Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.002
Filtrar
1.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727814

RESUMO

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Assuntos
Homeostase , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Homeostase/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Cálcio/metabolismo , Rim/metabolismo , Magnésio/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731894

RESUMO

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Assuntos
Proliferação de Células , Diterpenos , Compostos de Epóxi , Fenantrenos , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Peixe-Zebra , Animais , Compostos de Epóxi/farmacologia , Fenantrenos/farmacologia , Diterpenos/farmacologia , Fator de Transcrição STAT3/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Linhagem Celular Tumoral , Receptores Notch/metabolismo
3.
Cell Biol Toxicol ; 40(1): 36, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771396

RESUMO

Purinergic receptor P2Y11, a G protein-coupled receptor that is stimulated by extracellular ATP, has been demonstrated to be related to the chemotaxis of granulocytes, apoptosis of neutrophils, and secretion of cytokines in vitro. P2Y11 mutations were associated with narcolepsy. However, little is known about the roles of P2RY11 in the occurrence of narcolepsy and inflammatory response in vivo. In this study, we generated a zebrafish P2Y11 mutant using CRISPR/Cas9 genome editing and demonstrated that the P2Y11 mutant replicated the narcolepsy-like features including reduced HCRT expression and excessive daytime sleepiness, suggesting that P2Y11 is essential for HCRT expression. Furthermore, we accessed the cytokine expression in the mutant and revealed that the P2RY11 mutation disrupted the systemic inflammatory balance by reducing il4, il10 and tgfb, and increasing il6, tnfa, and il1b. In addition, the P2RY11-deficient larvae with caudal fin injuries exhibited significantly slower migration and less recruitment of neutrophils and macrophages at damaged site, and lower expression of anti-inflammatory cytokines during tissue damage. All these findings highlight the vital roles of P2RY11 in maintaining HCRT production and secreting anti-inflammatory cytokines in the native environment, and suggested that P2RY11-deficient zebrafish can serve as a reliable and unique model to further explore narcolepsy and inflammatory-related diseases with impaired neutrophil and macrophage responses.


Assuntos
Citocinas , Inflamação , Macrófagos , Neutrófilos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Neutrófilos/metabolismo , Neutrófilos/imunologia , Macrófagos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Citocinas/metabolismo , Mutação/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/deficiência
4.
Proc Natl Acad Sci U S A ; 121(21): e2321496121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753517

RESUMO

RNASET2-deficient leukodystrophy is a rare infantile white matter disorder mimicking a viral infection and resulting in severe psychomotor impairments. Despite its severity, there is little understanding of cellular mechanisms of pathogenesis and no treatments. Recent research using the rnaset2 mutant zebrafish model has suggested that microglia may be the drivers of the neuropathology, due to their failure to digest apoptotic debris during neurodevelopment. Therefore, we developed a strategy for microglial replacement through transplantation of adult whole kidney marrow-derived macrophages into embryonic hosts. Using live imaging, we revealed that transplant-derived macrophages can engraft within host brains and express microglia-specific markers, suggesting the adoption of a microglial phenotype. Tissue-clearing strategies revealed the persistence of transplanted cells in host brains beyond embryonic stages. We demonstrated that transplanted cells clear apoptotic cells within the brain, as well as rescue overactivation of the antiviral response otherwise seen in mutant larvae. RNA sequencing at the point of peak transplant-derived cell engraftment confirms that transplantation can reduce the brain-wide immune response and particularly, the antiviral response, in rnaset2-deficient brains. Crucially, this reduction in neuroinflammation resulted in behavioral rescue-restoring rnaset2 mutant motor activity to wild-type (WT) levels in embryonic and juvenile stages. Together, these findings demonstrate the role of microglia as the cellular drivers of neuropathology in rnaset2 mutants and that macrophage transplantation is a viable strategy for microglial replacement in the zebrafish. Therefore, microglia-targeted interventions may have therapeutic benefits in RNASET2-deficient leukodystrophy.


Assuntos
Encéfalo , Modelos Animais de Doenças , Macrófagos , Microglia , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Microglia/metabolismo , Microglia/patologia , Macrófagos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/metabolismo
5.
Sci Adv ; 10(20): eadl0633, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748804

RESUMO

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce , Valvas Cardíacas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Valvas Cardíacas/metabolismo , Valvas Cardíacas/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Morfogênese/genética , Humanos , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais/metabolismo , Mecanotransdução Celular , Suínos
7.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700644

RESUMO

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Assuntos
Coração , Regeneração , Sindecana-4 , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Regeneração/genética , Coração/fisiologia , Coração/fisiopatologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proliferação de Células/genética , Miocárdio/metabolismo , Miocárdio/patologia , Técnicas de Silenciamento de Genes
8.
Science ; 384(6695): 573-579, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696577

RESUMO

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Assuntos
Habenula , Neurogênese , Neurônios , Via de Sinalização Wnt , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Habenula/metabolismo , Habenula/embriologia , Neurônios/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Receptores Wnt/metabolismo , Receptores Wnt/genética , Encéfalo/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
9.
Anat Histol Embryol ; 53(3): e13044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695121

RESUMO

The vitamin D receptor (VDR) signalling has been implicated in vertebrate limb or fin formation. However, the involvement of VDR signalling in the early stages of limb/fin development remains to be elucidated. In this study, the role of VDR signalling in pectoral fin development was investigated in zebrafish embryos. Knockdown of vdr induced the severe impairment of pectoral fin development. The zebrafish larvae lacking vdr exhibited reduced pectoral fins with no skeletal elements. In situ hybridization revealed depletion of vdr downregulated fibroblast growth factor 24 (fgf24), a marker of early pectoral fin bud mesenchyme, in the presumptive fin field even before fin buds were visible. Moreover, a perturbed expression pattern of bone morphogenetic protein 4 (bmp4), a marker of the pectoral fin fold, was observed in the developing fin buds of zebrafish embryos that lost the vdr function. These findings suggest that VDR signalling is crucial in the early stages of fin development, potentially influencing the process by regulating other signalling molecules such as Fgf24 and Bmp4.


Assuntos
Nadadeiras de Animais , Proteína Morfogenética Óssea 4 , Fatores de Crescimento de Fibroblastos , Receptores de Calcitriol , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Técnicas de Silenciamento de Genes , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ
10.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722096

RESUMO

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Assuntos
Células Endoteliais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Vasos Linfáticos , Proteínas Supressoras de Tumor , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Elementos Facilitadores Genéticos/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Células Endoteliais/metabolismo , Linfangiogênese/genética , Sistemas CRISPR-Cas/genética , Regiões Promotoras Genéticas/genética , Camundongos
11.
Nat Commun ; 15(1): 4331, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773121

RESUMO

The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury. Importantly, we demonstrate the presence and the dynamics of a neuron-to-neuron bystander neuroprotective biochemical cooperation mediated through gap junction channels. Our findings support a model in which the intimate and dynamic interplay between glutamate signaling, calcium buffering, gap junction channels, and intercellular cooperation upholds cell survival and promotes the initiation of regeneration.


Assuntos
Junções Comunicantes , Neurônios Motores , Traumatismos da Medula Espinal , Medula Espinal , Peixe-Zebra , Animais , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Junções Comunicantes/metabolismo , Neurônios Motores/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calbindina 2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Ácido Glutâmico/metabolismo , Sobrevivência Celular
12.
Cell Rep ; 43(4): 114092, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607913

RESUMO

Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.


Assuntos
Fibroblastos , Coração , Macrófagos , Regeneração , Peixe-Zebra , Animais , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Fibroblastos/metabolismo , Coração/fisiologia , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Macrófagos/metabolismo , Pericárdio/metabolismo , Pericárdio/citologia , Regeneração/fisiologia , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
13.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38626530

RESUMO

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Assuntos
Axônios , Colesterol , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peixe-Zebra , Animais , Autofagia , Axônios/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Neurogênese , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683849

RESUMO

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Assuntos
Encéfalo , Diferenciação Celular , Pericitos , Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Pericitos/metabolismo , Pericitos/citologia , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Encéfalo/metabolismo , Encéfalo/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/metabolismo , Crista Neural/citologia , Mesoderma/metabolismo , Mesoderma/citologia , Transdução de Sinais , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética
15.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682303

RESUMO

This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fenótipo , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Telencéfalo/metabolismo , Telencéfalo/embriologia , Análise de Célula Única , Transdução de Sinais , Receptores Notch/metabolismo , Receptores Notch/genética , Diferenciação Celular
16.
Biochemistry ; 63(10): 1246-1256, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38662574

RESUMO

Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase , Guanilato Ciclase , Peixe-Zebra , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/química , Animais , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Guanilato Ciclase/química , Peixe-Zebra/metabolismo , Multimerização Proteica , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Cálcio/metabolismo , Modelos Moleculares , Ativação Enzimática , Ressonância Magnética Nuclear Biomolecular , Mutação , Conformação Proteica , Retina/metabolismo
17.
Aquat Toxicol ; 271: 106923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669778

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic ß-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic ß-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic ß-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic ß-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Exposição Materna , Fator 2 Relacionado a NF-E2 , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Feminino , Poluentes Químicos da Água/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Embrião não Mamífero/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos
18.
Life Sci Space Res (Amst) ; 41: 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670639

RESUMO

Understanding how skeletal tissues respond to microgravity is ever more important with the increased interest in human space travel. Here, we exposed larval Danio rerio at 3.5 dpf to simulated microgravity (SMG) using a 3D mode of rotation in a ground-based experiment and then studied different cellular, molecular, and morphological bone responses both immediately after exposure and one week later. Our results indicate an overall decrease in ossification in several developing skeletal elements immediately after SMG exposure with the exception of the otoliths, however ossification returns to normal levels seven days after exposure. Coincident with the reduction in overall ossification tnfsf11 (RANKL) expression is highly elevated after 24 h of SMG exposure and also returns to normal levels seven days after exposure. We also show that genes associated with osteoblasts are unaffected immediately after SMG exposure. Thus, the observed reduction in ossification is primarily the result of a high level of bone resorption. This study sheds insight into the nuances of how osteoblasts and osteoclasts in the skeleton of a vertebrate organism respond to an external environmental disturbance, in this case simulated microgravity.


Assuntos
Larva , Osteogênese , Simulação de Ausência de Peso , Peixe-Zebra , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Ligante RANK/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Ausência de Peso/efeitos adversos
19.
Mol Vis ; 30: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601019

RESUMO

Purpose: Danio rerio zebrafish constitute a popular model for studying lens development and congenital cataracts. However, the specific deletion of a gene with a Cre/LoxP system in the zebrafish lens is unavailable because of the lack of a lens-Cre-transgenic zebrafish. This study aimed to generate a transgenic zebrafish line in which Cre recombinase was specifically expressed in the lens. Methods: The pTol2 cryaa:Cre-polyA-cryaa:EGFP (enhanced green fluorescent protein) plasmid was constructed and co-injected with Tol2-transposase into one-to-two-cell-stage wild-type (WT) zebrafish embryos. Whole-mount in situ hybridization (ISH), tissue section, hematoxylin and eosin staining, a Western blot, a split-lamp observation, and a grid transmission assay were used to analyze the Cre expression, lens structure, and lens transparency of the transgenic zebrafish. Results: In this study, we generated a transgenic zebrafish line, zTg(cryaa:Cre-cryaa:EGFP), in which Cre recombinase and EGFP were driven by the lens-specific cryaa promoter. zTg(cryaa:Cre-cryaa:EGFP) began to express Cre and EGFP specifically in the lens at the 22 hpf stage, and this ectopic Cre could efficiently and specifically delete the red fluorescent protein (RFP) signal from the lens when zTg(cryaa:Cre-cryaa:EGFP) embryos were injected with the loxP-flanked RFP plasmid. The overexpression of Cre and EGFP did not impair zebrafish development or lens transparency. Accordingly, this zTg(cryaa:Cre-cryaa:EGFP) zebrafish line is a useful tool for gene editing, specifically with zebrafish lenses. Conclusions: We established a zTg(cryaa:Cre-cryaa:EGFP) zebrafish line that can specifically express an active Cre recombinase in lens tissues. This transgenic zebrafish line can be used as a tool to specifically manipulate a gene in zebrafish lenses.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Plasmídeos , Regiões Promotoras Genéticas
20.
Zebrafish ; 21(2): 128-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621212

RESUMO

Coordinated signaling pathway activity directs early patterning to set up the vertebrate body plan. Perturbations in the timing or location of signal molecule expression impacts embryo morphology and organ formation. In this study, we present a laboratory course to use zebrafish for studying the role of Wnt signaling in specifying the early embryonic axes. Students are exposed to basic techniques in molecular and developmental biology, including embryo manipulation, fluorescence microscopy, image processing, and data analysis. Furthermore, this course incorporates student-designed experiments to stimulate independent inquiry and improve scientific learning, providing an experience resembling graduate-level laboratory research. Students appreciated following vertebrate development in real-time, and principles of embryogenesis were reinforced by observing the morphological changes that arise due to signaling alterations. Scientific and research skills were enhanced through practice in experimental design, interpretation, and presentation.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Padronização Corporal , Desenvolvimento Embrionário , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA