Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 5: 5467, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25399868

RESUMO

Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3' overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in LMNA that cause an autosomal dominant premature ageing disorder--Hutchinson Gilford Progeria Syndrome (HGPS)-lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.


Assuntos
Cromossomos Humanos/fisiologia , Lamina Tipo A/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Senescência Celular/fisiologia , Fibroblastos/fisiologia , Humanos , Hibridização in Situ Fluorescente , Progéria/etiologia , Telômero/fisiologia
2.
J Biol ; 8(11): 97, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19951399

RESUMO

The complexity of the core promoter transcription machinery has emerged as an additional level of transcription regulation that is used during vertebrate development. Recent studies, including one published in BMC Biology, provide mechanistic insights into how the TATA binding protein (TBP) and its vertebrate-specific paralog TBP2 (TRF3) switch function during the transition from the oocyte to the embryo. See research article http://www.biomedcentral.com/1741-7007/7/45.


Assuntos
Células Germinativas/fisiologia , Proteínas Nucleares/fisiologia , Oócitos/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Células Germinativas/metabolismo , Humanos , Proteínas Nucleares/genética , Oócitos/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Fatores de Transcrição/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-19022758

RESUMO

Sequence-specific enhancer-binding transcription factors and chromatin-modifying proteins are well recognized for their potential contributions to cell-type-specific gene regulation. In contrast, the role of core promoter recognition factors, such as TFIID in modulating gene- and cell-type-specific programs of transcription has been less understood. In general, the so-called basal factors have largely been relegated to a supporting role as invariant components of the preinitiation complex. To dissect the potential contributions of TFIID to cell-type-specific transcription, we have studied the developmental process of skeletal myogenesis. Terminal differentiation during myogenesis involves an intricate reprogramming of transcription that is thought to be directed by cell-type-specific transcription regulatory factors. Here, we summarize our findings that the canonical TFIID complex must first be dismantled as a requisite step during the differentiation of myoblasts into myotubes and subsequently substituted by a novel core transcription complex composed of TAF3 and TRF3. Although this remarkable mechanism of completely switching core promoter recognition complexes to drive terminal differentiation has not been previously documented, it may eventually prove to be the rule rather than the exception as we learn more about cell-type-specific gene regulation.


Assuntos
Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Troca , Humanos , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Regiões Promotoras Genéticas , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/fisiologia
4.
J Hypertens ; 25(11): 2185-92, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17921808

RESUMO

Aging is a major risk factor for hypertension and associated cardiovascular disease. In most proliferative tissues, aging is characterized by shortening of the DNA component of telomeres, the specialized genetic segments that cap the end of eukaryotic chromosomes and protect them from end-to-end fusions. By inducing genomic instability, replicative senescence and apoptosis, telomere shortening is thought to contribute to organismal aging and to the development of age-related diseases. Here, we review animal and human studies that have investigated the possible links between telomere ablation and the pathogenesis of hypertension and related target organ damage. Although evidence is mounting that alterations in telomerase activity and telomere shortening may play a role in the pathogenesis of hypertension, additional studies are required to understand the molecular mechanisms by which telomere dysfunction and hypertension are functionally connected. As our knowledge on this emerging field grows, the challenge will be to ascertain whether all this information might translate into clinical applications.


Assuntos
Hipertensão/genética , Telômero , Envelhecimento/fisiologia , Ácido Aspártico Endopeptidases/genética , Pressão Sanguínea , Enzimas Conversoras de Endotelina , Humanos , Hipertensão/complicações , Hipertensão/etiologia , Leucócitos/metabolismo , Metaloendopeptidases/genética , Músculo Liso Vascular/patologia , Proteínas Nucleares/fisiologia , Estresse Oxidativo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Telomerase/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas
5.
Genes Dev ; 21(17): 2137-49, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17704303

RESUMO

Transcriptional mechanisms that govern cellular differentiation typically include sequence-specific DNA-binding proteins and chromatin-modifying activities. These regulatory factors are assumed necessary and sufficient to drive both divergent programs of proliferation and terminal differentiation. By contrast, potential contributions of the basal transcriptional apparatus to orchestrate cell-specific gene expression have been poorly explored. In order to probe alternative mechanisms that control differentiation, we have assessed the fate of the core promoter recognition complex, TFIID, during skeletal myogenesis. Here we report that differentiation of myoblast to myotubes involves the disruption of the canonical holo-TFIID and replacement by a novel TRF3/TAF3 (TBP-related factor 3/TATA-binding protein-associated factor 3) complex. This required switching of core promoter complexes provides organisms a simple yet effective means to selectively turn on one transcriptional program while silencing many others. Although this drastic but parsimonious transcriptional switch had previously escaped our attention, it may represent a more general mechanism for regulating cell type-specific terminal differentiation.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Proteínas Nucleares/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Fator de Transcrição TFIID/fisiologia , Transcrição Gênica , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Genéticos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/embriologia , Miofibrilas/metabolismo , Interferência de RNA , Fatores Associados à Proteína de Ligação a TATA
6.
Proc Natl Acad Sci U S A ; 104(32): 13068-73, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17670947

RESUMO

TRF2 (telomeric repeat binding factor 2) is an essential component of the telomeric cap, where it forms and stabilizes the T-loop junctions. TRF2 forms the T-loops by stimulating strand invasion of the 3' overhang into duplex DNA. TRF2 also has been shown to localize to nontelomeric DNA double-strand breaks, but its functional role in DNA repair has not been examined. Here, we present evidence that TRF2 is involved in homologous recombination (HR) repair of nontelomeric double-strand breaks. Depletion of TRF2 strongly inhibited HR and delayed the formation of Rad51 foci after gamma-irradiation, whereas overexpression of TRF2 stimulated HR. Depletion of TRF2 had no effect on nonhomologous end-joining, and overexpression of TRF2 inhibited nonhomologous end-joining. We propose, based on our results and on the ability of TRF2 to mediate strand invasion, that TRF2 plays an essential role in HR by facilitating the formation of early recombination intermediates.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Nucleares/fisiologia , Recombinação Genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Células Cultivadas , Humanos , Rad51 Recombinase/análise , Proteína 2 de Ligação a Repetições Teloméricas
7.
Reproduction ; 134(1): 51-62, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17641088

RESUMO

Gametogenesis, the process during which germ cells are generated is essential for reproduction. In mammals, maternal mRNA and proteins present in the oocyte are required to ensure the progression of development until the embryo activates its genome after fertilisation. It is well established that the oocyte synthesises these maternal factors during oocyte growth and then undergoes a quiescent transcriptional period that will be resumed only after fertilisation. However, the mechanisms that govern transcriptional regulation and subsequent silencing during oogenesis are not well understood. Here, we have examined the expression and localisation of the TATA-binding protein (TBP) and the related protein TBP2 (also called TRF3, TBP-related factor 3) during oogenesis and in early mouse embryos. We show that TBP is expressed in the oocytes at the beginning of folliculogenesis, but it is undetectable during further stages of oocyte development, and becomes abundant again only after fertilisation. In contrast to TBP, we found that TBP2 is highly expressed in growing oocytes during folliculogenesis, declines upon ovulation, and is almost undetectable after fertilisation by the two-cell stage. The mirroring localisation profile of TBP and TBP2 suggests different roles for the two proteins in establishing specialised programs of gene expression during oocyte development and in early mouse embryos. Analysis of mutant mouse ovaries in which oocyte-specific factors have been knocked-out suggests that TBP2 is a potential candidate for regulating transcriptional control of oogenesis. Moreover, our results obtained with oocytes lacking the oocyte-specific nuclear chaperone nucleoplasmin 2 suggest that TBP2 function may be related to non-condensed chromatin conformation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oogênese/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Proteína de Ligação a TATA-Box/fisiologia , Células 3T3 , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/farmacologia , Western Blotting , Desenvolvimento Embrionário/genética , Feminino , Imunofluorescência , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo , Folículo Ovariano/fisiologia , Transcrição Gênica/fisiologia , Transfecção/métodos
8.
Nat Struct Mol Biol ; 14(8): 754-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632522

RESUMO

The shelterin complex at mammalian telomeres contains the single-stranded DNA-binding protein Pot1, which regulates telomere length and protects chromosome ends. Pot1 binds Tpp1, the shelterin component that connects Pot1 to the duplex telomeric DNA-binding proteins Trf1 and Trf2. Control of telomere length requires that Pot1 binds Tpp1 as well as the single-stranded telomeric DNA, but it is not known whether the protective function of Pot1 depends on Tpp1. Alternatively, Pot1 might function similarly to the Pot1-like proteins of budding and fission yeast, which have no known Tpp1-like connection to the duplex telomeric DNA. Using mutant mouse cells with diminished Tpp1 levels, RNA interference directed to mouse Tpp1 and Pot1, and complementation of mouse Pot1 knockout cells with human and mouse Pot1 variants, we show here that Tpp1 is required for the protective function of mammalian Pot1 proteins.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Interferência de RNA , Complexo Shelterina , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/antagonistas & inibidores , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas
9.
Mol Cell ; 26(3): 323-34, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17499040

RESUMO

The mechanisms by which telomeres are distinguished from DNA double-strand breaks are poorly understood. Here we have defined the minimal requirements for the protection of telomeric DNA ends from nonhomologous end-joining (NHEJ). Neither long, single-stranded overhangs nor t loop formation is essential to prevent NHEJ-mediated ligation of telomeric ends in vitro. Instead, a tandem array of 12 telomeric repeats is sufficient to impede illegitimate repair in a highly directional manner at nearby DNA ends. The polarity of end protection is consistent with the orientation of naturally occurring telomeres and is well suited to minimize interference between chromosome capping and the repair of DNA double-strand breaks in subtelomeric sequences. Biochemical fractionation and reconstitution revealed that telomere protection is mediated by a RAP1/TRF2 complex, providing evidence for a direct role for human RAP1 in the protection of telomeric DNA from NHEJ.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Evolução Molecular Direcionada/métodos , Proteínas Nucleares/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Células Cultivadas , Instabilidade Cromossômica/fisiologia , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Células HeLa , Humanos , Modelos Biológicos , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas
10.
Mech Ageing Dev ; 128(4): 340-5, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395247

RESUMO

Repair of single strand breaks in telomeric DNA is less efficient than in other genomic regions. This leads to an increased vulnerability of telomeric DNA towards damage induced by reactive oxygen species (ROS) and to accelerated telomere shortening under oxidative stress. The causes for the diminished repair efficacy in telomeres are unknown. We show here that overexpression of the telomere-binding protein TRF2 further reduces telomeric, but not genomic, single strand break repair. This suggests the possibility of strand break repair in telomeres being sterically hindered by the three-dimensional structure of the telomere DNA-protein complex and explains the effect of TRF2 on telomere shortening rates in telomerase-negative cells.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Fibroblastos/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/biossíntese , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Telômero/genética , Linhagem Celular , Humanos , Proteínas Nucleares/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas
11.
Proc Natl Acad Sci U S A ; 103(32): 11874-9, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16880378

RESUMO

Mammalian telomeric proteins function through dynamic interactions with each other and telomere DNA. We previously reported the formation of a high-molecular-mass telomeric complex (the mammalian telosome) that contains the six core proteins TRF1, TRF2, RAP1, TIN2, POT1, and TPP1 (formerly named PTOP/PIP1/TINT1) and mediates telomere end-capping and length control. In this report, we sought to elucidate the mechanism of six-protein complex (or shelterin) formation and the function of this complex. Through reconstitution experiments, we demonstrate here that TIN2 and TPP1 are key components in mediating the six-protein complex assembly. We demonstrate that not only TIN2 but also TPP1 are required to bridge the TRF1 and TRF2 subcomplexes. Specifically, TPP1 helps to stabilize the TRF1-TIN2-TRF2 interaction and promote six-protein complex formation. Consistent with this model, overexpression of TPP1 enhanced TIN2-TRF2 association. Conversely, knocking down TPP1 reduced the ability of endogenous TRF1 to associate with the TRF2 complex. Our results suggest that coordinated interactions among TPP1, TIN2, TRF1, and TRF2 may ensure robust assembly of the telosome, telomere targeting of its subunits, and, ultimately, regulated telomere maintenance.


Assuntos
Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Células HeLa , Humanos , Insetos , Modelos Biológicos , Proteínas Nucleares/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Complexo Shelterina , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Telômero/química , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/química , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas
13.
PLoS Biol ; 2(8): E240, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15314656

RESUMO

The telomeric protein TRF2 is required to prevent mammalian telomeres from activating DNA damage checkpoints. Here we show that overexpression of TRF2 affects the response of the ATM kinase to DNA damage. Overexpression of TRF2 abrogated the cell cycle arrest after ionizing radiation and diminished several other readouts of the DNA damage response, including phosphorylation of Nbs1, induction of p53, and upregulation of p53 targets. TRF2 inhibited autophosphorylation of ATM on S1981, an early step in the activation of this kinase. A region of ATM containing S1981 was found to directly interact with TRF2 in vitro, and ATM immunoprecipitates contained TRF2. We propose that TRF2 has the ability to inhibit ATM activation at telomeres. Because TRF2 is abundant at chromosome ends but not elsewhere in the nucleus, this mechanism of checkpoint control could specifically block a DNA damage response at telomeres without affecting the surveillance of chromosome internal damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Telômero/ultraestrutura , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Linhagem Celular Tumoral , Cromossomos/ultraestrutura , Dimerização , Ativação Enzimática , Glutationa Transferase/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Fosforilação , Ligação Proteica , Radiação Ionizante , Proteína 2 de Ligação a Repetições Teloméricas , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
14.
J Biol Chem ; 279(15): 15339-47, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14726532

RESUMO

The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Proteínas Cromossômicas não Histona/fisiologia , Fator de Transcrição TFIID/química , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde , Chaperonas de Histonas , Humanos , Immunoblotting , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Filogenia , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 100(25): 14887-91, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14634207

RESUMO

TATA-box-binding protein (TBP) is a highly conserved RNA polymerase II general transcription factor that binds to the core promoter and initiates assembly of the preinitiation complex. Two proteins with high homology to TBP have been found: TBP-related factor 1 (TRF1), described only in Drosophila melanogaster, and TRF2, which is broadly distributed in metazoans. Here, we report the identification and characterization of an additional TBP-related factor, TRF3. TRF3 is virtually identical to TBP in the C-terminal core domain, including all residues involved in DNA binding and interaction with other general transcription factors. Like other TBP family members, the N-terminal region of TRF3 is divergent. The TRF3 gene is present and expressed in vertebrates, from fish through humans, but absent from the genomes of the urochordate Ciona intestinalis and the lower eukaryotes D. melanogaster and Caenorhabditis elegans. TRF3 is a nuclear protein that is present in all human and mouse tissues and cell lines examined. Despite the highly homologous TBP-like C-terminal core domain, gel filtration analysis indicates that the native molecular weight of TRF3 is substantially less than that of TFIID. Interestingly, after mitosis, reimport of TRF3 into the nucleus occurs subsequent to TBP and other basal transcription factors. In summary, TRF3 is a highly conserved vertebrate-specific TRF whose phylogenetic conservation, expression pattern, and other properties are distinct from those of TBP and all other TRFs.


Assuntos
Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Cromatografia em Gel , Ciona intestinalis/metabolismo , Biologia Computacional , DNA/química , Drosophila melanogaster/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Camundongos , Mitose , Dados de Sequência Molecular , Proteínas Nucleares , Filogenia , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/química , Distribuição Tecidual , Fator de Transcrição TFIID/química , Fatores de Transcrição/química , Transcrição Gênica
16.
Mol Cell Biol ; 23(12): 4107-20, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773555

RESUMO

The TATA-binding protein (TBP) is a universal transcription factor required for all of the eukaryotic RNA polymerases. In addition to TBP, metazoans commonly express a distantly TBP-related protein referred to as TBP-like protein (TLP/TRF2/TLF). Although the function of TLP in transcriptional regulation is not clear, it is known that TLP is required for embryogenesis and spermiogenesis. In the present study, we investigated the cellular functions of TLP by using TLP knockout chicken DT40 cells. TLP was found to be dispensable for cell growth. Unexpectedly, TLP-null cells exhibited a 20% elevated cell cycle progression rate that was attributed to shortening of the G(2) phase. This indicates that TLP functions as a negative regulator of cell growth. Moreover, we found that TLP mainly existed in the cytoplasm and was translocated to the nucleus restrictedly at the G(2) phase. Ectopic expression of nuclear localization signal-carrying TLP resulted in an increase (1.5-fold) in the proportion of cells remaining in the G(2)/M phase and apoptotic state. Notably, TLP-null cells showed an insufficient G(2) checkpoint when the cells were exposed to stresses such as UV light and methyl methanesulfonate, and the population of apoptotic cells after stresses decreased to 40%. These phenomena in G(2) checkpoint regulation are suggested to be p53 independent because p53 does not function in DT40 cells. Moreover, TLP was transiently translocated to the nucleus shortly (15 min) after stress treatment. The expression of several stress response and cell cycle regulatory genes drifted in a both TLP- and stress-dependent manner. Nucleus-translocating TLP is therefore thought to work by checking cell integrity through its transcription regulatory ability. TLP is considered to be a signal-transducing transcription factor in cell cycle regulation and stress response.


Assuntos
Ciclo Celular , Fase G2 , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Northern Blotting , Divisão Celular , Linhagem Celular , Núcleo Celular/metabolismo , Separação Celular , Galinhas , Citoplasma/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Sinais de Localização Nuclear , Plasmídeos/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA