Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Eur J Med Chem ; 226: 113797, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520957

RESUMO

A short and divergent route towards new derivatives of 2-(trifluoromethyl)pyridines as potent inverse agonists of the bacterial target PqsR against Pseudomonas aeruginosa (PA) infections is described. This Gram-negative pathogen causes severe nosocomial infections and common antibiotic treatment options are rendered ineffective due to resistance issues. Based on an earlier identified optimized hit, we conducted derivatization and rigidification attempts employing two central building blocks. The western part of the molecule is built up via a 2-(trifluoromethyl)pyridine head group equipped with a terminal alkyne. The eastern section is then introduced through aryliode motifs exploiting Sonogashira as well as Suzuki-type chemistry. Subsequent modification provided quick access to an array of compounds, allowed for deep SAR insights, and enabled to optimize the hit scaffold into a lead structure of nanomolar potency combined with favorable in vitro ADME/T features.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/agonistas , Pseudomonas aeruginosa/efeitos dos fármacos , Piridinas/farmacologia , Transativadores/agonistas , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
2.
Protein Sci ; 29(8): 1816-1828, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557944

RESUMO

Addressing molecular recognition in the context of evolution requires pursuing new molecular targets to enable the development of agonists or antagonists with new mechanisms of action. Disruption of transcriptional regulation through targeting transcription factors that regulate the expression of key enzymes in bacterial metabolism may provide a promising method for controlling the bacterial metabolic pathways. To this end, we have selectively targeted a bacterial transcription regulator through the design and synthesis of a series of γ-aminobutyric acid (GABA) derivatives, including (S)-4-amino-5-phenoxypentanoate (4-phenoxymethyl-GABA), which are based on docking insights gained from a previously-solved crystal structure of GabR from Bacillus subtilis. This target was selected because GabR strictly controls GABA metabolism by regulating the transcription of the gabT/D operon. These GabR transcription modulators are selective for the bacterial transcription factor GabR and are unable to bind to structural homologs of GabR due to distinct steric constraints. We have obtained a crystal structure of 4-phenoxymethyl-GABA bound as an external aldimine with PLP in the effector binding site of GabR, which suggests that this compound is capable of binding and reacting in the same manner as the native effector ligand. Inhibition assays demonstrate high selectivity of 4-phenoxymethyl-GABA for bacterial GabR versus several selected eukaryotic enzymes. Single-molecule fluorescence resonance energy transfer (smFRET) experiments reveal a ligand-induced DNA distortion that is very similar to that of the native effector GABA, suggesting that the compound functions as a potential selective agonist of GabR.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Fatores de Transcrição/agonistas , Fatores de Transcrição/química , Valeratos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Óperon , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
J Biol Chem ; 295(10): 3347-3361, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974163

RESUMO

Bacteria account for 1000-fold more biomass than humans. They vary widely in shape and size. The morphological diversity of bacteria is due largely to the different peptidoglycan-based cell wall structures that encase bacterial cells. Although the basic structure of peptidoglycan is highly conserved, consisting of long glycan strands that are cross-linked by short peptide chains, the mature cell wall is chemically diverse. Peptidoglycan hydrolases and cell wall-tailoring enzymes that regulate glycan strand length, the degree of cross-linking, and the addition of other modifications to peptidoglycan are central in determining the final architecture of the bacterial cell wall. Historically, it has been difficult to biochemically characterize these enzymes that act on peptidoglycan because suitable peptidoglycan substrates were inaccessible. In this review, we discuss fundamental aspects of bacterial cell wall synthesis, describe the regulation and diverse biochemical and functional activities of peptidoglycan hydrolases, and highlight recently developed methods to make and label defined peptidoglycan substrates. We also review how access to these substrates has now enabled biochemical studies that deepen our understanding of how bacterial cell wall enzymes cooperate to build a mature cell wall. Such improved understanding is critical to the development of new antibiotics that disrupt cell wall biogenesis, a process essential to the survival of bacteria.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , N-Acetil-Muramil-L-Alanina Amidase/antagonistas & inibidores , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/química , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Staphylococcus aureus/enzimologia , Especificidade por Substrato
4.
ACS Infect Dis ; 5(11): 1915-1925, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31588734

RESUMO

Acyldepsipeptides are a unique class of antibiotics that act via allosterically dysregulated activation of the bacterial caseinolytic protease (ClpP). The ability of ClpP activators to kill nongrowing bacteria represents a new opportunity to combat deep-seated biofilm infections. However, the acyldepsipeptide scaffold is subject to rapid metabolism. Herein, we explore alteration of the potentially metabolically reactive α,ß unsaturated acyl chain. Through targeted synthesis, a new class of phenyl urea substituted depsipeptide ClpP activators with improved metabolic stability is described. The ureadepsipeptides are potent activators of Staphylococcus aureus ClpP and show activity against Gram-positive bacteria, including S. aureus biofilms. These studies demonstrate that a phenyl urea motif can successfully mimic the double bond, maintaining potency equivalent to acyldepsipeptides but with decreased metabolic liability. Although removal of the double bond from acyldepsipeptides generally has a significant negative impact on potency, structural studies revealed that the phenyl ureadepsipeptides can retain potency through the formation of a third hydrogen bond between the urea and the key Tyr63 residue in the ClpP activation domain. Ureadepsipeptides represent a new class of ClpP activators with improved drug-like properties, potent antibacterial activity, and the tractability to be further optimized.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Depsipeptídeos/química , Endopeptidase Clp/metabolismo , Ativadores de Enzimas/química , Staphylococcus aureus/enzimologia , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Endopeptidase Clp/química , Endopeptidase Clp/genética , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Domínios Proteicos , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Ureia/química , Ureia/metabolismo
5.
Sci Rep ; 9(1): 13449, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530834

RESUMO

The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Complexo Burkholderia cepacia/efeitos dos fármacos , Complexo Burkholderia cepacia/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Animais , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/microbiologia , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/genética , Genes Reporter , Ligantes , Percepção de Quorum/fisiologia , beta-Galactosidase/genética
6.
Nature ; 572(7769): 382-386, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31330532

RESUMO

The family of bacterial SidE enzymes catalyses phosphoribosyl-linked serine ubiquitination and promotes infectivity of Legionella pneumophila, a pathogenic bacteria that causes Legionnaires' disease1-3. SidE enzymes share the genetic locus with the Legionella effector SidJ that spatiotemporally opposes the toxicity of these enzymes in yeast and mammalian cells, through a mechanism that is currently unknown4-6. Deletion of SidJ leads to a substantial defect in the growth of Legionella in both its natural hosts (amoebae) and in mouse macrophages4,5. Here we demonstrate that SidJ is a glutamylase that modifies the catalytic glutamate in the mono-ADP ribosyl transferase domain of the SdeA, thus blocking the ubiquitin ligase activity of SdeA. The glutamylation activity of SidJ requires interaction with the eukaryotic-specific co-factor calmodulin, and can be regulated by intracellular changes in Ca2+ concentrations. The cryo-electron microscopy structure of SidJ in complex with human apo-calmodulin revealed the architecture of this heterodimeric glutamylase. We show that, in cells infected with L. pneumophila, SidJ mediates the glutamylation of SidE enzymes on the surface of vacuoles that contain Legionella. We used quantitative proteomics to uncover multiple host proteins as putative targets of SidJ-mediated glutamylation. Our study reveals the mechanism by which SidE ligases are inhibited by a SidJ-calmodulin glutamylase, and opens avenues for exploring an understudied protein modification (glutamylation) in eukaryotes.


Assuntos
Proteínas de Bactérias/metabolismo , Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Legionella pneumophila/enzimologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina/metabolismo , Fatores de Virulência/metabolismo , ADP-Ribosilação , Apoproteínas/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Calmodulina/farmacologia , Catálise , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HEK293 , Humanos , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Virulência/agonistas , Fatores de Virulência/química
7.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067645

RESUMO

The caseinolytic protease proteolytic subunit (ClpP) is a serine protease playing an important role in proteostasis of eukaryotic organelles and prokaryotic cells. Alteration of ClpP function has been proved to affect the virulence and infectivity of a number of pathogens. Increased bacterial resistance to antibiotics has become a global problem and new classes of antibiotics with novel mechanisms of action are needed. In this regard, ClpP has emerged as an attractive and potentially viable option to tackle pathogen fitness without suffering cross-resistance to established antibiotic classes and, when not an essential target, without causing an evolutionary selection pressure. This opens a greater window of opportunity for the host immune system to clear the infection by itself or by co-administration with commonly prescribed antibiotics. A comprehensive overview of the function, regulation and structure of ClpP across the different organisms is given. Discussion about mechanism of action of this protease in bacterial pathogenesis and human diseases are outlined, focusing on the compounds developed in order to target the activation or inhibition of ClpP.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Depsipeptídeos/farmacologia , Endopeptidase Clp/metabolismo , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Depsipeptídeos/química , Desenho de Fármacos , Endopeptidase Clp/química
8.
J Gen Physiol ; 151(2): 186-199, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30587506

RESUMO

Batrachotoxin (BTX), an alkaloid from skin secretions of dendrobatid frogs, causes paralysis and death by facilitating activation and inhibiting deactivation of eukaryotic voltage-gated sodium (Nav) channels, which underlie action potentials in nerve, muscle, and heart. A full understanding of the mechanism by which BTX modifies eukaryotic Nav gating awaits determination of high-resolution structures of functional toxin-channel complexes. Here, we investigate the action of BTX on the homotetrameric prokaryotic Nav channels NaChBac and NavSp1. By combining mutational analysis and whole-cell patch clamp with molecular and kinetic modeling, we show that BTX hinders deactivation and facilitates activation in a use-dependent fashion. Our molecular model shows the horseshoe-shaped BTX molecule bound within the open pore, forming hydrophobic H-bonds and cation-π contacts with the pore-lining helices, leaving space for partially dehydrated sodium ions to permeate through the hydrophilic inner surface of the horseshoe. We infer that bulky BTX, bound at the level of the gating-hinge residues, prevents the S6 rearrangements that are necessary for closure of the activation gate. Our results reveal general similarities to, and differences from, BTX actions on eukaryotic Nav channels, whose major subunit is a single polypeptide formed by four concatenated, homologous, nonidentical domains that form a pseudosymmetric pore. Our determination of the mechanism by which BTX activates homotetrameric voltage-gated channels reveals further similarities between eukaryotic and prokaryotic Nav channels and emphasizes the tractability of bacterial Nav channels as models of voltage-dependent ion channel gating. The results contribute toward a deeper, atomic-level understanding of use-dependent natural and synthetic Nav channel agonists and antagonists, despite their overlapping binding motifs on the channel proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Batraquiotoxinas/farmacologia , Agonistas de Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Bacillus , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Linhagem Celular , Humanos , Ativação do Canal Iônico , Rhodobacteraceae , Canais de Sódio/química
9.
ACS Chem Biol ; 13(9): 2655-2662, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30114353

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that coordinates the production of many virulence phenotypes at high population density via quorum sensing (QS). The LuxR-type receptor RhlR plays an important role in the P. aeruginosa QS process, and there is considerable interest in the development of chemical approaches to modulate the activity of this protein. RhlR is activated by a simple, low molecular weight N-acyl l-homoserine lactone signal, N-butanoyll-homoserine lactone (BHL). Despite the emerging prominence of RhlR in QS pathways, there has been limited exploration of the chemical features of the BHL scaffold that are critical to its function. In the current study, we sought to systematically delineate the structure-activity relationships (SARs) driving BHL activity for the first time. A focused library of BHL analogues was designed, synthesized, and evaluated in cell-based reporter gene assays for RhlR agonism and antagonism. These investigations allowed us to define a series of SARs for BHL-type ligands and identify structural motifs critical for both activation and inhibition of the RhlR receptor. Notably, we identified agonists that have ∼10-fold higher potencies in RhlR relative to BHL, are highly selective for RhlR agonism over LasR, and are active in the P. aeruginosa background. These compounds and the SARs reported herein should pave a route toward new chemical strategies to study RhlR in P. aeruginosa.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Cell Chem Biol ; 25(9): 1128-1139.e3, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30033130

RESUMO

Chemical strategies to block quorum sensing (QS) could provide a route to attenuate virulence in bacterial pathogens. Considerable research has focused on this approach in Pseudomonas aeruginosa, which uses the LuxR-type receptor LasR to regulate much of its QS network. Non-native ligands that antagonize LasR have been developed, yet we have little understanding of the mode by which these compounds interact with LasR and alter its function, as the receptor is unstable in their presence. Herein, we report an approach to circumvent this challenge through the study of a series of synthetic LasR agonists with varying levels of potency. Structural investigations of these ligands with the LasR ligand-binding domain reveal that certain agonists can enforce a conformation that deviates from that observed for other, often more potent agonists. These results, when combined with cell-based and biophysical analyses, suggest a functional model for LasR that could guide future ligand design.


Assuntos
Proteínas de Bactérias/agonistas , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Transativadores/agonistas , Transativadores/metabolismo , Proteínas de Bactérias/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/fisiologia , Transativadores/química
11.
Bioorg Med Chem ; 26(19): 5336-5342, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29793752

RESUMO

Certain bacteria can coordinate group behaviors via a chemical communication system known as quorum sensing (QS). Gram-negative bacteria typically use N-acyl l-homoserine lactone (AHL) signals and their cognate intracellular LuxR-type receptors for QS. The opportunistic pathogen Pseudomonas aeruginosa has a relatively complex QS circuit in which two of its LuxR-type receptors, LasR and QscR, are activated by the same natural signal, N-(3-oxo)-dodecanoyl l-homoserine lactone. Intriguingly, once active, LasR activates virulence pathways in P. aeruginosa, while activated QscR can inactivate LasR and thus repress virulence. We have a limited understanding of the structural features of AHLs that engender either agonistic activity in both receptors or receptor-selective activity. Compounds with the latter activity profile could prove especially useful tools to tease out the roles of these two receptors in virulence regulation. A small collection of AHL analogs was assembled and screened in cell-based reporter assays for activity in both LasR and QscR. We identified several structural motifs that bias ligand activation towards each of the two receptors. These findings will inform the development of new synthetic ligands for LasR and QscR with improved potencies and selectivities.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/metabolismo , Ligantes , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Pseudomonas aeruginosa/patogenicidade , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Transativadores/agonistas , Transativadores/antagonistas & inibidores , Virulência/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-29784838

RESUMO

Antibiotics with novel bactericidal mechanisms of action are urgently needed. The antibiotic acyldepsipeptide 4 (ADEP4) activates the ClpP protease and causes cells to self-digest. The effects of ADEP4 and ClpP activation have not been characterized sufficiently for the enterococci, which are important pathogens known for high levels of acquired and intrinsic antibiotic resistance. In the present study, ADEP4 was found to be potently active against both Enterococcus faecalis and Enterococcus faecium, with MIC90s of 0.016 µg/ml and 0.031 µg/ml, respectively. ClpP purified from E. faecium was found to bind ADEP4 in a surface plasmon resonance analysis, and ClpP activation by ADEP4 was demonstrated biochemically with a ß-casein digestion assay. In addition, E. faecium ClpP was crystallized in the presence of ADEP4, revealing ADEP4 binding to ClpP in the activated state. These results confirm that the anti-enterococcal activity of ADEP4 occurs through ClpP activation. In killing curve assays, ADEP4 was found to be bactericidal against stationary-phase vancomycin-resistant E. faecalis (VRE) strain V583, and resistance development was prevented when ADEP4 was combined with multiple classes of approved antibiotics. ADEP4 in combination with partnering antibiotics also eradicated mature VRE biofilms within 72 h of treatment. Biofilm killing with ADEP4 antibiotic combinations was superior to that with the clinically used combinations ampicillin-gentamicin and ampicillin-daptomycin. In a murine peritoneal septicemia model, ADEP4 alone was as effective as ampicillin. ADEP4 coadministered with ampicillin was significantly more effective than either drug alone. These data suggest that ClpP-activating antibiotics may be useful for treating enterococcal infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Depsipeptídeos/farmacologia , Endopeptidase Clp/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Ampicilina/farmacologia , Animais , Antibacterianos/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cristalografia por Raios X , Depsipeptídeos/química , Modelos Animais de Doenças , Combinação de Medicamentos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecium/enzimologia , Enterococcus faecium/genética , Enterococcus faecium/crescimento & desenvolvimento , Ativação Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sepse/tratamento farmacológico , Sepse/microbiologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/enzimologia , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento
13.
Mol Nutr Food Res ; 62(9): e1700992, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573169

RESUMO

SCOPE: This study was undertaken to expand our insights into the mechanisms involved in the tolerance to resveratrol (RSV) that operate at system-level in gut microorganisms and advance knowledge on new RSV-responsive gene circuits. METHODS AND RESULTS: Whole genome transcriptional profiling was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to RSV. DNA repair mechanisms were induced by RSV and responses were triggered to decrease the load of copper, a metal required for RSV-mediated DNA cleavage, and H2 S, a genotoxic gas. To counter the effects of RSV, L. plantarum strongly up- or downregulated efflux systems and ABC transporters pointing to transport control of RSV across the membrane as a key mechanism for RSV tolerance. L. plantarum also downregulated tRNAs, induced chaperones, and reprogrammed its transcriptome to tightly control ammonia levels. RSV induced a probiotic effector gene and a likely deoxycholate transporter, two functions that improve the host health status. CONCLUSION: Our data identify novel protective mechanisms involved in RSV tolerance operating at system level in a gut microbe. These insights could influence the way RSV is used for a better management of gut microbial ecosystems to obtain associated health benefits.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Reparo do DNA , Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/metabolismo , Modelos Biológicos , Resveratrol/metabolismo , Animais , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Transporte Biológico , Cobre/química , Cobre/metabolismo , Ácidos Cumáricos , Suplementos Nutricionais , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Sulfeto de Hidrogênio/antagonistas & inibidores , Sulfeto de Hidrogênio/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/isolamento & purificação , Probióticos , Propionatos/metabolismo , RNA Bacteriano/antagonistas & inibidores , RNA Bacteriano/metabolismo , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/metabolismo , Saliva/microbiologia
14.
J Nanobiotechnology ; 16(1): 31, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587743

RESUMO

BACKGROUND: Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes. RESULTS: Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction. CONCLUSIONS: This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nanotubos de Carbono/química , Salmonella typhimurium/efeitos dos fármacos , Prata/farmacologia , Animais , Antibacterianos/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Embrião de Galinha , Composição de Medicamentos , Desenvolvimento Embrionário/efeitos dos fármacos , Microbiologia de Alimentos , Ontologia Genética , Humanos , Medições Luminescentes , Anotação de Sequência Molecular , Nanocompostos/química , Polietilenoglicóis/química , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Mol Microbiol ; 108(3): 240-257, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437248

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that uses the process of quorum sensing (QS) to coordinate the expression of many virulence genes. During quorum sensing, N-acyl-homoserine lactone (AHL) signaling molecules regulate the activity of three LuxR-type transcription factors, LasR, RhlR and QscR. To better understand P. aeruginosa QS signal reception, we examined the mechanism underlying the response of QscR to synthetic agonists and antagonists using biophysical and structural approaches. The structure of QscR bound to a synthetic agonist reveals a novel mode of ligand binding supporting a general mechanism for agonist activity. In turn, antagonists of QscR with partial agonist activity were found to destabilize and greatly impair QscR dimerization and DNA binding. These results highlight the diversity of LuxR-type receptor responses to small molecule agonists and antagonists and demonstrate the potential for chemical strategies for the selective targeting of individual QS systems.


Assuntos
Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Ligantes , Ligação Proteica , Pseudomonas aeruginosa/genética , Percepção de Quorum/fisiologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Virulência/genética
16.
Future Med Chem ; 9(17): 1983-1994, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29076756

RESUMO

AIM: Resistance to conventional antibiotics has spurred interest in exploring new antimicrobial strategies. Suppressing quorum sensing within biofilm is a promising antimicrobial strategy. LasR in quorum sensing system of the Gram-negative bacteria, Pseudomonas aeruginosa, directly enhances virulence and antibiotic resistance, with QscR as its indirect suppressor, so targeting both of them can synergistically take the effect. METHODOLOGY/RESULTS: An in silico protocol combining pharmacophores with molecular docking was applied. Pharmacophores of QscR agonists and LasR antagonists were prepared for preliminary screening, followed by counter-screen using a pharmacophore model of LasR agonists and molecular docking of LasR. Four compounds with novel scaffolds were confirmed as potential biofilm inhibitors with preliminary experimental data. CONCLUSION: Novel biofilm inhibitors can be found with the method.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas Repressoras/agonistas , Transativadores/antagonistas & inibidores , Antibacterianos/química , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Relação Estrutura-Atividade
17.
J Biol Chem ; 292(45): 18408-18421, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28972181

RESUMO

KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.


Assuntos
Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Modelos Moleculares , Peroxidase/metabolismo , Algoritmos , Substituição de Aminoácidos , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzotiazóis/farmacologia , Biocatálise/efeitos dos fármacos , Catalase/química , Catalase/genética , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Peroxidase/química , Peroxidase/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Sulfônicos/farmacologia , Triptofano/química
18.
J Biol Chem ; 292(50): 20732-20743, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29066619

RESUMO

The bacterial cell division regulators MinD and MinE together with the division inhibitor MinC localize to the membrane in concentrated zones undergoing coordinated pole-to-pole oscillation to help ensure that the cytokinetic division septum forms only at the mid-cell position. This dynamic localization is driven by MinD-catalyzed ATP hydrolysis, stimulated by interactions with MinE's anti-MinCD domain. This domain is buried in the 6-ß-stranded MinE "closed" structure, but is liberated for interactions with MinD, giving rise to a 4-ß-stranded "open" structure through an unknown mechanism. Here we show that MinE-membrane interactions induce a structural change into a state resembling the open conformation. However, MinE mutants lacking the MinE membrane-targeting sequence stimulated higher ATP hydrolysis rates than the full-length protein, indicating that binding to MinD is sufficient to trigger this conformational transition in MinE. In contrast, conformational change between the open and closed states did not affect stimulation of ATP hydrolysis rates in the absence of membrane binding, although the MinD-binding residue Ile-25 is critical for this conformational transition. We therefore propose an updated model where MinE is brought to the membrane through interactions with MinD. After stimulation of ATP hydrolysis, MinE remains bound to the membrane in a state that does not catalyze additional rounds of ATP hydrolysis. Although the molecular basis for this inhibited state is unknown, previous observations of higher-order MinE self-association may explain this inhibition. Overall, our findings have general implications for Min protein oscillation cycles, including those that regulate cell division in bacterial pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Modelos Moleculares , Neisseria gonorrhoeae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Membrana Celular/enzimologia , Dicroísmo Circular , Dimerização , Ativação Enzimática , Deleção de Genes , Cinética , Mutagênese Sítio-Dirigida , Neisseria gonorrhoeae/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Estabilidade Proteica , Transporte Proteico
19.
Artigo em Inglês | MEDLINE | ID: mdl-28893777

RESUMO

In microbial biofilms, microorganisms utilize secreted signaling chemical molecules to coordinate their collective behavior. Farnesol is a quorum sensing molecule secreted by the fungal species Candida albicans and shown to play a central physiological role during fungal biofilm growth. Our pervious in vitro and in vivo studies characterized an intricate interaction between C. albicans and the bacterial pathogen Staphylococcus aureus, as these species coexist in biofilm. In this study, we aimed to investigate the impact of farnesol on S. aureus survival, biofilm formation, and response to antimicrobials. The results demonstrated that in the presence of exogenously supplemented farnesol or farnesol secreted by C. albicans in biofilm, S. aureus exhibited significantly enhanced tolerance to antimicrobials. By using gene expression studies, S. aureus mutant strains, and chemical inhibitors, the mechanism for the enhanced tolerance was attributed to upregulation of drug efflux pumps. Importantly, we showed that sequential exposure of S. aureus to farnesol generated a phenotype of high resistance to antimicrobials. Based on the presence of intracellular reactive oxygen species upon farnesol exposure, we hypothesize that antimicrobial tolerance in S. aureus may be mediated by farnesol-induced oxidative stress triggering the upregulation of efflux pumps, as part of a general stress response system. Hence, in mixed biofilms, C. albicans may influence the pathogenicity of S. aureus through acquisition of a drug-tolerant phenotype, with important therapeutic implications. Understanding interspecies signaling in polymicrobial biofilms and the specific drug resistance responses to secreted molecules may lead to the identification of novel targets for drug development.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Farneseno Álcool/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Tolerância a Medicamentos/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/agonistas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Percepção de Quorum/genética , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Simbiose , Vancomicina/antagonistas & inibidores , Vancomicina/farmacologia
20.
J Biol Chem ; 292(29): 12041-12053, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546427

RESUMO

Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C-methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S-adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S-adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient ΔspeD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/agonistas , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/biossíntese , Espermidina/metabolismo , Fatores de Transcrição/agonistas , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Metionina/metabolismo , Metilação , Ciclo do Nitrogênio , Óperon , Purinas/metabolismo , S-Adenosilmetionina/metabolismo , Análise de Célula Única , Espermidina/análogos & derivados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA