes were measured to evaluate cardiac function. Infarct area was observed through HE and TTC staining. Myocardial cell apoptosis was examined by TUNEL staining and caspase-3 activity analysis. RESULTS: RIPK1 was an upregulated mRNA found by microarray analysis and a verified target of the downregulated miRNA miR-24-3p. The upregulation of RIPK1 (1.8-fold) and the downregulation of miR-24-3p (0.3-fold) were confirmed in I/R mice. RIPK1 led to impaired cardiac function indexes, increased infarct area and cell apoptosis, while miR-24-3p could reverse the injury by regulating RIPK1. The TNF signaling pathway was proven to be involved in myocardial I/R injury through the detection of the dysregulation of related proteins. CONCLUSION: In conclusion, RIPK1 was upregulated and miR-24-3p was downregulated in a myocardial I/R injury mouse model. RIPK1 could aggravate myocardial I/R injury via the TNF signaling pathway, while miR-24-3p could suppress RIPK1 and therefore exert cardioprotective effects in myocardial I/R injury.


Assuntos
MicroRNAs/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Análise por Conglomerados , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo , Função Ventricular Esquerda/fisiologia
20.
Immunity ; 49(5): 873-885.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30366765

RESUMO

Receptor interacting protein 2 (RIP2) plays a role in sensing intracellular pathogens, but its function in T cells is unclear. We show that RIP2 deficiency in CD4+ T cells resulted in chronic and severe interleukin-17A-mediated inflammation during Chlamydia pneumoniae lung infection, increased T helper 17 (Th17) cell formation in lungs of infected mice, accelerated atherosclerosis, and more severe experimental autoimmune encephalomyelitis. While RIP2 deficiency resulted in reduced conventional Th17 cell differentiation, it led to significantly enhanced differentiation of pathogenic (p)Th17 cells, which was dependent on RORα transcription factor and interleukin-1 but independent of nucleotide oligomerization domain (NOD) 1 and 2. Overexpression of RIP2 resulted in suppression of pTh17 cell differentiation, an effect mediated by its CARD domain, and phenocopied by a cell-permeable RIP2 CARD peptide. Our data suggest that RIP2 has a T cell-intrinsic role in determining the balance between homeostatic and pathogenic Th17 cell responses.


Assuntos
Diferenciação Celular/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Células Th17/citologia , Células Th17/metabolismo , Animais , Aterosclerose , Biomarcadores , Domínio de Ativação e Recrutamento de Caspases , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/mortalidade , Expressão Gênica , Imunofenotipagem , Inflamação/genética , Inflamação/metabolismo , Interleucina-17/biossíntese , Interleucina-1beta , Camundongos , Camundongos Knockout , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA